
E�cient Learning in Stochastic Bandits

Xiaotian Yu
Department of Computer Science and Engineering

The Chinese University of Hong Kong

Feb. 21, 2019



E�icient Learning in Stochastic Bandits

Outline

1 Introduction

2 Stochastic Bandits: A Brief Survey

3 Our Contributions
Pure Exploration of Mean-Variance
Pure Exploration with Heavy Tails
Linear Stochastic Bandits with Heavy Tails
Nonlinear Stochastic Bandits

4 Conclusion

Xiaotian Yu (Ph.D. Oral Defence) 2 / 96



E�icient Learning in Stochastic Bandits | Introduction

Outline

1 Introduction

2 Stochastic Bandits: A Brief Survey

3 Our Contributions
Pure Exploration of Mean-Variance
Pure Exploration with Heavy Tails
Linear Stochastic Bandits with Heavy Tails
Nonlinear Stochastic Bandits

4 Conclusion

Xiaotian Yu (Ph.D. Oral Defence) 3 / 96



E�icient Learning in Stochastic Bandits | Introduction

An Example: Clinical Treatment with Two Pills
(Thompson, 1933)

1 2 3 4 5 6 ... patient

3 7 3 ...

3 3 7 ...

Se�ing
A sequence of patients with the same symptoms
Two treatments with di�erent performance
3: the patient is cured
7 : the patient is uncured

�estion: for the next patient t ∈ N+, which pill should be adopted?
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An Example: Clinical Treatment with Two Pills
(Thompson, 1933)

Model: Bernoulli distributions (for stochastic feedback)

0.4
0.6

probability

0 (7) 1 (3) event

0.2

0.8
probability

0 (7) 1 (3) event

Challenge: exploration and exploitation
Extension: multi-armed bandits (Robbins, 1952)

P1 P2

· · ·
PK

Xiaotian Yu (Ph.D. Oral Defence) 5 / 96



E�icient Learning in Stochastic Bandits | Introduction

Multi-Armed Bandits (MAB)

Scenario: K arms

· · ·

Model: sequential decisions to maximize cumulative rewards

1: input: the number of arms K , and the number of rounds T ≥ K
2: for t = 1, · · · , T do
3: select an arm xt ∈ {1, · · · ,K}
4: observe a stochastic reward of arm xt which is yt(xt) ∼ Pxt
5: end for

Alias
Stochastic MAB
Online learning with bandit feedback
A simplified version of reinforcement learning
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Multi-Armed Bandits (MAB)
Empirical average: a four-arm case with Bernoulli distributions

An experiment

round arm 1 arm 2 arm 3 arm 4 strategy

1-4 1.0
1 = 1 1.0

1 = 1 1.0
1 = 1 0.0

1 = 0 play each arm

5 0.0+1.0
2 = 0.5 1 1 0 break ties

randomly

6 0.5 0.0+1.0
2 = 0.5 1 0 break ties

randomly

7 0.5 0.5 1.0+1.0
2 = 1.0 0 play the best arm

8 0.5 0.5 0.0+2.0
3 = 2

3 0 play the best arm

...

Issue: arm 4 has never been explored
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Multi-Armed Bandits (MAB)
Empirical average + standard deviation

An experiment
Standard deviation of estimate: 1→ 0.7→ 0.6→ · · · → 0

round arm 1 arm 2 arm 3 arm 4

1-4 1.0
1 + 1 = 2 1.0

1 + 1 = 2 1.0
1 + 1 = 2 0.0

1 + 1 = 1

5 0.0+1.0
2 +0.7 = 1.2 2 2 1

6 1.2 0.0+1.0
2 +0.7 = 1.2 2 1

7 1.2 1.2 0.0+1.0
2 +0.7 = 1.2 1

8 1.2 1.2 0.0+1.0
3 +0.6 = 0.9 1

...

Standard deviation works like a confidence bound in (Robbins, 1952)
Standard deviation controls the quality of estimate
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E�cient Learning in Stochastic Bandits

Our general problem

How to make decisions based on stochastic feedback?

Two general goals
To develop realizable and practical bandit algorithms
To derive theoretical guarantees for bandit algorithms

Motivating examples
Clinical trials
Online personalized recommendations
Network routing
Online resource allocation
· · ·
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Online Personalized Recommendations

Recommendation with item information⇒ contextual bandits

sponsored web search
(Lu et al., 2010)

news recommendation
(Li et al., 2011)
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Online Resource Allocation
(Huo & Fu, 2017)

A continuous arm set⇒ bandit optimization

Sequential investments with M units of money

target 1: �
w1 ∈ R

target 2: �
w2 ∈ R

· · · target d: �
wd ∈ R

⇒ w = [w1, · · · ,wd ] and
∑d

i=1 wi = 1 with wi > 0
Goal: to maximize cumulative rewards with the assumption of f (w)

⇒max
∑T

t=1 f (wt)
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Stochastic Bandits in Machine Learning
Reinforcement learning and zeroth-order optimization

Three paradigms (Jordan and Mitchell, 2015)

unsupervised supervised

reinforcement

learning

no labels

clustering

labeled data

classification

reward feedback

sequential decisions

Optimization
Zeroth-order optimization⇔ Bandit optimization
First-order optimization
Second-order optimization
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A Taxonomy

bandits

feedback

stochastic:
classical MAB

non-stochastic:
adversarial
MAB

decision-arm set

discrete:
K arms

continuous:
linear bandits

final goal

regret minimization

pure exploration
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Goal and Metric for Algorithm A
Regret minimization: minR(A, T)

R(A, T) , max
i=1,··· ,K

E

[
T∑

t=1
yt(i)

]

︸ ︷︷ ︸
an oracle

−E

[
T∑

t=1
yt(xt)

]

︸ ︷︷ ︸
decisions byA

. (1)

round

instantaneous payo�
µ∗ from the oracle (µ∗ is the largest mean in K arms)

payo� fromA

regret R(A, T)
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Goal and Metric for Algorithm A

A di�erent view

What if we care more about the final decision at T?

Pure exploration (or best arm identification): minP[xT 6= Opt]
xT is the output of A at time T , and Opt is the true optimal arm
To solve P[xT = Opt] ≥ 1− δ for δ ∈ (0, 1)
Two se�ings: fixed confidence and fixed budget

�xed con�dence
Given δ, what is the smallest T?

�xed budget
Given T , what is the smallest δ?

Theoretical guarantees
T : sample complexity for fixed confidence
δ: probability of error for fixed budget
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Regret Minimization versus Pure Exploration

Application
Regret minimization: online advertising for news (Li et al., 2010)
Pure exploration: marketing for cosmetic products (Bubeck et al., 2009)

Focus
Regret minimization: all decisions
Pure exploration: the final decision

Hardness (Bubeck et al., 2011)
Regret minimization is at least as hard as pure exploration

regret minimization

pure exploration

convexity of f (x)

we define x̂T , x1+x2+···+xT
T

⇒ f (x̂T ) ≤ f (x1)+f (x2)+···+f (xT )
T

⇒ f (x̂T )− f (Opt) ≤ R(A,T)
T
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Theoretical Advancements of Regret Minimization
original prob-

lem (Thompson, 1933)

first theoretical res-
ults (Lai & Robbins, 1985)

finite time analysis of
bandits (Agrawal, 1995)

e�icient algorithms for
MAB (Auer et al, 2002)

...

T →∞ (asymptotic bounds)
lower bound: R(A,T)

log(T)
=
∑

i
∆i

KL(θi,θ∗)

upper bound: R(UCB,T)
log(T)

=
∑

i
∆i

KL(θi,θ∗)

T is finite and known (finite-time bound)

upper bound: R(SM, T) = O
(∑

i
∆i log(T)
KL(θi,θ∗)

)

T is finite and known

upper bound: R(UCB1, T) = O
(∑

i
log(T)

∆i

)
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Theoretical Advancements of Regret Minimization

...

improved analysis (Auer
& Ortner, 2010)

a new lower bound for
MAB (Bubeck, 2013)

Thompson sampling for
MAB (Kaufmann et al., 2012)

T is finite
upper bound for known T :

R(IUCB, T) = O
(∑

i
log(T∆2

i )

∆i

)
upper bound for unknown T :

R(IUCB, T) = O
(∑

i
log(T∆2

i )

∆i
+ max(∆iT)

)

T is finite

lower bound: R(A, T) = Ω

(∑
i

log(T∆2
i )

∆i

)

T is finite and unknown
upper bound: R(TS, T) = O

(∑
i ∆i log(T)

)
upper bound: R(TS, T) = O

(√
T log(T)

)
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Theoretical Advancements of Pure Exploration
Fixed con�dence

PAC learning (Valiant, 1984)

PAC bounds in MAB (Even-
Dar et al., 2002)

improved PAC bounds for
bandits (Karnin et al., 2013)

bandits with sub-Gaussian
noises (Jamieson et al., 2014)

two-armed Gaussian ban-
dits (Kaufmann et al., 2016)

bounded payo�s in [0, 1]

SE: P
[
T ≤

∑K
k=1 ∆−2

k log
(

K
δ∆k

)]
≥ 1− δ

ME: P
[
T ≤ K

ε2 log
( 1
δ

)]
≥ 1− δ

bounded payo�s in [0, 1]
EGE:

P
[
T ≤

∑K
k=1 ∆−2

k log
(

1
δ

log
(

1
∆k

))]
≥ 1− δ

sub-Gaussian noises
LILUCB:

P
[
T ≤ H1 log

( 1
δ

)
+ H3

]
≥ 1− 4

√
cδ − 4cδ

two-armed Gaussian bandits

α-E: P
[
T ≤ (σ1+σ2)

2

(µ1−µ2)2 log
( 1
δ

)]
≥ 1− δ
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Theoretical Advancements of Pure Exploration
Fixed budget

best arm identification
of bandits (Bubeck, 2009)

first results in best arm
identificaiton (Aud-

ibert & Bubeck, 2010)

ε-optimal learning (Ga-
billon et al., 2012)

improved algorithm and
analysis (Karnin et al., 2013)

two-armed Gaussian ban-
dits (Kaufmann et al., 2016)

bounded payo�s in [0, 1]

UCB-E: P[Out 6= Opt] ≤ TK exp
(
− T−K

H1

)
SR: P[Out 6= Opt] ≤ K(K − 1) exp

(
− T−K

log(K)H2

)
bounded payo�s in [0, b]

UGapEb: P[µOut − µOpt ≥ ε] ≤ TK exp
(
− T−K

Hε

)

bounded payo�s in [0, 1]

SH: P [Out 6= Opt] ≤ log(K) exp
(
− T

log(K)H2

)

two-armed Gaussian bandits

SS: P [Out 6= Opt] ≤ exp
(
− (µ1−µ2)

2T
2(σ1+σ2)2

)
Xiaotian Yu (Ph.D. Oral Defence) 21 / 96



E�icient Learning in Stochastic Bandits | Stochastic Bandits: A Brief Survey

Methodology for Stochastic Bandits

Se�ing: K independent arms with di�erent means {µ1, · · · , µK}
Frequentist approach

Unknown fixed parameters: {µ1, · · · , µK}
Observed rewards: conditionally independent
Tool: empirical average and confidence interval

Bayesian approach
Each parameter follows a distribution: µk ∼ Pk , ∀k ∈ [K ]
Pk is a prior
Observed rewards: conditionally independent
Tool: sampling from posterior, e.g., Thompson sampling
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Existing Problems in Learning of Stochastic Bandits

Sub-Gaussian noises in rewards
Bounded rewards
Rewards following Bernoulli distributions
Rewards following Gaussian distributions

Can rewards be more general?
⇒ Yes, such as heavy-tailed rewards (Bubeck et al., 2013)
Discrete arm sets and linear reward mapping

Finite arms (corresponding to vertex in a polytope)
Linear reward mapping

Can arm sets be continuous?
Can rewards come from nonlinear mappings?
⇒ Yes, such as bandit convex optimization (Hazan & Levy, 2014)
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Roadmap

bandit problems

arm set payo�

goalregret minimization:
Chapter 5

pure exploration (PE):
Chapters 3,4,6
PE in mean-variance:
Chapter 3

sub-Gaussian:
Chapters 3,6

heavy tails:
Chapters 4,5

finite arms:
Chapters 3,4,5

continuous set:
Chapter 5

convex set:
Chapter 6
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Pure Exploration of MAB
Previous work: mean information

· · ·Optimal:
mean

prior work

work theoretical guarantee

(Even-Dar et al., 2006) lower bound of probability of error

(Audibert & Bubeck, 2010) P[error] ≤ A exp(−aT)

(Gabillon et al., 2012) a unified model

(Jamieson et al., 2014) lower bound of sample complexity
∗error: it denotes that the output is not the true optimal arm
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Pure Exploration of MAB
Our work (new task): mean-variance

· · ·
Optimal:

mean
+

variance

Motivations
Clinical trial with additional risk
Financial investments in markets

Se�ing
Metric: mean-variance as ω = σ2 − κµ with a known κ > 0
Goal: identify the optimal arm with the minimum mean-variance

E�ect of κ
κ is small enough or even κ = 0: ω = σ2

κ is large enough: minω ⇔ maxµ
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Pure Exploration of Mean-Variance (PEMV)
Fixed budget

Problem

Given κ and T , what is the optimal arm of ω among K arms?

Challenges
What is the error of the mean-variance estimate?
How to design a selection strategy?
What is the probability of error for the final selected arm?
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Pure Exploration of Mean-Variance (PEMV)
Technical contributions

New metric for the optimal arm
Prior: empirical average⇒ mean (sub-Gaussian estimate errors)
Ours: empirical mean-variance⇒ mean-variance?
⇒ Yes. We prove sub-gamma estimate errors

Intuitive understanding of algorithms

Con�dence Bound (CB)
empirical mean-variance

a CB term for
mean-variance estimate

trade-o� between the
estimate and CB

halving technique
binary search

estimate error

probability of error
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Our Algorithms
PEMV.CB

1: input: T , K , R, H1, H3, κ

2: δ = min
(

25(T−2K)
576(96R2+κ2)R2H1

, 5(T−2K)
96R2H3

)

3: play each arm twice and observe payo�s
4: for t = 1, 2, · · · , T do
5: for k ∈ [K ] do
6: ω̂t(k) = σ̂2

t (k)− κµ̂t(k)

7: CBt(k) =
√

128R4(st(k)+1)δ
(st(k)−1)2 + 4κ2R2δ

st(k) + 8R2δ
(st(k)−1)

8: pt(k) = ω̂t(k)− CBt(k)
9: end for

10: xt = arg mink∈[K] pt(k) . break ties arbitrarily
11: observe a payo� yt(xt) and save information
12: end for
13: return xT = arg mink∈[K] ω̂t(k)
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Our Algorithms

PEMV.HALVING
1: input T , K , κ
2: construct a decision-arm set D1 = [K], t = 0
3: for k = 1, · · · , dlog2(K)e do
4: Tk = b T

|Dk|dlog2(K)e c
5: for a ∈ Dk do
6: for j = 1, · · · , Tk do
7: t = t + 1
8: select a and observe yj(a)
9: end for

10: end for
11: if |Dk| > 1 then
12: for j = 1, · · · , b |Dk|

2 c do
13: select an arm xj = arg maxa∈Dk ω̂k(a)
14: Dk = Dk\xj . delete an arm
15: end for
16: end if
17: Dk+1 = Dk
18: end for
19: return xT = Ddlog2(K)e+1
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Theoretical Results

Estimate error: ρt(a) , ω̂t(a)− ω(a) for a ∈ [K ]

In Theorem 3.3 on Page 47, we prove

E[exp(λρt(a))] ≤ exp
( λ2v

2(1− cλ)

)
, (2)

where λ ∈ (0, 1/c), c > 0, v > 0
See the definition of sub-gamma distributions in (Boucheron &
Lugosi, 2013)

proof sketch: Moment Generating Function (MGF)
Step 1. calculate the MGF of empirical average
Step 2. calculate the MGF of empirical variance
Step 3. take the trade-o� of the above two terms to obtain Eq. (2)
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Theoretical Results

Probability of error for PEMV.CB

Theorem 3.1 on Page 46 in the thesis

P[xT 6= Opt] = O
(

exp

(
− (T − 2K)

min(H1,H3)

))
(3)

∗H1 and H3 are required in the algorithm

Probability of error for PEMV.HALVING

Theorem 3.2 on Page 47 in the thesis

P[xT 6= Opt] = O
(

exp

(
− T

min(H4, 3H2)

))
(4)

∗H1-H4 denote problem hardness on Page 40 in the thesis
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Experiments
Se�ings

Synthetic dataset for pure exploration of mean-variance
Real financial dataset for risk control of investments
Baselines: UCBE and CuRisk
Metric: probability of error and cumulative returns

Datasets
Statistics of synthetic datasets

dataset #arm {µ(y)} {σ2(y)}

S1 20 [1.0, 2.9] with a uniform gap σ2(11)∼σ2(15) = 0.6,
σ2(20) = 0.6, others 0.3

S2 10 random value in [0.0, 1.0] random value in [1.0, 2.0]

S3 30 µ(1) = 1.0, µ(y) = 1− 1.0
2y2 σ2(1) = 1.0,

σ2(y) = 2.0− 1.0
2y2

Historical returns on stocks, bonds and bills
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/
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Results for Synthetic Data

Probability of error with κ = 1.0 and T = 1000
algorithm S1 S2 S3

UCBE 0.63± 0.12 0.95± 0.04 0.95± 0.03
CuRisk 0.43± 0.06 0.63± 0.11 0.38± 0.10

PEMV.CB 0.19± 0.10 0.55± 0.08 0.17± 0.06
PEMV.HALVING 0.05± 0.01 0.40± 0.12 0.23± 0.09

Probability of error with κ = 10.0 and T = 1000
algorithm S1 S2 S3

UCBE 0.32± 0.04 0.52± 0.10 0.47± 0.23
CuRisk 0.56± 0.12 0.67± 0.11 0.52± 0.12

PEMV.CB 0.47± 0.17 0.62± 0.09 0.24± 0.03
PEMV.HALVING 0.08± 0.05 0.47± 0.10 0.31± 0.10

∗More results can be found on Page 62-64 in the thesis
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Results for Financial Data
Sharp ratio: UCBE (-0.23), CuRisk (-5.14), PEMV.CB (0.59), PEMV.HALVING (0.72)

κ = 1.0 and W = 20 κ = 1.5 and W = 20 κ = 2.0 and W = 20

κ = 1.0 and W = 40 κ = 1.5 and W = 40 κ = 2.0 and W = 40
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Summary

Study the task of pure exploration of mean-variance

Prove the sub-gamma estimation error in pure exploration of
mean-variance

Design two algorithms for pure exploration of mean-variance

Prove the probability of error for pure exploration of mean-variance

P[error] ≤ A exp(−aT)

∗The results were published in ICDM
(Yu X., King I. and Lyu M. R., 2017)
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What Is A Heavy-Tailed Distribution?

Noises of rewards are not sub-Gaussian

High-probability extreme returns in financial markets

Gaussian

NASDAQ returns

Many other real cases
Delays in communication networks (Liebeherr et al., 2012)
Analysis of biological data (Burnecki et al., 2015)
..
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Heavy-Tailed Distributions
Intuition and de�nition

A distribution with a “tail” that is “heavier” than an exponential decay

Ref: http://users.cms.caltech.edu/~adamw/papers/2013-SIGMETRICS-heavytails.pdf

Mathematically, a random variable X is said to be heavy-tailed if
limx→∞ eφxP[|X | > x] =∞ for all φ > 0 (Nolan, 2003)
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Heavy-Tailed Distributions in Bandits

Heavy-tailed distributions in bandits (Bubeck et al., 2013)

E[Xp] < +∞, (5)

where X is a stochastic observation/noise, and p ∈ (1, 2]

Remarks
Eq. (5) is a subcase of the general definition of heavy tails
In previous work, payo�s are assumed to have sub-Gaussian noises, i.e.,

E[eλX ] ≤ exp

(
λ2R2

2

)
, (6)

for all λ ∈ R and R > 0
Payo�s with sub-Gaussian noises are light-tailed with finite variance
⇒ There is a connection between sub-Gaussian noises and heavy-tailed
noises with p = 2
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Weaker Assumption: Bounded p-th Moments
Examples

Standard Student’s t-Distribution with 3 degrees of freedom
The 2-nd central moment is bounded by 3
The 2-nd raw moment of signal (with a constant shi� a) under noises
following Standard Student’s t-Distribution is bounded by 3 + a2, where
a ∈ R
The p-th moments satisfy the above properties with p ∈ (1, 2] (Jensen’s
inequality)

Pareto distribution with shape parameter α and scale parameter xm
The p-th raw moments are bounded by αxpm/(α− p), for all p ∈ (1, α)
The p-th central moments are not directly available
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Pure Exploration with Heavy Tails

Se�ings
New task: identify the optimal arm with the largest mean under heavy
tails
Input parameter: fixed budget or fixed confidence

Challenges
What is tail probability of empirical average?
How to design new tools for decisions with heavy tails?
What is the theoretical guarantee for the new tool?
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Pure Exploration with Heavy Tails
Fixed budget and �xed con�dence

Intuitive understanding
Truncation helps in extreme values

Where should we truncate?

Technical contributions
Analyze tail probability of empirical average and truncated empirical
average
Develop two bandit algorithms for pure exploration of heavy tails
Derive theoretical guarantees for the two algorithms
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Our Algorithms

successive elimination-δ (SE-δ(TEA)) for �xed con�dence

1: input: δ, K , p, B
2: initialization: µ̂†1 (x)← 0 for any arm x ∈ [K], S1 ← [K], and b1 ← 0
3: t ← 1 . begin to explore arms in [K]

4: while |St | > 1 do

5: ct ← 5B
1
p
(

log(2K/δ)
t

) p−1
p . update confidence bound

6: bt ←
(

Bt
log(2K/δ)

) 1
p . update truncating parameter

7: for x ∈ St do
8: play arm x and observe a payo� πt(x)
9: µ̂

†
t (x)← 1

t
∑t

i πi(x)1[|πi(x)|≤bi ]
. calculate TEA

10: end for
11: xt ← arg maxx∈[K] µ̂

†
t (x) . choose the best arm at t

12: St+1 ← ∅ . create a new arm set for t + 1
13: for x ∈ St do
14: if µ̂†t (xt)− µ̂†t (x) ≤ 2ct then
15: St+1 ← St+1 + {x} . add arm x to St+1
16: end if
17: end for
18: t ← t + 1 . update time index
19: end while
20: Out← St [0] . assign the first entry of St to Out
21: return: Out
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Our Algorithms
successive rejects-T (SR-T (TEA)) for �xed budget
1: input T , K , p, B, ∆ > 0
2: initialization: µ̂†(x)← 0 for any arm x ∈ [K], S1 ← [K], n0 ← 0, b← 0 and

K̄ ←
∑K

i=1
1
i , b←

(
3Bp
∆

) 1
p−1

. calculate truncating parameter

3: Φ(x)← ∅ for all x ∈ S1 . construct sets to store time index
4: for k ∈ [K − 1] do
5: nk ← d T−K

K̄(K+1−k) e . calculate nk at stage k
6: n← nk − nk−1 . calculate the number of times to pull arms
7: for x ∈ Sk do
8: for i ∈ [n] do
9: t ← t + 1

10: play arm x, and observe a payo� πt(x)
11: Φ(x)← Φ(x) + {t} . store time index for arm x
12: end for
13: µ̂†k (x)← 1

|Φ(x)|
∑

i∈Φ(x) πi(x)1[|πi(x)|≤b]

14: end for
15: xk ← arg minx∈Sk µ̂

†
t (x) . choose the worst arm at k

16: Sk+1 ← Sk − {xk} . successively reject arm xk
17: end for
18: Out← SK [0] . assign the first entry of SK to Out
19: return: Out
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Theoretical Results

Fixed confidence

1 < p ≤ 2

For SE-δ(EA), we have T = O
(( 1

δ

) 1
p−1
)

For SE-δ(TEA), we have T = O
(
log
( 1
δ

))

Remarks
SE-δ(TEA) has an improvement in terms of δ
For sub-Gaussian noises, we have
T = O

(
log
( 1
δ

))
(see Page 77 in the thesis)

⇒ SE-δ(TEA) recovers the sub-Gaussian results
To have the results when p ≥ 2 (see Page 85 in the thesis)
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Theoretical Results

Fixed budget

1 < p ≤ 2

For SR-T (EA), we have P[Out 6= Opt] = O
(( 1

T

)p−1
)

For SR-T (TEA), we have P[Out 6= Opt] = O (exp (−T))

Remarks
For sub-Gaussian noises, we have
P[error] ≤ A exp(−aT) (see Page 78 in the thesis)
⇒ SR-T (TEA) recovers the sub-Gaussian results
To have the results when p ≥ 2 (see Page 87 in the thesis)
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Experiments
Se�ing

Synthetic dataset for pure exploration of heavy tails
Real-world datasets in cryptocurrency
Metric: sample complexity and probability of error

Datasets
Statistics of synthetic datasets

dataset #arms {µ(x)} heavy-tailed
{p, B,C}

S1 10 one arm is 2.0 and nine
arms are over [0.7, 1.5]

with a uniform gap

{2, 7, 3}

S2 10 one arm is 2.0 and nine
arms are over [1.0, 1.8]

with a uniform gap

{2, 7, 3}

Top ten cryptocurrency in terms of market value
https://www.cryptocompare.com/
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Results for Synthetic Data
Fixed con�dence

S1 {10} S2 {10}

SE-δ(TEA) outperforms SE-δ(EA) with small δ for S1 and S2

The crossover point occurs when δ is large
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Results for Synthetic Data
Fixed budget

S1 {10} S2 {10}

SR-T (TEA) is comparable to SR-T (EA) for S1 and S2

The constant factors in the theoretical results ma�er
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Results for Financial Data

Ten selected cryptocurrencies in experiments

full name symbol market value in April 2018 (unit: billion US dollar)

Bitcoin BTC 155

Ethereum
Classic

ETC 66

Ripple XRP 32

Bitcoin Cash BCH 23

EOS EOS 15

Litecoin LTC 8

Cardano ADA 8

Stellar XLM 7

IOTA IOT 5

NEO NEO 5
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Results for Financial Data
Statistical property of ten selected cryptocurrencies with hourly returns from Feb. 3rd, 2018 to
Apr. 27th, 2018 (KS-test1 denotes Kolmogrov-Smirnov (KS) test with a null hypothesis that real
data follow a Gaussian distribution, and KS-test2 denotes KS test with a null hypothesis that real
data follow a Student’s t-distribution)

symbol empirical statistics KS-test1 KS-test2
(mean×103, variance×103) (statistic, p̄-value) (statistic, p̄-value)

BTC (0.36, 0.54) (0.08, 0.005) (0.05, 0.20)

ETC (0.29, 1.03) (0.07, 0.02) (0.03, 0.89)

XRP (0.33, 0.94) (0.09, 0.0004) (0.03, 0.61)

BCH (0.78, 0.92) (0.08, 0.001) (0.03, 0.64)

EOS (1.56, 1.18) (0.09, 0.0002) (0.03, 0.88)

LTC (0.68, 0.86) (0.10, 0.0002) (0.04, 0.49)

ADA (0.02, 1.22) (0.07, 0.03) (0.02, 0.99)

XLM (0.62, 0.12) (0.07, 0.02) (0.03, 0.80)

IOT (0.68, 0.11) (0.07, 0.02) (0.04, 0.57)

NEO (−0.31, 1.26) (0.10, 0.0002) (0.04, 0.53)
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Results for Financial Data

Estimated parameters for ten cryptocurrencies

symbol degree of freedom (p, B,C) in experiments

BTC 3.50

ETC 3.81

XRP 2.53

BCH 3.00

EOS 2.90

LTC 2.75 (2,1.577×10−3,1.575×10−3)

ADA 3.55

XLM 3.81

IOT 4.66

NEO 3.13
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Results for Finanical Data

�xed con�dence �xed budget

SE-δ(TEA) and SR-T (TEA) perform be�er
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Summary

Study pure exploration of bandits with heavy tails

Derive tail probability of empirical average and truncated empirical
average

Design two algorithms for pure exploration of bandits with heavy tails

Derive theoretical guarantees of the two bandit algorithms

∗The results were published in UAI
(Yu X., Shao H., Lyu M. R. and King I., 2018)
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Linear Stochastic Bandits (LinSB)

sponsored web search
(Lu et al., 2010)

Arm space:
d-dimensional space

Reward function:
a linear mapping

Tool:
least square estimate

Regret for sub-Gaussian
noises:
Õ(
√
T)

∗Õ(·) omits the
logarithmic factors of T
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LinSB with Heavy-Tailed Payo�s

Scenario

· · ·

x1 = {This is an old arm}
or x1 = [0, 1, 0, · · · , 1] · · ·
or x1,t ∈ Rd

Exploration

xK,t

Exploitation

True

Optimal

Empirically

Optimal

at t

Se�ing
At t, an algorithm is given Dt ⊂ Rd with θ∗ ∈ Rd

Select an arm xt ∈ Dt , and observe yt(xt) = 〈xt , θ∗〉+ ηt
The goal is to maximize

∑T
t=1 yt(xt)

Assumption: yt(xt) or ηt is heavy-tailed conditional on Ft−1
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Problem De�nition
Linear stochastic Bandits with hEavy-Tailed payo�s (LinBET)

LinBET
Given a decision set Dt for time step t = 1, · · · , T ,
an algorithm A, of which the goal is to maximize
cumulative payo�s over T rounds, chooses an arm
xt ∈ Dt . With Ft−1, the observed stochastic payo�
yt(xt) is conditionally heavy-tailed, i.e.,
E [|yt |p|Ft−1] ≤ b or E [|yt − 〈xt , θ∗〉|p|Ft−1] ≤ c,
where p ∈ (1, 2], and b, c ∈ (0,+∞).
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Challenges and Contributions

Challenges
The lower bound of LinBET
How to develop a robust estimator of the parameter for LinBET and bandit
algorithms
Results in previous work (Medina & Yang, 2016) are far from optimal

Sub-Gaussian: regret is Õ(
√
T)

Prior results when p = 2: regret is Õ(T
3
4 )

⇒ How to develop results when p = 2 recovering the regret with
sub-Gaussian noises?

Contributions
The first to provide the lower bound for LinBET
Develop two novel bandit algorithms to solve LinBET
Two algorithms are optimal up to logarithmic factors
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Lower Bound of LinBET

Se�ing
Assume d ≥ 2 is even. For Dt ∈ Rd , we fix the decision set as Dt = D(d),
where D(d) , {(x1, · · · , xd) ∈ Rd

+ : x1 + x2 = · · · = xd−1 + xd = 1}. Let
Sd , {(θ1, · · · , θd) : ∀i ∈ [d/2] , (θ2i−1, θ2i) ∈ {(2∆,∆), (∆, 2∆)}}
with ∆ ∈ (0, 1/d]. Payo�s are in {0, (1/∆)

1
p−1 } such that, for every

x ∈ D(d), the expected payo� is θ>∗ x.

Result (Theorem 5.1 on Page 107 in the thesis)

lower bound

E [R(A, T)] = Ω(T
1
p )

∗Sub-Gaussian noises: regret lower bound Ω(
√
T)
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Existing Problems in Prior Work
Regret

Least square estimate: θ̂t = (Id + XtXT
t )−1XtYt

where Xt = (x1, · · · , xt) and Yt = (y1, · · · , yt)T
Considering Vt = Id + XtXT

t , we have

R(A, T) =

T∑

t=1
rt =

T∑

t=1
〈θ∗, x∗〉 − 〈θ∗, xt〉 ≤

T∑

t=1
〈θ̂t , x∗〉 − 〈θ∗, xt〉

≤
T∑

t=1

(
‖θ̂t − θ̂t−1‖Vt−1 − ‖θ̂t−1 − θ̂∗‖Vt−1

)

︸ ︷︷ ︸
an ellipsoid: {θ|‖θ̂t − θ‖Vt ≤ βt}

‖xt‖V−1
t−1

Sub-Gaussian noises: βt = O(
√

log(t))
⇒ R(A, T) = Õ(maxt∈[T ] βt−1

√
T)

(Medina & Yang, 2016): R(A, T) = Õ
(
T

3
4

)
when p = 2
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Algorithms: MEdian of meaNs under OFU (MENU)

MENU
1: input d, c, p, δ, λ, S, T , {Dn}Nn=1
2: initialization: k = d24 log

( eT
δ

)
e, N = bTk c, V0 = λId , C0 = B(0, S)

3: for n = 1, 2, · · · ,N do
4: (xn, θ̃n) = arg max(x,θ)∈Dn×Cn−1〈x, θ〉
5: Play xn with k times and observe payo�s yn,1, yn,2, · · · , yn,k
6: Vn = Vn−1 + xnx>n
7: For j ∈ [k], θ̂n,j = V−1

n
∑n

i=1 yi,jxi
8: For j ∈ [k], let rj be the median of {‖θ̂n,j − θ̂n,s‖Vn : s ∈ [k]\j}
9: k∗ = arg minj∈[k] rj

10: βn = 3
(

(9dc)
1
p n

2−p
2p + λ

1
2 S
)

11: Cn = {θ : ‖θ − θ̂n,k∗‖Vn ≤ βn}
12: end for
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Understanding of MENU
Framework comparison

MENU
θ̂n,k∗

calculate k LSEs with payoffs on {xi}ni=1

take median of means of {θ̂n,j}kj=1

· · ·

...
...

...
...

...
...

...

x1

x1

x2

x2

x3

x3

· · ·

· · ·

xn

xn

· · ·

· · ·

xN

xN

k = ⌈24 log
(
eT
δ

)
⌉

N = ⌊Tk ⌋

θ̂n,1 θ̂n,k

MoM by (Medina & Yang, 2016)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

...
...

...
...

...
...

x1

x1

x1

xn

xn

xn

xN

xN

xN

N = T
2p−2
3p−2

k = T
p

3p−2

calculate LSE with {l̃i}ni=1

of payoffs on {xi}k, i ∈ [n]

take median of means

θ̂n

l̃1 l̃n
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Upper Bound Analysis: MENU
Results

Intuitive idea
P
(
‖θ̂n − θ∗‖Vn ≤ (9dc)

1
p n

2−p
2p + λ

1
2 S
)
≥ 3

4

With probability at least 1− e−
k
24 , ‖θ̂n,k∗ − θ∗‖Vn ≤ 3γ

R(A, T) ≤∑T
t=1

(
‖θ̂t − θ̂t−1‖Vt−1 − ‖θ̂t−1 − θ̂∗‖Vt−1

)
‖xt‖V−1

t−1

Our result (Theorem 5.2 on Page 111 in the thesis)

R(MENU, T) = Õ(T
1
p )
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Algorithms: Truncation under OFU (TOFU)

TOFU
1: input d, b, p, δ, λ, T , {Dt}Tt=1
2: initialization: V0 = λId , C0 = B(0, S)
3: for t = 1, 2, · · · , T do

4: bt =

(
b

log( 2T
δ )

) 1
p−1

t
2−p

2p

5: (xt , θ̃t) = arg max(x,θ)∈Dt×Ct−1 〈x, θ〉
6: Play xt and observe a payo� yt
7: Vt = Vt−1 + xtx>t and X>t = [x1, · · · , xt ]
8: [u1, · · · , ud ]> = V−1/2

t X>t
9: for i = 1, · · · , d do

10: Y†i = (y11ui,1y1≤bt , · · · , yt1ui,tyt≤bt )
11: end for
12: θ†t = V−1/2

t (u>1 Y†1 , · · · , u>d Y†d )

13: βt = 4
√
db

1
p
(

log
(

2dT
δ

)) p−1
p t

2−p
2p + λ

1
2 S

14: Update Ct = {θ : ‖θ − θ†t ‖Vt ≤ βt}
15: end for
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Understanding of TOFU
Framework comparison

For TOFU, at time t, all of the history payo�s are truncated by bt for
each ui

Y †i = (y11ui,1y1≤bt , · · · , yt1ui,tyt≤bt )

θ†t = V−1/2
t (u>1 Y †1 , · · · , u>d Y †d )

For CRT in (Medina & Yang, 2016), the payo� at time t is truncated by
αt

y†t = yt1yt≤αt
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Upper Bound Analysis: TOFU
Results

Intuitive idea
Trade-o� between truncation error and bounded payo�s
Truncation parameter related to historical information
CRT in (Medina & Yang, 2016) only cares about time step

Our result (Theorem 5.2 on Page 113 in the thesis)

R(TOFU, T) = Õ(T
1
p )
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Experimental Results

Datasets
Four synthetic datasets
Metric: cumulative payo�s
Baselines: MoM and CRT (Medina & Yang, 2016)

Se�ings
Run independently ten times for each experiment
Show cumulative payo�s with one standard variance
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Experimental Results
Synthetic datasets

statistics

dataset {#arms,#dim} distribution
{parameters}

{ε, b, c} optimal
arm

S1 {20,10} Student’s
t-distribution {ν =
3, lp = 0, sp = 1}

{1.00, NA, 3.00} 4.00

S2 {100,20} Student’s
t-distribution {ν =
3, lp = 0, sp = 1}

{1.00, NA, 3.00} 7.40

S3 {20,10} Pareto distribution
{α = 2, sm =

x>t θ∗
2 }

{0.50, 7.72, NA} 3.10

S4 {100,20} Pareto distribution
{α = 2, sm =

x>t θ∗
2 }

{0.50, 54.37,
NA}

11.39
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Experimental Results
Central moments

S1: {20,10}
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S2: {100,20}
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Our algorithm MENU outperforms MoM in (Medina & Yang, 2016)
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Experimental Results
Raw moments

S3: {20,10}

0.2 0.4 0.6 0.8 1.0
Rounds 1e4
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S4: {100,20}
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Our algorithm TOFU outperforms CRT in (Medina & Yang, 2016)
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Summary

Contributions
Derive lower bound for LinBET
Develop two novel bandit algorithms to solve LinBET
Theoretical results are optimal up to logarithmic factors

improvements: almost matching the lower bound Ω(T
1
p )

algorithm MoM MENU CRT TOFU

regret Õ(T
2p−1
3p−2 ) Õ(T

1
p ) Õ(T

1
2 + 1

2p ) Õ(T
1
p )

complexity O(T) O(T log T) O(T) O(T 2)

storage O(1) O(log T) O(1) O(T)

∗The results were published in NIPS
(Shao H., Yu X., King I. and Lyu M. R., 2018)
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Nonlinear Stochastic Bandits

Reward function: non-linear

Se�ings: convex and non-convex (a discussion)
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Stochastic Zeroth-order Convex Optimization (SZCO)
Practical scenarios

White-box optimization
Linear regression
Logistic loss for binary classification
Convex optimization

Stochastic black-box optimization
Unknown objective functions
Noisy feedbacks

Many real cases
1. Online advertisement selections (Wibisono et al., 2012)
2. Stochastic structured predictions (Sokolov et al., 2016)
3. Optimization in biological experiments (Nakamura et al., 2017)
4. ...

Xiaotian Yu (Ph.D. Oral Defence) 74 / 96



E�icient Learning in Stochastic Bandits | Our Contributions | Nonlinear Stochastic Bandits

Stochastic Zeroth-order Convex Optimization (SZCO)
Practical scenarios

Plot of real experimental output in (Nakamura et al.,
2017) for an industrial device with di�erent input
parameters, i.e., Temperature and Tetraethylene Glycol
(TEG)
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Stochastic Zeroth-order Convex Optimization (SZCO)
Motivation

How to determine the optimal parameter in a convex and compact set
A lot of real experiments
A statistical analysis (with a convexity assumption)

Drawbacks of previous work
Time consuming for experiments
Expensive

Se�ings of our work
Convex objective functions⇔ Concave reward functions
Noisy feedbacks
Unknown objective functions
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Stochastic Zeroth-order Convex Optimization (SZCO)
De�nition

f (x; ξ) is the convex model in learning problems
x is the parameter to be learned with x ∈ Rd

ξ is the samples with noises

The goal is to solve

min
x∈Ω

f (x) , Eξ[f (x; ξ)] (7)

ε-optimal solution
An ε-optimal solution x̂ satisfies the following condition:
E[f (x̂; ξ)−minx∈Ω f (x; ξ)] ≤ ε
Theoretical guarantee
How many samples do we need in order to get x̂? (iteration complexity)
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Two Settings in SZCO

One-Point Evaluation (OPE)
For each round, one noisy observation is revealed
Noisy gradient estimator (Flaxman et al., 2005)

gf
t =

d
δ
f (xt + δut ; ξt)ut , (8)

where ut ∼ B(0, 1) and δ > 0.

Two-Point Evaluation (TPE)
Noisy gradient estimator (Agarwal et al., 2010)

ga
t =

d
2δ
(
f (xt + δut ; ξt)− f (xt − δut ; ξt)

)
ut (9)

Solver: stochastic gradient descent
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Previous Work

se�ing algorithm assumption iteration complexity h.p. or exp.

OPE
(Flaxman et al., 2005) LC O

(
d2

ε4

)
exp.

(Agarwal et al., 2010)
LC + SC Õ

(
d2

ε3

)
exp.

LC + SC + SM Õ
(

d2

ε2

)
exp.

(Agarwal et al., 2010)
LC O

(
d2

ε2

)
h.p.

LC + SC Õ
(

d2

ε

)
h.p.

(Nesterov, 2017)
LC Õ

(
d2

ε2

)
exp.

TPE LC + SM O
(

d
ε2

)
exp.

(Duchi et al., 2015)
LC Õ

(
d log d
ε2

)
exp.

LC + SM O
(

d
ε2

)
exp.

(Shamir, 2017) LC O
(

d
ε2

)
exp.

LC: Lipschitz Continuous, SC: Strong Convexity, and SM: SMoothness
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Local Error Bound (LEB)

LEB works for first-order optimization: acceleration
Previous work (Yang et al., 2015; Bolte et al., 2015; Xu et al., 2017)

A problem of Eq. (7) satisfies the LEB condition on a compact set Ω if there exist
θ ∈ (0, 1] and c > 0 such that for any x ∈ Ω

dist(x,Ω∗) ≤ c(f (x)−min
x∈Ω

f (x))θ, (10)

where dist(x,Ω∗) , minv∈Ω∗ ‖v− x‖2

How can we apply LEB into SZCO?
To improve the iteration complexity of SZCO
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Local Error Bound (LEB)

An example: quadratic condition with θ = 1/2

x

y
y = x2

y = x

w∗

w0

Understanding:

The quadratic function has a
sharper slope

f (w1)− f (w2) ≥
q‖w1 −w2‖2

2, with q > 0
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Local Error Bound (LEB)
Examples

Example 1
When f (x; ξ) = x>ξ is a linear function and Ω is a polyhedral set (e.g.,
hypercube), then the problem of Eq. (7) satisfies the LEB with θ = 1.
These functions are considered in online bandit linear optimization.
More generally, if f (x) is a polyhedral function and Ω is a polyhedral
set, then LEB with θ = 1 holds. For instance, f (x) =

∑n
i=1 |a>i x− bi|/n

and Ω = {‖x‖1 ≤ s}.
Example 2
When f (x) is strongly convex, then the LEB condition holds with
θ = 1/2
Example 3
Even when f (x) is not strongly convex, the LEB condition with θ = 1/2
may still hold, such as f (x) =

∑n
i=1(a

>
i x− bi)2/n and Ω is a polyhedral

set.
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Algorithm: A Generic Approach for Accelerating SZCO
Algorithm 1

1: initialization x0, K , η1, δ1, D1
2: for k = 1, · · · ,K do
3: x1

k = xk−1, Dk = Ω ∩ B(x1
k,Dk)

4: for τ = 1, · · · , t do
5: compute a gradient estimator in light of Eq. (8) or

Eq. (9)
6: compute xτk according to stochastic gradient descent

(under domain strinkage) with a step size ηk , a para-
meter δk , and a domain Dk

7: end for
8: let xk =

∑t
τ=1 x

τ
k/t

9: update δk+1, Dk+1 and ηk+1
10: end for
11: return xK
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Our Results: OPE

se�ing algorithm assumption iteration complexity h.p. or exp.

(Flaxman et al., 2005) LC O
(

d2

ε4

)
exp.

(Agarwal et al., 2010)
LC + SC Õ

(
d2

ε3

)
exp.

LC + SC + SM Õ
(

d2

ε2

)
exp.

OPE
our work LC + LEB

Õ
(

d2

ε2(2−θ)

)
, θ ∈ (0, 1

2 ] exp.

Õ
(

d2

ε2(2−θ)

)
, θ ∈ (0, 1] h.p.

our work LC + LEB + SM
Õ
(

d2

ε3−2θ

)
, θ ∈ (0, 1

2 ] exp.

Õ
(

d2

ε3−2θ

)
, θ ∈ (0, 1] h.p.

LC: Lipschitz Continuous, SC: Strong Convexity, SM: SMoothness, and LEB:
Local Error Bound

An order improvement in convergence rate

Xiaotian Yu (Ph.D. Oral Defence) 84 / 96



E�icient Learning in Stochastic Bandits | Our Contributions | Nonlinear Stochastic Bandits

Our Results: TPE

se�ing algorithm assumption iteration complexity h.p. or exp.

(Agarwal et al., 2010) LC O
(

d2

ε2

)
h.p.

LC + SC Õ
(

d2

ε

)
h.p.

(Nesterov, 2017) LC Õ
(

d2

ε2

)
exp.

TPE LC + SM O
(

d
ε2

)
exp.

(Duchi et al., 2015) LC Õ
(

d log d
ε2

)
exp.

LC + SM O
(

d
ε2

)
exp.

(Shamir, 2017) LC O
(

d
ε2

)
exp.

our work LC + LEB Õ
(

d2

ε2(1−θ)

)
, θ ∈ (0, 1] h.p.

our work LC + LEB Õ
(

d
ε2(1−θ)

)
, θ ∈ (0, 1

2 ] exp.

LC: Lipschitz Continuous, SC: Strong Convexity, SM: SMoothness, and LEB:
Local Error Bound
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Experimental Results

Datasets
Two real-world datasets

Music recommendation competition data
Industrial data on ceramic thin films

Metric
Iteration complexity with respect to objectives

Se�ing
Three baselines and add ‘.Acc’ for each baseline as the method based on
Algorithm 1
Run experiments in a personal computer with Intel CPU@3.70GHz and 16
GB memory
Independent ten times for each epoch
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Experimental Results
Music recommendation competition data (KDD 2011)

KDD competition: suppose we have multiple models to conduct score
prediction, how to determine the weight of each model?
⇒ Online resource allocation

f (x) =
∑N

i=1(w
>
i x−ri)2

N , θ = 0.5, and T = 104
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Experimental Results
Music recommendation competition data (KDD 2011)

f (x) =
∑N

i=1 |w>i x−ri|
N , θ = 1 and T = 104
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Experimental Results
Music recommendation competition data (KDD 2011)

f (x) is averaged Huber loss, θ = 1 and T = 104
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Experimental Results
Industrial data on ceramic thin �lms

Growth of ceramic thin �lms with T = 104
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Summary

Contributions
Design a generic framework for SZCO with LEB
Derive iteration complexity of the generic framework
Theoretical guarantees beat the state-of-the-art results
The results can be extent into non-convex cases (feed-forward networks)

∗The results were published in IJCAI
(Yu X., King I., Lyu M. R. and Yang T., 2018)
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Outline

1 Introduction

2 Stochastic Bandits: A Brief Survey

3 Our Contributions
Pure Exploration of Mean-Variance
Pure Exploration with Heavy Tails
Linear Stochastic Bandits with Heavy Tails
Nonlinear Stochastic Bandits

4 Conclusion
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Conclusion

Contributions
Goals: pure exploration and regret minimization
Se�ings: mean-variance, heavy tails, nonlinear payo�s
Output: algorithms with theoretical guarantees

task pure exploration regret minimization

mean-variance
(Yu et al., 2017) in ICDM

(Audibert et al., 2010)

MAB with heavy
tails (Yu et al., 2018) in UAI

(Bubeck et al., 2013)

linear bandits with
heavy tails

(Hsu & Sabato, 2016) (Medina & Yang, 2016)
(Shao et al., 2018) in NIPS

nonlinear payo�s (Flaxman et al., 2005;
Agarwal et al., 2010) (Yu

et al., 2018) in IJCAI

(Hazan & Levy, 2014;
Bubeck et al., 2016)
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Conclusion
Future work

Adaptive learning in bandits

Learning in bandits with dependent arms
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Chapter 3: Theoretical Results

Theorem (Estimate error for mean-variance)
For pure exploration of mean-variance in MAB with K arms, suppose
Assumptions 3.1-3.3 are satisfied. We define a random variable as
ρt(a) , ω̂t(a)− ω(a) for any a ∈ [K ]. Then, we have ρt(a) is
sub-gamma on the right tail, implying

E[exp(λρt(a))] ≤ exp
( λ2v

2(1− cλ)

)
, (11)

where λ ∈ (0, 1/c), c = 8R2, v = (192R2 + κ2)R2 for any a ∈ [K ] and
t ∈ [T ].

Proof of Theorem 3.3 on Page 47 in the thesis
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Chapter 3: Theoretical Results

Theorem (Probability of error for PEMV.CB)
For pure exploration of mean-variance with K-arm MAB, suppose
Assumptions 3.1-3.3 are satisfied. If PEMV.CB is run with a fixed
budget TK , we have the upper bound of the probability of error for
PEMV.CB as

P[xT 6= Opt] ≤ 2TK exp

(
−δ

5

)
, (12)

where δ ∈
(

0,min
(

25(T−2K)
576(96R2+κ2)R2H1

, 5(T−2K)
96R2H3

)]
.

Proof of Theorem 3.1 on Page 53 in the thesis

Xiaotian Yu (Ph.D. Oral Defence) 96 / 96



E�icient Learning in Stochastic Bandits

Chapter 3: Theoretical Results

Theorem (Probability of error for PEMV.HALVING)

For pure exploration of mean-variance with K-arm MAB, suppose
Assumptions 3.1-3.3 are satisfied. If PEMV.HALVING is run with a
fixed budget T , we have the upper bound of the probability of error for
PEMV.HALVING as

P[xT 6= Opt] ≤ 2K exp

(
− T

log2(K)H

)
, (13)

where H = 12(96R2 + κ2)R2 min(H4, 3H2).

Proof of Theorem 3.2 on Page 58 in the thesis

Xiaotian Yu (Ph.D. Oral Defence) 96 / 96



E�icient Learning in Stochastic Bandits

Chapter 4: Theoretical Results

Theorem (Sample complexity of SE-δ)
For pure exploration in MAB with K arms, with probability at least
1− δ, SE-δ identifies the optimal arm Opt with sample complexity as

for SE-δ(EA)

T ≤
K∑

x=1

(
22p+1KC

∆
p
xδ

) 1
p−1

;

for SE-δ(TEA)

T ≤
K∑

x=1

(
20B

1
p

∆x

) p
p−1

log

(
2K
δ

)
,

where p ∈ (1, 2].

Proof of Theorem 4.1 on Page 88 in the thesis
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Chapter 4: Theoretical Results
Theorem (Probability of error for SR-T )
For pure exploration in MAB with K arms, if Algorithm SR-T is run
with a fixed budget T , we have probability of error for p ∈ (1, 2] as

for SR-T (EA)

P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp
2

(
K̄

T − K

)p−1
;

for SR-T (TEA)

P[Out 6= Opt] ≤ 2K(K − 1) exp

(
− (T − K)B̄1

K̄K∆p/(1−p)

)
,

where B̄1 = p−1

4(2p3Bpp)
1

p−1
.

Proof of Theorem 4.2 on Page 90 in the thesis
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Chapter 5: Lower Bound of LinBET

Se�ing
Assume d ≥ 2 is even. For Dt ∈ Rd , we fix the decision set as Dt = D(d),
where D(d) , {(x1, · · · , xd) ∈ Rd

+ : x1 + x2 = · · · = xd−1 + xd = 1}. Let
Sd , {(θ1, · · · , θd) : ∀i ∈ [d/2] , (θ2i−1, θ2i) ∈ {(2∆,∆), (∆, 2∆)}}
with ∆ ∈ (0, 1/d]. Payo�s are in {0, (1/∆)

1
p−1 } such that, for every

x ∈ D(d), the expected payo� is θ>∗ x.
Result

Theorem (Lower bound of LinBET)
If θ∗ is chosen uniformly at random from Sd , and the payo� for each x ∈ D(d)

is in {0, (1/∆)
1

p−1 } with mean θ>∗ x, then for any algorithm A and every

T ≥ (d/12)
p−1
p , we have

E [R(A, T)] ≥ d
192

T
1
p .
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Chapter 5: Lower Bound of LinBET
d = 2 and E [|yt |p|Ft−1] ≤ d case

Decision set: D(2) , {(x1, x2) ∈ R2
+ : x1 + x2 = 1}

Payo� function of x:

y(x) =

{( 1
∆

) 1
p−1 with a probability of ∆

1
p−1 θ>∗ x,

0 with a probability of 1−∆
1

p−1 θ>∗ x

θ∗ is chosen uniformly at random from {µ1, µ2}, where µ1 = (2∆,∆)
and µ2 = (∆, 2∆)

Change of measure (through µ0 = (∆,∆))

Set ∆ = T−
p−1
p /12

E [R(A, T)] ≥ 1
96T

1
p

Extend it to d > 2
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Chapter 5: Algorithm for Linear Stochastic Bandits
OFUL (Abbasi-Yadkori et al., 2011)

At time t, select arm xt by
(xt , θ̃t) = arg max(x,θ)∈Dt×Ct−1〈x, θ〉
Ct = {θ : ‖θ − θ̂t,k∗‖Vt ≤ βt}, Vt = λI +

∑t
τ=1 xτx

>
τ

β0 =
√
λ‖θ∗‖2

For sub-Gaussian case, βt = O
(√

log t
)

The regret is bounded by Õ
(
maxt∈[T ] βt−1

√
T
)
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Chapter 5: Upper Bound Analysis: MENU
Results

Theorem
Assume that for all t and xt ∈ Dt with ‖xt‖2 ≤ D, ‖θ∗‖2 ≤ S, |x>t θ∗| ≤ L and
E[|ηt |p|Ft−1] ≤ c. Then, with probability at least 1− δ, for every
T ≥ 256 + 24 log (e/δ), the regret of the MENU algorithm satisfies

R(MENU, T) ≤ Õ(c
1
p d

1
2 + 1

p T
1
p ).

Proof of Theorem 5.2 on Page 118 in thesis
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Chapter 5: Upper Bound Analysis: MENU
Proof sketch

Lemma 1 (Confidence Ellipsoid of LSE)
Let θ̂n denote the LSE of θ∗ with the sequence of decisions x1, · · · , xn
and observed payo�s y1, · · · , yn. Assume that for all τ ∈ [n] and all
xτ ∈ Dτ ⊆ Rd , E[|ητ |p|Fτ−1] ≤ c and ‖θ∗‖2 ≤ S. Then θ̂n satisfies

P
(
‖θ̂n − θ∗‖Vn ≤ (9dc)

1
p n

2−p
2p + λ

1
2 S
)
≥ 3

4
,

Lemma 2
Recall θ̂n,j , θ̂n,k∗ and Vn in MENU. If there exists a γ > 0 such that

Pr
(
‖θ̂n,j − θ∗‖Vn ≤ γ

)
≥ 3

4 holds for all j ∈ [k] with k ≥ 1, then with

probability at least 1− e−
k
24 , ‖θ̂n,k∗ − θ∗‖Vn ≤ 3γ.
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Chapter 5: Upper Bound Analysis: MENU
Proof sketch of Lemma 1

Let ui denote the i-th row of V−1/2
t X>t

‖θ̂n − θ∗‖Vn ≤
√∑d

i=1
(
u>i (Yn − Xnθ∗)

)2
+ λ‖θ∗‖V−1

n

Union bound

P

(
d∑

i=1

(
n∑
τ=1

ui,τητ

)2

> γ2

)

≤ P (∃i, τ, |ui,τητ | > γ) + P

(
d∑

i=1

(
n∑
τ=1

ui,τητ1|ui,τητ |≤γ

)2

> γ2

)
,

where 1{·} is the indicator function

Both terms could be bounded by Markov’s inequality

Set γ = (9dc)
1
p n

2−p
2p
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Chapter 5: Upper Bound Analysis: MENU
Proof sketch of Lemma 2

By Azuma-Hoe�ding’s inequality, we have with prob. at least 1− e−
k
24 ,

more than 2/3 of {θ̂n,1, · · · , θ̂n,k} are contained in
BVn(θ∗, γ) , {θ : ‖θ − θ∗‖Vn ≤ γ}
rj be the median of {‖θ̂n,j − θ̂n,s‖Vn : s ∈ [k]\j}
Select arm arg minj∈[k] rj

If θ̂n,j ∈ BVn(θ∗, γ), ‖θ̂n,j − θ̂n,s‖Vn ≤ 2γ for all θ̂n,s ∈ BVn(θ∗, γ) by
triangle inequality. Therefore, rj ≤ 2γ
If θ̂n,j /∈ BVn(θ∗, 3γ), ‖θ̂n,j − θ̂n,s‖Vn > 2γ for all θ̂n,s ∈ BVn(θ∗, γ) by
triangle inequality. Therefore, rj > 2γ
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Chapter 5: Upper Bound Analysis: TOFU
Results

Theorem
Assume that for all t and xt ∈ Dt with ‖xt‖2 ≤ D, ‖θ∗‖2 ≤ S, |x>t θ∗| ≤ L and
E[|yt |p|Ft−1] ≤ b. Then, with probability at least 1− δ, for every T ≥ 1, the
regret of the TOFU algorithm satisfies

R(TOFU, T) ≤ Õ(b
1
p dT

1
p ).

Proof of Theorem 5.3 on Page 122 in the thesis
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Chapter 5: Upper Bound Analysis: TOFU

Lemma 3. [Confidence Ellipsoid of Truncated Estimate] With the sequence
of decisions x1, · · · , xt , the truncated payo�s {Y †i }di=1 and the parameter
estimate θ†t are defined in TOFU. Assume that for all τ ∈ [t] and all
xτ ∈ Dτ ⊆ Rd , E[|yτ |p|Fτ−1] ≤ b and ‖θ∗‖2 ≤ S. With probability at least
1− δ, we have

‖θ†t − θ∗‖Vt ≤ 4
√
db

1
p

(
log

(
2d
δ

)) p−1
p

t
2−p
2p + λ

1
2 S, (14)

where λ > 0 is a regularization parameter and Vt = λId +
∑t

τ=1 xτx
>
τ .
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Chapter 5: Upper Bound Analysis: TOFU
Proof sketch of Lemma 3

Like before,

‖θ†t − θ∗‖Vt ≤

√√√√ d∑
i=1

(
u>i (Y†i − Xtθ∗)

)2
+ λ‖θ∗‖V−1

n

For each i

u>i
(
Y†i − Xtθ∗

)
=

t∑
τ=1

ui,τ
(
Y†i,τ − E[Yi,τ |Fτ−1]

)

≤

∣∣∣∣∣
t∑

τ=1
ui,τ (Y†i,τ − E[Y†i,τ |Fτ−1])

∣∣∣∣∣+

∣∣∣∣∣
t∑

τ=1
ui,τE[Yi,τ1|ui,τ Yi,τ |>bt |Fτ−1]

∣∣∣∣∣
The first term is bounded by Bernstein’s inequality

Set bt = (b/ log(2d/δ))
1
p t

2−p
2p
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Chapter 6: Lemmas

Lemma 1 (Flaxman et al., 2005)
Given u ∼ B(0, 1), we have Eu[gf

t ] = ∇f̂ (xt ; ξt), and ‖gf
t‖2 ≤ dB/δ. If

f (x; ξ) is G-Lipschitz continuous, we have |f (x; ξ)− f̂ (x; ξ)| ≤ Gδ. If
f (x; ξ) is L-smooth, we have |f (x; ξ)− f̂ (x; ξ)| ≤ Lδ2/2.

Lemma 2 (Agarwal et al., 2010)
Given u ∼ B(0, 1), we have Eu[ga

t ] = ∇f̂ (xt ; ξt). If f (x; ξ) is
G-Lipschitz continuous, we have ‖ga

t ‖2 ≤ Gd, Eu[‖ga
t ‖2

2] ≤ db2G2C, and
|f (x; ξ)− f̂ (x; ξ)| ≤ Gδ, where C is a universal constant and b is a
constant such that (E[‖u‖4

2])
1/4 ≤ b. If f (x; ξ) is L-smooth, we have

|f (x; ξ)− f̂ (x; ξ)| ≤ Lδ2/2.
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Chapter 6: Lemmas

Lemma 3 (Nesterov et al., 2017)
Considering u ∼ N (0, 1), we have Eu[gn

t ] = ∇f̂ (xt ; ξt). If f (x; ξ) is
G-Lipschitz continuous, we have Eu[‖gn

t ‖2
2] ≤ G2(d + 4)2, and

|f (x; ξt)− f̂ (x; ξt)| ≤ δGd1/2. If f (x; ξ) is G-Lipschitz continuous and
L-smooth, we have Eu[‖gn

t ‖2
2] ≤ δ2(d + 6)3L2/2 + 2(d + 4)G2, and

|f (x; ξ)− f̂ (x; ξ)| ≤ δ2Ld/2.

gn
t =

1
δ

(f (xt + δut ; ξt)− f (xt ; ξt))ut . (15)

Xiaotian Yu (Ph.D. Oral Defence) 96 / 96



E�icient Learning in Stochastic Bandits

Chapter 6: Proof Sketch of Results in Expectation (OPE)

Cumulative errors of ∀x ∈ Ω

T∑

t=1
f (xt ; ξt)− f (x; ξt) ≤ 2TGδ +

ηTd2B2

2δ2 +

‖x1 − x‖2
2

2η
+

T∑

t=1
(∇f̂ (xt ; ξt)− gf

t)
>(xt − x).

At the k-th stage

E[f (xk)− f (x)] ≤ E[‖xk−1 − x‖2
2]

2ηkt
+
ηkd2B2

2δ2
k

+ 2Gδk,

By induction, we prove E[f (xk)− f∗] ≤ εk
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E[f (xk)− f∗] ≤ εk (OPE)

E[f (xk)− f (xk−1,∗)]

≤ E[‖xk−1 − xk−1,∗‖2
2]

2ηkt
+
ηkd2B2

2δ2
k

+ 2Gδk

≤ c(E[f (xk−1)− f (xk−1,∗)])
2θ

2ηkt
+
ηkd2B2

2δ2
k

+ 2Gδk

≤ cε2θ
k−1

2ηkt
+
ηkd2B2

2δ2
k

+ 2Gδk,

c2ε2θ
k−1

2ηkt
≤ εk−1

6
⇒ t ≥ 1296d2B2G2c2

ε
2(2−θ)
k−1

,

ηkd2B2

2δ2
k
≤ εk

3
⇒ ηk ≤

ε3
k

54G2d2B2 ,

2Gδk ≤
εk
3
⇒ δk ≤

εk
6G
.
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Chapter 6: Proof Sketch of Results with High Probability
(OPE)

High probability error

f̂ (x̂T )− f̂ (x) ≤‖x1 − x‖2
2

2ηT
+
ηd2B2

2δ2 +
4dBD

√
3 log( 1

p̃ )
√
Tδ

,

By induction, we prove f (xk)− f∗ ≤ εk

f (xk)− f (xk−1,∗) ≤
c2ε2θ

k−1
2ηkt

+
ηkd2B2

2δ2
k

+

4dBcεθk−1

√
3 log( 1

p̃ )
√
tδk

+ 2Gδk
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