
Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Randomized Algorithms for 
Machine Learning

Xixian Chen

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Supervisors: Prof. Irwin King & Prof. Michael R. Lyu

1



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Outline
Randomized 

algorithms for 
machine learning 

(My thesis)
Introduction & 

Background 
(Chapter 2)

Conclusion & 
Future work
(Chapter 6)

Kernel 
methods

(Chapter 3)

Covariance 
estimation
(Chapter 5)

Unsupervised 
online hashing 
(Chapter 4)

2

contribution



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Outline

2

Randomized 
algorithms for 

machine learning 
(My thesis)

Introduction & 
Background 
(Chapter 2)

Conclusion & 
Future work
(Chapter 6)

Kernel 
methods

(Chapter 3)

Covariance 
estimation
(Chapter 5)

Unsupervised 
online hashing 
(Chapter 4)

contribution



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

The Dangerous Path of Publication
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• Use all reviewers that have bid to make a final decision

How to Decide to Accept a Paper?
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• Randomly sample from reviewers that have bid to 
review

How to Decide to Accept a Paper?

Randomization: the process of making something  
random (e.g., random sampling)

                      

randomization

bXX
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• Randomly sample from reviewers that have bid to make 
a final decision

How to Decide to Accept a Paper?

Randomized Algorithm (RA): randomization is used 
additionally to perturb the input and reduce the input size for 

the algorithm execution

Alg.A bY

randomization

bXX
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• Randomly sample from reviewers that have bid to make 
a final decision

How to Decide to Accept a Paper?

Alg.A bY

         high efficiency;
high accuracy? i.e.,          ?  bY ! Y

randomization

bXX
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Randomized Algorithm Helps?
• Reviewers mark papers

P1 P2 P3 P4
R1 +1 +2 -1 -1
R2 -2 +1 +2 -1
R3 -2 -1 -2 -1
R4 +2 -1 +2 +2

R1,2,3,4 - + + -

X

P1 P2 P3 P4
R1 +1 +2 -1 -1
R2 -2 +1 +2 -1
R3 -2 -1 -2 -1

R1,2,3 - + - -

noisy
useful

ground truth
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Randomized Algorithm Helps?
• Reviewers mark papers

P1 P2 P3 P4
R1 +1 +2 -1 -1
R2 -2 +1 +2 -1
R3 -2 -1 -2 -1
R4 +2 -1 +2 +2

R1,2,3,4 - + + -

P1 P2 P3 P4
R1 +1 +2 -1 -1
R2 -2 +1 +2 -1
R3 -2 -1 -2 -1

R1,2,3 - + - -

ground truth

P1 P2 P3 P4 Accuracy

R1 + + - - 3/4
R2 - + + - 3/4
R3 - - - - 3/4
R4 + - + + 0/4
R1,2 - + + - 3/4
R1,3 - + - - 4/4
R1,4 + + + + 1/4
R2,3 - 0 0 - 3/4
R2,4 0 0 + + 1/4
R3,4 0 - 0 + 1/4

random sampling
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Randomized Algorithm Helps?
• NIPS’14 review experiment

• Half the papers appearing at NIPS are still kept if the review 
process were rerun
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• To improve the accuracy

• Assign more reviewers (enlarge the problem size after 
randomization) P1 P2 P3 P4

R1,2 - + + -
R1,2,3 - + - -
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Randomized Algorithm Helps?
• To improve the accuracy

• Assign more reviewers (enlarge the problem size after 
randomization)

• Ensure a known expert in the review process in NIPS’16 
(design more complicated randomization techniques)

although will decrease the achieved efficiency!

P1 P2 P3 P4
R1 + + - -
R3 - - - -
R4 + - + +
R1,3 - + - -
R1,4 + + + +

P1 P2 P3 P4
R1,2 - + + -
R1,2,3 - + - -
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Randomized Algorithm Helps!
• A tradeoff between accuracy and efficiency in the 

algorithm design

• Reduce the computational requirements with good 
outputs
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Randomized Algorithm on Learning

⇥

covariance estimation

⇥⇥ ⇥

�1

least square regression

w⇤ =

w⇤ = argmin
w2Rd

kXTw � bk22, X 2 Rd⇥n

• Solving learning problems involves matrix computations 

13
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Randomized Algorithm on Learning

• Randomization is utilized to obtain a smaller or sparser 
matrix that represents the essential information in the 
original matrix for the algorithm execution
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Y
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Alg.A
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• Randomization is utilized to obtain a smaller or sparser 
matrix that represents the essential information in the 
original matrix for the algorithm execution

X

Y

bX

bY

randomization

⇡
Alg.A

Randomized Algorithm on Learning

Alg.A
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P{Di↵erence(Y, bY)  ✏} � 1� �

X

Y

bX

bY

randomized
algorithm

⇡
Alg.A

Goal:                                    holds in a low computational burden! 

Randomized Algorithm on Learning

Alg.A

randomization

• Randomization is utilized to obtain a smaller or sparser 
matrix that represents the essential information in the 
original matrix for the algorithm execution

14

[M. Mahoney, 2011; T. Yang, 2015]
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How to Get a Good Randomized Algorithm

• Randomization greatly impacts the accuracy and 
efficiency: 

• Random projection

• Random sampling

15
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• Randomly combine rows/columns of data matrix to 
create a smaller representation

• JL-lemma [Johnson & Lindenstrauss, 1984]

• Assume               and                      . There exists a 
probability distribution on an real matrix             . Then, for 
any fixed vector         with a probability at least       , we have

Random Projection

0 < ✏, � < 1 m = ⌦(✏�2
log(

1
� ))

� 2 Rm⇥d

x 2 Rd 1� �

(1� ✏)kxk22  k�xk22  (1 + ✏)kxk22

16
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Random Projection

•           : Gaussian matrix [S. Dasgupta, et al., 2003]

• Satisfy 

• Take           time for     

� 2 Rm⇥d

O(mdn) �X (X 2 Rd⇥n)

�ij ⇠ N (0, 1)/
p
m

Gaussian matrix is dense, which is not very efficient! 

17
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Random Projection

•           : sparse matrix [D. Achlioptas, 2003]

• Satisfy 

• Faster

� 2 Rm⇥d

�ij =

8
<

:

p
3/m Prob. = 1/6

0 Prob. = 2/3
�
p

3/m Prob. = 1/6

18



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Random Projection

•                    : Hadamard transform [N. Ailon, et al., 
2009]

•            : sparse Gaussian matrix 

•           : normalized Walsh-Hadamard matrix (for FFT) 

•           : diagonal matrix            

� = PHD 2 Rm⇥d

P 2 Rm⇥d

H 2 Rd⇥d

D 2 Rd⇥d

pij =

⇢
N (0, q�1

) Prob. = q
0 Prob. = 1� q

H = 1p
d
Hd, Hd =


Hd/2 Hd/2

Hd/2 �Hd/2

�
, H2 =


1 1
1 �1

�

dii =

⇢
1 Prob. = 1/2
�1 Prob. = 1/2

   fastest for                    :             time �X (X 2 Rd⇥n) nd log(m)
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Random Projection

•                    : Hadamard transform [N. Ailon, et al., 
2009]

•            : sparse Gaussian matrix 
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•           : diagonal matrix            

� = PHD 2 Rm⇥d

P 2 Rm⇥d

H 2 Rd⇥d

D 2 Rd⇥d

pij =

⇢
N (0, q�1

) Prob. = q
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d
Hd, Hd =
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Hd/2 �Hd/2

�
, H2 =


1 1
1 �1

�

dii =

⇢
1 Prob. = 1/2
�1 Prob. = 1/2

   fast:             for 
   no need for storing     H

d log(m) �xi
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Random Sampling
• Randomly sample a small number of rows/columns to 

create a smaller matrix (interpretable, efficient)

• Choose a column   from                     based on the 
sampling probabilities             

• How to define    ?         

• Uniform: 

• Non-Uniform:             , leverage scores [P. Drineas, et al., 
2006], etc.

y {xi}ni=1 (X 2 Rd⇥n)

{pi}ni=1 : P(y = xi) = pi

pi

pi =
1
n

pi =
kxik2

2

kXk2
F

20
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Randomized Algorithm

• Summary of principles:

• Construct a sketch by randomization

• Sketch: a smaller or sparser matrix that represents the essential 
information in the original matrix

• Leverage the sketch as a surrogate for the learning

• Theoretically analyze the learning accuracy and 
computational complexity

21
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Why Randomized Algorithm
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Why Randomized Algorithm

Velocity Variety VeracityVolume

40 ZB (2020)
5.2 TB per person

500 TB per day 
new data

23
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Why Randomized Algorithm
• Can make learning efficient [M. Mahoney, 2011]

• Reduction in time, space, and communication

24
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Why Randomized Algorithm
• Can make learning efficient [M. Mahoney, 2011]

• Reduction in time, space, and communication

• Simple

• Effective

• Theoretically guaranteed

• Interpretable

• Parallelizable

24



Application Taxonomy

regression

kernel 
methods 

kernel function

data-independent

data-dependent

deep 
learning

hashing 

kernel matrix

after training

during training

[O. Maillar, et al., 2009] [P. Dhillon, et al., 2013] [G. Raskutti, et al., 2015] 
[J. Yang, et al., 2016] [M. Slawski, et al., 2017]

[Y. Lu, et al., 2013] [S. Chen, et al., 2015] [S. Wang, et al., 2017]

[J. Wang, et al., 2017]

[C. Williams, et al., 2001] [P. Drineas, et al., 2005] [T. Yang, et al., 2012] 
[D. G. Anderson, et al., 2015] [D. Oglic, et al., 2017]

[A. Rahimi, et al., 2007] [N. Pham, et al., 2013] [J. Yang, et al., 2014] 
[X. Chen, et al., 2015] [M. Slawski, et al., 2017] [H. Avron, et al., 2017]

[F. Xu, et al., 2014] [C. Leng, et al., 2015] [Q. Jiang, et al., 2015] 
[W. Kang, et al., 2016] [X. Chen, et al., 2017]

[M. Datar, et al., 2004] [P. Li, et al., 2011] [Shrivastava, et al., 2014]

[A. Novikov, et al., 2015] [W. Kang, et al., 2016]
[K. Cutajar, et al., 2017]

[R. Spring, et al., 2016] [Y. Wang, et al., 2017] 

covariance
estimation 

[H. Qi, et al., 2012] [F.  Anaraki, et al., 2014] [M. Azizyan, et al., 2015]
 [F.  Anaraki, et al., 2016] [F.  Anaraki, et al., 2017] [X. Chen, et al., 2017]

k-means clustering

optimization

[C. Boutsidis, et al., 2009] [C. Boutsidis., et al., 2015] 
[S. Wang, et al., 2017] 

[L. Zhang, et al., 2013] [A. Gonen, et al., 2016] [P. Xu, et al.,2016] [H. Luo, et al., 
2016] [M. Pilanci, et al., 2016] [J. Wang, et al., 2017] [D. Calandriello, et al., 2017]

randomized 
algorithms for 
machine 
learning
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Thesis Contribution
• Focus on three learning techniques

Machine
learning
techniques

Applications Solutions

Kernel 
methods

(Chapter 3)

regression;
SVM; GP;
spectral 

clustering

RKS
[A. Rahimi, et al., 

2007]

Unsupervised 
online hashing 
(Chapter 4)

retrieval;
matching;
clustering

OSH
[C. Leng, et al., 

2015]

Covariance 
estimation

(Chapter 5)

LDA; QDA;
regression;
ICA; PCA;

policy learning;
gene analysis;
array signal

Standard
[W. Feller, 1966]
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Thesis Contribution
• Design randomized algorithms to reduce the 

computational costs

• Theoretically analyze the accuracy and efficiency

• Empirically demonstrate the good performance
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Background
• Kernel methods 

• Kernel regression, kernel SVM, kernel PCA, etc.

• Kernel function:                                            , without 
knowing

k(xi,xj) = h�(xi),�(xj)i, 8i, j 2 [n]

�(·)
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Background
• Kernel methods 

• Kernel regression, kernel SVM, kernel PCA, etc.

• Kernel function:                                            , without 
knowing

• Shift-invariant kernel function:                                         
e.g.,                                       

powerful but inefficient

k(xi,xj) = h�(xi),�(xj)i, 8i, j 2 [n]

k(xi,xj) = g(xi � xj)

k(xi,xj) = exp(�kxi � xjk22/2�2
)

�(·)
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Related Work
• Random Kitchen Sink (RKS) [A. Rahimi, et al., 2007]

• Explicitly mapped features                          , satisfying

                                   
k(xi,xj) = h�(xi),�(xj)i ⇡ hZ(xi),Z(xj)i, xi,xj 2 Rm

G = {Z(xi) 2 R`}ni=1

32



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Related Work
• Random Kitchen Sink (RKS) [A. Rahimi, et al., 2007]

• Explicitly mapped features                          , satisfying

                                   
k(xi,xj) = h�(xi),�(xj)i ⇡ hZ(xi),Z(xj)i, xi,xj 2 Rm

Y bY

RKS

nonlinear
algorithm

⇡
linear

algorithm

⇡

K G
GT⇥ `

n

G = {Z(xi) 2 R`}ni=1

32



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Related Work
• Random Kitchen Sink (RKS) [A. Rahimi, et al., 2007]

• Explicitly mapped features                          , satisfying

                                   

a large   for accurate training, still inefficient!

k(xi,xj) = h�(xi),�(xj)i ⇡ hZ(xi),Z(xj)i, xi,xj 2 Rm

Y bY

RKS

nonlinear
algorithm

⇡
linear

algorithm

⇡

K G
GT⇥ `

n

G = {Z(xi) 2 R`}ni=1

`

kK�GGT k2  O(n/
p
`)
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Our Method
• Use small    to maintain information in RKS

kij = k(xi � xj) =

Z
p(z)eiz

T (xi�xj)dz (1)

⇡ 2

`

`/2X

s=1

heiz
T
s xi , eiz

T
s xj i

=

`/2X

s=1

h 1p
`/2

cos(z

T
s xi),

1p
`/2

cos(z

T
s xj)i

+h 1p
`/2

sin(z

T
s xi),

1p
`/2

sin(z

T
s xj)i

= hZ(xi) 2 R`,Z(xj) 2 R`i (2)

`
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Our Method
• Improve RKS via FDSE (fast data-dependent subspace 

embedding)

RKS

K Gn

F

d

FDSE kK�GGT k2  O(n/`)

`
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Our Method
• Improve RKS via FDSE (fast data-dependent subspace 

embedding)

Y bY

RKS
nonlinear
algorithm

⇡

linear
algorithm

K G
GT⇥ `

n

F

d

FDSE

`
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Our Method
• TEFM-G

RKS
n F

d

n

`

⇥

N (0, 1)
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Our Method
• TEFM-G

RKS
n F

d

n

`

⇥

N (0, 1)

(FTF)qFT⇥

`

Y

QR

decom.
`

d Qd
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Our Method
• TEFM-G

RKS
n F

d

n

`

⇥

N (0, 1)

(FTF)qFT⇥

`

Y

QR

decom.
`

d Q Gn

`

FQ

d
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Our Method
• TEFM-S

RKS
n F

d

n

`

⇥
`

Y

QR

decom.
`

d Q Gn

`

FQ

dHadamard
FT⇥
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Our Method
• TEFM-S

RKS
n F

d

n

`

⇥
`

Y

QR

decom.
`

d Q Gn

`

FQ

dHadamard
FT⇥
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Our Method
• TEFM-S

RKS
n F

d

n

`

⇥
`

Y

QR

decom.
`

d Q Gn

`

FQ

dHadamard
FT⇥

36

K ⇡ FFT ⇡ GGT = FQQTFT QQT ⇡ Id,

Q 2 FT⇥ FT⇥⇥TF ⇡ FTF

XTX

error propagates

Q 2 FT
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Results
• Theorem 3.1 & 3.2 (Kernel matrix approximation). Suppose we 

have a kernel matrix             based on shift-invariant functions 
and get features             via Algorithm TEFM-G or TEFM-S. 
Then the following inequality holds with limited failure 
probability                                                                                                                                                               

K 2 Rn⇥n

G 2 Rn⇥`

kK�GGT k2  O(n/`).
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Results
• Theorem 3.1 & 3.2 (Kernel matrix approximation). Suppose we 

have a kernel matrix             based on shift-invariant functions 
and get features             via Algorithm TEFM-G or TEFM-S. 
Then the following inequality holds with limited failure 
probability

• Theorem 3.3 (Impact on learning tasks). Suppose we get a 
kernel matrix             by operating shift-invariant functions on 
the data                          and a feature matrix                       
by Algorithm TEFM-G or TEFM-S. Then the following inequality 
holds with limited failure probability  

where                                                             , and training 
on                    gets         and training on    (                       )     
gets          .                                                                                                                                                         

K 2 Rn⇥n

G 2 Rn⇥`

K 2 Rn⇥n

X

T = {xi 2 Rm}ni=1 GT = {gi 2 R`}ni=1

F (w⇤
G)  F (w⇤

K) +O(1/`),

kK�GGT k2  O(n/`).

F (w⇤
Z(x)) = min

w

�
2 kwk22 + 1

n

Pn
i=1 ~{wT

Z(xi), yi}
{Z(xi) = gi}ni=1 F (w⇤

G) K {Z(xi) = �(xi)}ni=1

F (w⇤
K)

37
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Results
• Kernel matrix approximation

• Our method:                              (Theorem 3.1 & 3.2)

• RKS:

• Impact on learning tasks

• Training on our features:                      (Theorem 3.3)

• Training on RKS:

O(F (w⇤
K) + 1/`)

O(F (w⇤
K) + 1/

p
`)

kK�GGT k2  O(n/`)

kK�GGT k2  O(n/
p
`)

38
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Results
• Time cost for ridge regression

•             : input data

•  : the number of test points

•        : the number of mapped features

X 2 Rn⇥m

t
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Results
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•        : the number of mapped features

X 2 Rn⇥m
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Experiments
• Compared methods

• Random Kitchen Sinks (denoted by RKS) [A. Rahimi, et al., 
2007]

• Our proposed algorithms TEFM-G and TEFM-S

• Compact feature maps (denoted by Comp) [R. Hamid, et al., 
2014]

• Quasi-Monte Carlo method (denoted by Quasi) [J. Yang, et 
al., 2014]

• Fastfood method (denoted by Ffood) [Q. Le, et al., 2013]
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Real Data

r

41

Dataset Size Dimension

Mnist 70,000 784

BlogFeedback 60,021 280

SliceLocalization 53,500 384

UJIIndoorLoc 21,048 520

Cpu 6,554 21

A9a 48,842 123
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Kernel Matrix Approximation

approximation error vs. feature number 

42

`
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Ridge Regression Task
• RMSE (root mean square error)

RMSE vs. feature number RMSE vs. time
(mapping+training) in sec. 

43
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Conclusion
• Adopt randomized algorithms to get a better kernel 

matrix approximation and efficient training on down-
stream learning algorithms 

• Demonstrate the good performance by provable results,  
complexity analysis, and experiments
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Outline

45

Randomized 
algorithms for 

machine learning 
(My thesis)

contribution

Introduction & 
Background 
(Chapter 2)

Conclusion & 
Future work
(Chapter 6)

Kernel 
methods

(Chapter 3)

Covariance 
estimation
(Chapter 5)

Unsupervised 
online hashing 
(Chapter 4)
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Background
• Hashing

SIFT 
vector   millions 

images

      values       bits

Hashing Binary
codes

GB
MB

20

40

320

512 128
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Background
• PCA-based hashing (Unsupervised batch-based)

• PCA (Principal Component Analysis) step

• Quantization step

max

W2Rd⇥r
Tr(WT

(A�µµµ)T (A�µµµ)W)

s.t. WTW = Ir

hk(a
i) = sgn((ai �µµµ)wk), k 2 [r]

PCA step for            :          time         space!A 2 Rn⇥d O(nd2) O(nd)
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Background
• PCA-based hashing (Unsupervised batch-based)

• PCA (Principal Component Analysis) step

• Quantization step

max

W2Rd⇥r
Tr(WT

(A�µµµ)T (A�µµµ)W)

s.t. WTW = Ir

hk(a
i) = sgn((ai �µµµ)wk), k 2 [r]

PCA step for            :          time         space!A 2 Rn⇥d O(nd2) O(nd)
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Background

• Unsupervised online hashing 

• Label-free

• Adaptive

• Space-efficient

• Single-pass

48
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Related Work

• Online Sketching Hashing (OSH) [C. Leng, et al., 2015]

• Sketch                  into             with                                in 
an online fashion which requires       time and        space

A�µµµ 2 Rn⇥d B 2 R`⇥d BTB ⇡ (A�µµµ)T (A�µµµ)

49

O(d`)(nd`)
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Related Work

• Online Sketching Hashing (OSH) [C. Leng, et al., 2015]

• Sketch                  into             with                                in 
an online fashion which requires       time and        space

• Compute the right eigenvectors of    instead of            
which requires          time and        space

 

A�µµµ 2 Rn⇥d B 2 R`⇥d

A�µµµ

BTB ⇡ (A�µµµ)T (A�µµµ)

B

O(d`2)

O(d`)

O(d`)

(nd`)
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Related Work

• Online Sketching Hashing (OSH) [C. Leng, et al., 2015]

• Sketch                  into             with                                in 
an online fashion which requires       time and        space

• Compute the right eigenvectors of    instead of            
which requires          time and        space

         time and       space costs in total!

           (              is close to the size of the hashing coding) 

A�µµµ 2 Rn⇥d B 2 R`⇥d

A�µµµ

BTB ⇡ (A�µµµ)T (A�µµµ)

B

O(d`2) O(d`)

(nd`+ d`2) O(d`)

` ⌧ d ⌧ n

49

O(d`)(nd`)
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Related Work

• Online Sketching Hashing (OSH) [C. Leng, et al., 2015]

•              time cost is still large because 

             

(nd`+ d`2)

50
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Our Method

• Propose a FasteR Online Sketching Hashing (FROSH):      
a randomized algorithm for OSH

•  Speed up the data sketching of OSH

51

BTB ⇡ (A�µµµ)T (A�µµµ)
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Our Method

• Propose a FasteR Online Sketching Hashing (FROSH):      
a randomized algorithm for OSH

•  Speed up the data sketching of OSH

51

BTB ⇡ (A�µµµ)T (A�µµµ)

XTX

also in an online fashion with a small fixed space cost
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Our Method
• Online instance compression

n

d

…

52



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Our Method
• Online instance compression

n

d

…

m

52



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Our Method
• Online instance compression

n

d

…

m

`
2

randomization:
Hadamard transform

F1 2 Rm⇥d ! �1F1 2 R(`/2)⇥d
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Our Method
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Our Method
• Online instance compression
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2
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Our Method
• Online instance compression

n

d

…

m

`
2

`
2`

SVD= ⇥ ⇥
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Our Method
• Online instance compression

n

d

…

m

`
2

`
2`

= ⇥ ⇥

⇥
⇥⇡
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Our Method
• Online instance compression
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Our Method
• Online instance compression

n

d

…

m

`
2

`
2`

m

`
2

F2 2 Rm⇥d ! �2F2 2 R(`/2)⇥d
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Our Method
• Online instance compression

n

d

…

m

`
2

`
2`

m

`
2

F2 2 Rm⇥d ! �2F2 2 R(`/2)⇥d

F1 2 Rm⇥d ! �1F1 2 R(`/2)⇥d

distinct fast transforms:
reduce variance
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Our Method
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Our Method
• Online instance compression

n

d

…

m

`
2

`
2`

m `
`
2

…
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Our Method
• Compress            via fast transform 

• Typical:                time and          space 

• Our:               time and        space

�F 2 R(`/2)⇥dF 2 Rm⇥d

O(md log `)

O(md log `)

O(md)

O(`d)
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Our Method
• Compress            via fast transform 

• Typical:                time and          space 

• Our:               time and        space

• Our implementation of 

�F 2 R(`/2)⇥dF 2 Rm⇥d

O(md log `)

O(md log `)

O(md)

O(`d)

�F = SHDF

{Hij}i�2 = H1j or �H1j

Hij = (�1)

hi�1,j�1i
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Results
• Theorem 4.2 (FROSH). Given data             with with its row 

mean vector            , let the sketch            be generated by 
FROSH. Then, with probability at least                             ,                                 
we have

where                    means subtracting each row of    by   ,        
hides logarithmic factors on               ,                                         
with        , the top   right singular vectors of             are for 
hashing projections               , and the algorithm requires                       
space and                       running time after taking             .     

A 2 Rn⇥d

B 2 R`⇥d

O(d`)

m = ⇥(d)

µµµ 2 R1⇥d

k(A�µµµ)T (A�µµµ)�BTBk2

 eO
⇣1
`
+ �(`, p, k)

⌘
kA�µµµk2F ,

(A�µµµ) 2 Rn⇥d A µµµ

WT 2 Rr⇥d

r B 2 R`⇥d

eO(n`2 + nd+ d`2)

56

1� p� � (2p+ 1)� � 2n
ek

p = n
m

�(`, p, k) =
q

k
`p2 +

r
1+

p
k/`

p

eO(·)
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Results
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Results
• Corollary 4.1 (FROSH). Given data             with with its row 

mean vector            , let the sketch            be generated by 
FROSH. Let            , and assume                    for simplicity. 
Given                    that means subtracting each row of    by   , 
let                                   and    be the  -th largest singular 
value of          . If the sketching size               , then with 
probability defined in Theorem 4.2 we have                         

where                            contains the top   right singular 
vectors of            , and                contains the top   right 
singular vectors of          .     

A 2 Rn⇥d

B 2 R`⇥d

m = ⇥(d)

µµµ 2 R1⇥d

(A�µµµ) 2 Rn⇥d A µµµ

WT 2 Rr⇥d

n = ⌦(`3/2d3/2)

h = k(A�µµµ)k2F /k(A�µµµ)k22 �i i

(A�µµµ)

k(A�µµµ)� (A�µµµ)WBW
T
Bk22

 (1 + ✏)k(A�µµµ)� (A�µµµ)WWT k22,

0 < ✏ < 1, WT
B 2 Rr⇥d r

B 2 R`⇥d r

(A�µµµ)
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Results
• Theorem 4.2 & Corollary 4.1 vs. OSH

• Less time cost (                       vs.                ) for 

• Equal space cost

• Comparable hashing accuracy

eO(n`2 + nd+ d`2) m = O(d)

58

O(nd`+ d`2)



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Experiments
• Setting

•           for                  and 

•        , where                     is the hashing code length

• Compared methods

• Unsupervised online hashing: LSH [M. Charikar, et al., 2002], 
OSH [C. Leng, et al., 2015], FROSH

• Unsupervised batch-based hashing: SGH [Q. Jiang, et al., 
2015], OCH [H. Liu, et al., 2017]

m = 4d

` = 2r
r

r ⇠ {32, 64, 128}

F 2 Rm⇥d� 2 R(`/2)⇥m
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Real Data

r

60

Dataset Size Dimension

CIFAR-10 60,000 512

MNIST 70,000 784

GIST-1M 1,000,000 960

FLICKR-
25600 100,000 25,600
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Experiments
• MAP comparisons with unsupervised online hashing
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Experiments
• MAP comparisons with unsupervised online hashing
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Experiments
• MAP comparisons •          times speed-up10 ⇠ 70
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Experiments
• MAP comparisons •          times speed-up10 ⇠ 70
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Experiments
• Space cost on FLICKR-25600

• Batch-based hashing: 

• OSH, FROSH: 

> 19GB

> 0.05GB
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Conclusion
• Present a faster online sketching hashing method by 

designing randomized algorithms

• Demonstrate the good performance with provable 
results, complexity analysis, and extensive experiments
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Outline

66
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Background
• Covariance matrix:

• Definition:                                [W. Feller, 1966]

• Applications:

Principal Component Analysis

Linear Discriminant Analysis

Generalized Least Squares

C = 1
nXXT (X 2 Rd⇥n)
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Background
• For 

•        communication burden 

•              storage 

•         calculation time 

C = 1
nXXT (X 2 Rd⇥n)

O(nd)

O(nd+ d2)

O(nd2)
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Background
C = 1

nXXT (X 2 Rd⇥n)

O(nd)

O(nd+ d2)

O(nd2)

C

• For 

•        communication burden: data gathered in many 
distributed remote sites are transmitted to the fusion center 
to form 

•              storage 

•         calculation time 

fusion center:
covariance
estimation

transmit
data

68



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Background
• For 

•        communication burden 

•              storage 

•         calculation time 

computationally expensive, when  

C = 1
nXXT (X 2 Rd⇥n)

O(nd)

O(nd+ d2)

O(nd2)

n, d � 1
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Related Work 
• Data compression

X 2 Rd⇥n ! Y 2 Rm⇥n (yi = S

T
i xi 2 Rm, Si 2 Rd⇥m and m < d)

= ⇥

= ⇥

= ⇥

x1

x2

x3

y1

y2

y3

ST
1

ST
2

ST
3
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Related Work 
• Data compression

• Recovery
with debiasing

X 2 Rd⇥n ! Y 2 Rm⇥n (yi = S

T
i xi 2 Rm, Si 2 Rd⇥m and m < d)

Ce =
1
n

Pn
i=1 SiyiyT

i S
T
i

= ⇥

= ⇥

= ⇥

x1

x2

x3

y1

y2

y3

ST
1
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2

ST
3

70



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Related Work 
• Data compression

• Recovery
with debiasing
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space and time costs
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Related Work 
• Data compression

• Recovery
with debiasing
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Related Work 
• Related work concerning 

• Gauss-Inverse:                                                   [M. Azizyan, et al., 2015]

•    : a Gaussian matrix

• accurate, computationally expensive

• Sparse:                             [F.  Anaraki, et al., 2016]

• a sparse matrix

• less accurate, less computationally expensive, not error-bounded 

• UniSample-HD:                            ,               [F.  Anaraki, et al., 2017]

•    : a sampling matrix (uniform sampling without replacement)

• less accurate, efficient

yi = S

T
i xi 2 Rm, Si 2 Rd⇥m

1
n

Pn
i=1 Si(ST

i Si)�1
S

T
i xix

T
i Si(ST

i Si)�1
S

T
i

1
n

Pn
i=1 SiS

T
i xix

T
i SiS

T
i

1
n

Pn
i=1 SiST

i ziz
T
i SiST

i zi = HDxi

Si

Si
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Our Work
• Improve both the estimation accuracy and 

computational efficiency compared with all previous 
work          
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Our Method
•   : a weighted sampling matrix

• Sampling probabilities in    to tighten

•             

kC�Cek2

Si

Si

p
ki

= ↵ |xki|
kxik1

+ (1� ↵) x

2
ki

kxik2
2
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Our Method
•   : a weighted sampling matrix

• Sampling probabilities in    to tighten

•             

kC�Cek2

Si
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p
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2
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Results
• Theorem 5.1 (Unbiased estimator). The unbiased estimator for 

the covariance                                  can be recovered as 

where we have that              ,                                         ,      
and                                                    with                     .                                          

C = 1
n

Pn
i=1 xix

T
i = 1

nXX

T

Ce = bC1 � bC2,

b
C2 = m

nm�n

Pn
i=1 D(SiS

T
i xix

T
i SiS

T
i )D(bi) bki =

1
1+(m�1)pki

b
C1 = m

nm�n

Pn
i=1 SiS

T
i xix

T
i SiS

T
iE [Ce] = C
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in the recovery stage, at most    entries of    and
 must be calculated, respectively

m Si bi
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Results
• Theorem 5.2 (Upper bound). Let     be defined as Theorem 5.1 

with the sampling probabilities                                 . Then, 
with probability at least            ,

where we define the range                                                 , 
and the variance 

Ce

p
ki

= ↵ |xki|
kxik1

+ (1� ↵) x

2
ki

kxik2
2

1� ⌘ � �

R = maxi2[n]

h
7kxik2

2
n + log

2
(

2nd
⌘ )

14kxik2
1

nm↵2

i

kCe �Ck2  log(

2d
� )

2R
3 +

q
2�2

log(

2d
� ),

�2 =
Pn

i=1

h
8kxik4

2
n2m2(1�↵)2 + 4kxik2

1kxik2
2

n2m3↵2(1�↵) +
9kxik4

2
n2m(1�↵)

+ 2kxik2
2kxik2

1
n2m2↵(1�↵)

i
+ k

Pn
i=1

kxik2
1xix

2
i

n2m↵ k2.
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Results
• Corollary 5.1 (Upper bound). Let     be defined as Theorem 

5.1. Define             with               , and             for all        . 
Then, with probability at least            we have  

where                                                               , and       
hides the logarithmic factors on  ,  ,   ,  ,   , and  . 

Ce

1� ⌘ � �

kxik1

kxik2
 ' 1  ' 

p
d kxik2  ⌧ i 2 [n]

kCe �Ck2  eO
⇣

⌧2

n + ⌧2'2

nm + ⌧'
q

kCk2

nm + f
⌘
,

f = min{ ⌧2'
m

q
1
n + ⌧2

q
1

nm , ⌧'
m

q
dkCk2

n + ⌧
q

dkCk2

nm } eO(·)
⌘ � m n d ↵
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as good as Gauss-Inverse asymptotically when          , 
and improve Gauss-Inverse by         times when       ;  

        improve UniSample-HD by a factor of   to          
      when           and at least       if        , given a small 

' =
p
d

' = 1
p

d/m

1
p

d/m
' = 1' =

p
d m/dd/m
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Results
• Corollary 5.2. Given            and an unknown population 

covariance matrix              with each column vector           
i.i.d. generated from the Gaussian distribution            . Let     
be constructed by Theorem 5.1. Then, with the probability at 
least                ,  

Additionally, assuming rank          , then with the probability at 
least                 we have 

where       is the solution to                             , and      hides 
the logarithmic factors on  ,  ,   ,   ,  ,   , and  . 

Cp 2 Rd⇥d
xi 2 Rd

N (0,Cp) Ce

1� ⌘ � � � ⇣

kCe�Cpk2

kCpk2
 eO

⇣
d2

nm + d
m

q
d
n

⌘
;

(Cp) r

k[Ce]r�Cpk2

kCpk2
 eO

⇣
rd
nm + r

m

q
d
n +

q
rd
nm

⌘
,

[Ce]r minrank(A)r kA�Cek2
⇣
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X 2 Rd⇥n

1� ⌘ � � � ⇣

eO(·)
⌘ � m n d ↵

statistical setting

structural setting
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Results
• Corollary 5.3 (Subspace). Given the notations in Corollary 5.2. 

Let                      and                     with          and          being 
the leading    eigenvectors of     and    , respectively. Denote 
the  -th largest eigenvalue of     by   . Then, with probability at 
least                , 

where the eigengap                   and      hides the logarithmic 
factors on  ,   ,  ,   ,  ,   , and  .

1� ⌘ � � � ⇣

Q
k =

Pk
i=1 uiuT

i
bQ

k =
Pk

i=1 ûiûT
i
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Results
• Unbiased estimator                  (Theorem 5.1)

• Upper bound             (Theorem 5.2 & Corollary 5.1)

• Outperform all related work

• Applicable to low-rank setting (Corollary 5.2)  

• Polynomially equal with the state-of-the-art methods that 
must use assumptions in algorithms design [Y. Chen, et al., 
2013; T. Cai, et al., 2015] 

kC�Cek2

Ce : E [Ce] = C
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Results
• Computational costs on the storage, communication, 

and time

•                 ,

• Standard [W. Feller, 1966]

81

TG ⇠ O(nmd) TS ⇠ O(nd2)
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Experiments
• Setting

•           in 

• Compared methods

• Gauss-Inverse [M. Azizyan, et al., 2015]

• Sparse [F.  Anaraki, et al., 2016]

• UniSample-HD [F.  Anaraki, et al., 2017]  

• Our method   

↵ = 0.9 p
ki

= ↵ |xki|
kxik1

+ (1� ↵) x

2
ki

kxik2
2
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Synthetic Data
• Probabilistic generative model: 

•             with              and  

•             with

•             with

• Synthetic data:                        ,                    ,            
and

•          ;            except that   

•             with              and           ;

83

X = UFG 2 Rd⇥n

U 2 Rd⇥k UTU = Ik k ⇡ 0.005d

fii = 1� (i� 1)/kF 2 Rk⇥k

G 2 Rk⇥n gij ⇠ N (0, 1)

{Xi}3i=1 2 R1024⇥20000 X4 2 R1024⇥200000 X5 2 R2048⇥200000

X6 2 R65536⇥200000

X1 ⇠ X

X2 ⇠ DX dii = 1/�i �i ⇠ [15]

X3 ⇠ X F = Ik

{Xi}6i=4 ⇠ X2
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Covariance Estimation
• Error:

84
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Covariance Estimation
• Error:

•   :

•     :

•     :

85

kCe �Ck2/kCk2

kxik1/kxik2'

X1

X2

' = 0.81
p
d

' = 0.55
p
d

      Error    only for our method'
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• Error:

•     :

•     :

•     :

Covariance Estimation

86

kCe �Ck2/kCk2

best for all d

X4

X5

X6 d = 65536

d = 2048

d = 1024



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Covariance Estimation
• Error:

•     :

•     :

87

X2

X4

n = 20000

n = 200000

kCe �Ck2/kCk2

n     Error   
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Covariance Estimation
• Time comparison

88
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Real Data

r

89

Dataset Size Dimension

DailySports 9,120 5,625

Gist1M 1,000,000 960

Isolet 7,797 617

Arcene 800 10,000

Mnist 70,000 780

UJIIndoorLoc 21,048 520
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Covariance Estimation
• Error:

90
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Multiclass Classification
• MNIST data - 10 classes

• Center data for each individual class

• Classifier

• Get           by different estimation methods

• Compute                          from  

• Find a solution to                   for all

91

{Ct}10t=1

Q
k,t =

Pk
j=1 uj,tuT

j,t

maxt x
T
Q

k,t x t 2 [10]

{Ct}10t=1
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Multiclass Classification
• Accuracy comparison - MNIST data

92



Randomized Algorithms by Xixian Chen @ CSE, CUHK, February 12, 2018

Conclusion
• Improve both the accuracy and efficiency of covariance 

matrix estimation on compressed data

• Demonstrate the good performance by provable results,  
complexity analysis, and extensive experiments
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Outline
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Comparisons on Chapters
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projection;
compress

n

Unsupervised 
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(Chapter 4)
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Covariance 
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(Chapter 5)

XTX

X 2 Rd⇥n
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Way Forward
•       involved:

• “Approximate Newton Methods and Their Local 
Convergence” [H. Ye, et al., ICML 2017]

• Other 4 similar randomized algorithm papers in [J. Tang, et 
al., ICML 2017; S. Wang, et al., ICML 2017; D. Calandriello, et 
al., ICML 2017; D. Calandriello, et al., NIPS 2017]

• Chapter 5 can improve their accuracy, but how to prove?

XTX
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Way Forward
• Randomized algorithms and implicit regularization

• Randomized algorithms for deep neural networks

• Randomized algorithms for parallel/distributed 
computation
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Publications
• Conference

• Xixian Chen, Michael R. Lyu, Irwin King. Toward Efficient 
and Accurate Covariance Matrix Estimation on Compressed 
Data. In Proceedings of the 34th International Conference 
on Machine Learning (ICML 2017).

• Xixian Chen, Irwin King, Michael R. Lyu. FROSH: FasteR 
Online Sketching Hashing. In Proceedings of the 33rd 
International Conference on Uncertainty in Artificial 
Intelligence (UAI 2017).

• Xixian Chen, Haiqin Yang, Irwin King, and Michael R. Lyu. 
Training-Efficient Feature Map for Shift-Invariant Kernels. In 
Proceedings of the 24th International Joint Conference on 
Artificial Intelligence (IJCAI 2015). 
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Publications
• Conference

• Shenglin Zhao, Xixian Chen, Michael R. Lyu, Irwin King. 
Personalized Sequential Check-In Prediction: Beyond 
Geographical and Temporal Contexts. Submitted to Interna- 
tional Conference on Multimedia and Expo (ICME 2018).

• Journal

• Xixian Chen, Haiqin Yang, Irwin King, Michael R. Lyu. 
Faster Online Sketching Hashing. Submitted to IEEE Transa-
ctions on Neural Networks and Learning Systems (TNNLS).

• Xixian Chen, Haiqin Yang, Michael R. Lyu, Irwin King. 
Estimation of Covariance Matrix on Compressed Data. 
Submitted to IEEE Transactions on Neural Networks and 
Learning Systems (TNNLS).
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Thanks!
Q&A

100


