

香港中文大學 The Chinese University of Hong Kong

Effective Training with Data Engineering for Language Understanding and Generation

Wenxiang Jiao

Ph.D. Oral Defense

Supervisor: Prof. Irwin King & Prof. Michael R. Lyu

Committee:

Prof. Xunying Liu

Prof. Kevin Yip

Prof. Shou-dou Lin

Introduction

□ Context Enhancement with Intra-Sample Structure Mining

□ Self-Supervised Learning with Intra-Sample Structure Mining

Data Rejuvenation with Inter-Sample Quality Mining

□ Self-Training Sampling with Inter-Sample Quality Mining

Conclusion

Outline

□ Introduction

Context Enhancement with Intra-Sample Structure Mining

Outline

Self-Supervised Learning with Intra-Sample Structure Mining

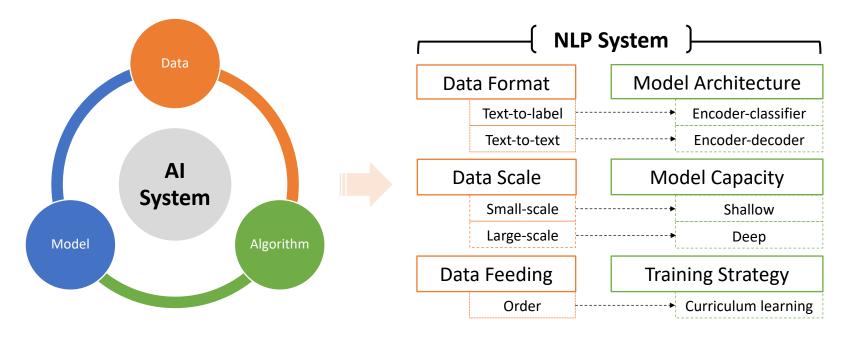
Data Rejuvenation with Inter-Sample Quality Mining

□ Self-Training Sampling with Inter-Sample Quality Mining

Conclusion

Importance of Data in Artificial Intelligence

Data is the foundation of natural language processing (NLP) systems



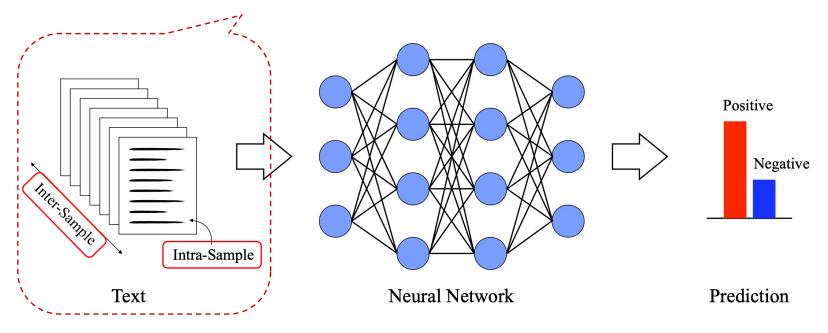
Al System = Code + Data

(model/algorithm)

Training NLP models more effectively on data is critical!

How to Exploit Training Data

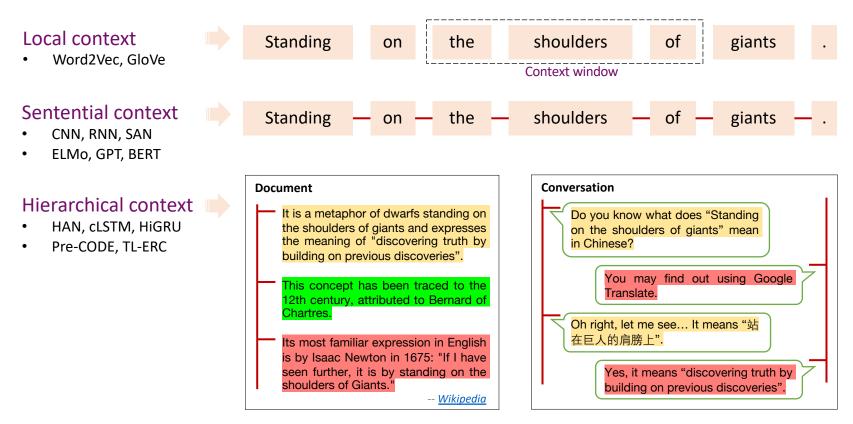
- Two dimensions
 - Intra-sample structure: structure information shared by text samples
 - Inter-sample quality: differentiate text samples by their quality



A general diagram for a text classification task

Advances in Intra-Sample Structure Exploitation

 Intra-sample structure provides signals for representation learning, i.e., the context information in texts



Challenges in Intra-Sample Structure Exploitation

- Most studies have been conducted on sentential context with limited structure information
- Documents or conversations are more practical scenarios
- Early studies on hierarchical context do not fully utilize the structure information
- Few studies on self-supervised learning from hierarchical context

Emotion Recognition in Conversations (ERC)

You sprayed my front twice! Angr

No! I barely even got to three Mississippi.

Angry

You never turned? Surprised

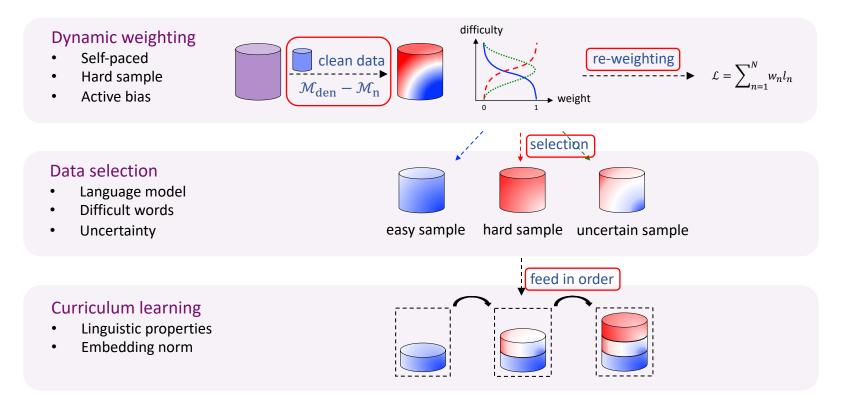
Mississippi? I said count to five. Neutral

Reasons

- Recognizing emotions in conversations is novel
- Rich structure information as learning signals
- Small scale datasets may gain more
- Unlabeled conversation data becomes available

Advances in Inter-Sample Quality Exploitation

 Inter-sample quality should be considered when facing large-scale datasets, which may contain noises or mistakes



Challenges in Inter-Sample Quality Exploitation

- Dynamic weighting and curriculum learning require the modification of training strategies
- Data selection is easy to implement but there is a lack of understanding on the unpreferred data
- Few studies on how to re-use the unpreferred data
- Data selection for efficient and effective data augmentation is still under-explored

Neural Machine Translation (NMT)

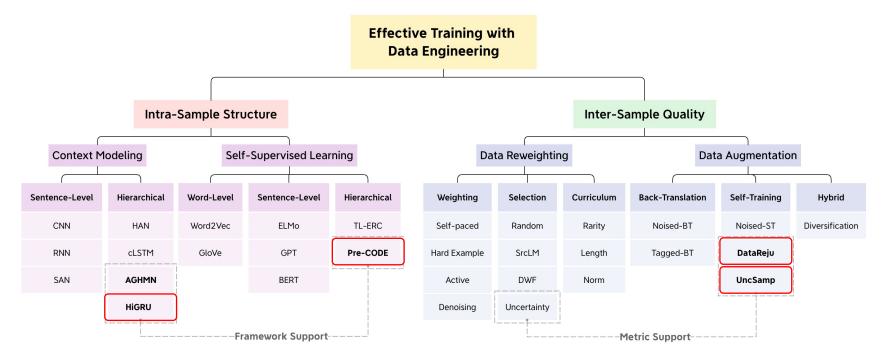
≡ Google Tra	nslate			
ENGL	ISH	$\stackrel{\rightarrow}{\leftarrow}$	CHINESE (SIMPLIFIED)	
Standing on the	e shoulders	of giants.	C	×
↓ •)			36 / 5000	•
站在巨人的肩膀	手上。			
Zhàn zài jùrén de jiānbǎr	ng shàng.			
()			6 /	<

<u>Reasons</u>

- Classic NLG task with complete evaluation criteria
- Large-scale datasets by automatic annotation
- Data selection and augmentation are active areas

Overall Taxonomy

Our contributions



Ch3: Context enhancement (HiGRU) [NAACL'19]

Ch4: Self-supervised learning (Pre-CODE) [EMNLP'20]

Ch5: Data rejuvenation (DataReju) [EMNLP'20]

Ch6: Self-training sampling (UncSamp) [ACL'21]

Introduction

Context Enhancement with Intra-Sample Structure Mining

Outline

□ Self-Supervised Learning with Intra-Sample Structure Mining

Data Rejuvenation with Inter-Sample Quality Mining

□ Self-Training Sampling with Inter-Sample Quality Mining

Conclusion

Motivation

- Context is important for capturing accurate meaning
 - The same word or sentence may express different emotions in different contexts

Speaker	Utterance	Emotion
Rachel	Oh okay, I'll fix that to.	Neutral
	What's her email address?	
Ross	Rachel!	Anger
Rachel	All right, I promise. I'll fix	Non-neutral
	this. I swear. I'll-I'll- I'll-I'll	
	talk to her.	
Ross	Okay!	Anger
Rachel	Okay.	Neutral
Nurse	This room's available.	Neutral
Rachel	Okay!	Joy
Rachel	Okay wait!	Non-neutral
Rachel	You listen to me!	Anger

The word "okay" exhibits different emotions in the American television sitcom, Friends.

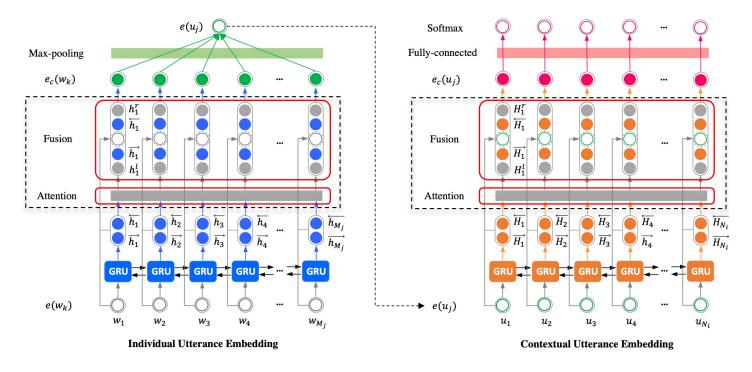
- Previous cLSTM on hierarchical context
 - $\,\circ\,$ Sentential context is not well captured
 - $\,\circ\,$ Long-range context is ignored
 - $\,\circ\,$ Not an end-to-end model

Motivation

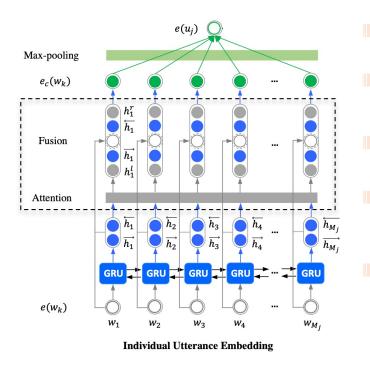
Research problem

- Context enhancement: exploit the hierarchical structure of conversations to capture various contexts so as to improve the ERC task
- Main findings
 - Proposed a hierarchical gated recurrent unit (HiGRU) to exploit both the context of words and the context of utterances
 - Promoted HiGRU to two progressive variants, HiGRU-f and HiGRU-sf, to effectively incorporate the individual word- and utterance-level information and the long-range contextual information, respectively
 - Achieved consistent improvements over SOTA methods on three ERC datasets, namely, IEMOCAP, Friends and EmotionPush

- Overall framework: HiGRU $\xrightarrow{+ \text{Fusion}}$ HiGRU-f $\xrightarrow{+ \text{Attention}}$ HiGRU-sf
 - Word-level context: a bidirectional gated recurrent unit (GRU)
 - Utterance-level context: another bidirectional GRU



Word-level context



$$e(\mathbf{x}_j) = ext{maxpool}\left(\{e_c(w_k)\}_{k=1}^{M_j}
ight)$$

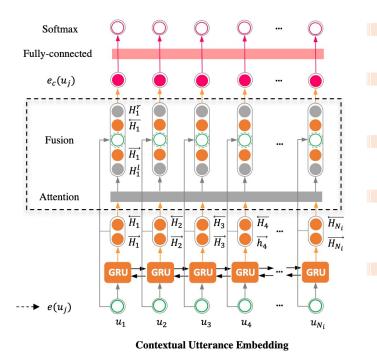
 $e_c(w_k) = ext{tanh}(W_w \cdot hs + b_w)$
feature fusion $[h_k^l; \overrightarrow{h_k}; e(w_k); \overleftarrow{h_k}; h_k^r]$

$$hs = [\overrightarrow{h_k}; \overleftarrow{h_k}]$$

$$\overrightarrow{h_k} = (e(w_k), \overrightarrow{h_{k-1}})$$

$$\overleftarrow{h_k} = (e(w_k), \overleftarrow{h_{k+1}})$$

Utterance-level context



$$\hat{y}_{j} = \operatorname{softmax}(W_{fc} \cdot e_{c}(\mathbf{x}_{j}) + b_{fc})$$

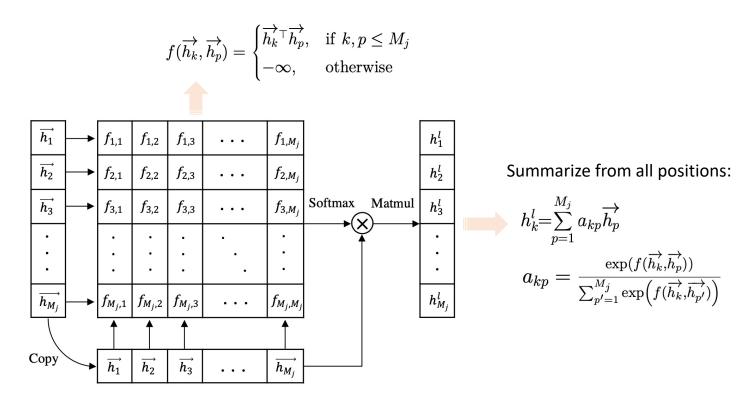
$$e_{c}(\mathbf{x}_{j}) = \operatorname{tanh}(W_{u} \cdot Hs + b_{u})$$
feature fusion $[H_{j}^{l}; \overrightarrow{H_{j}}; e(\mathbf{x}_{j}); \overleftarrow{H_{j}}; H_{j}^{r}]$
self-attention
$$Hs = [\overrightarrow{H_{j}}; \overleftarrow{H_{j}}]$$

$$\overrightarrow{H_{j}} = (e(\mathbf{x}_{j}), \overrightarrow{H_{j-1}})$$

$$\overleftarrow{H_{j}} = (e(\mathbf{x}_{j}), \overleftarrow{H_{j+1}})$$

Self-attention mechanism

• Enable the capturing of long-range context



Experiments: Setup

- Datasets
 - IEMOCAP, Friends, and EmotionPush

Dataset		E	motion	l	
Dutabet	Ang	Hap/Joy	Sad	Neu	Others
IEMOCAP	1,090	$1,\!627$	1,077	1,704	0
Friends	759	1,710	498	$6,\!530$	5,006
EmotionPush	140	2,100	514	$9,\!855$	$2,\!133$

Emotion distributions of the three datasets

- Evaluation metrics
 - Weighted accuracy (WA), unweighted accuracy (UA)
- Compared baselines
 - CNN-DCNN (SocialNLP@ACL'18), SA-BiLSTM (SocialNLP@ACL'18)
 - bcLSTM (ACL'17), CMN (NAACL'18)

Experiments: Main Results

- IEMOCAP
 - The bidirectional GRU is more effective in capturing word-level context than CNNs
 - The long-range context captured by self-attention brings additional benefits

Model (Feat)	Ang	Нар	Sad	Neu	WA	UWA
bcLSTM $[4]$ (T)	76.07	78.97	76.23	67.44	73.6	<u>74.6</u>
(T+V+A)	77.98	79.31	78.30	69.92	76.1	<u>76.3</u>
CMN [5] (T)	-	-	-	-	74.1	-
(T+V+A)	89.88	81.75	77.73	67.32	77.6	79.1
$bcLSTM_{*}$ (T)	75.29	79.40	78.07	76.53	77.7(1.1)	77.3(1.4)
bcGRU (T)	77.20	80.99	76.26	72.50	76.9(1.6)	76.7(1.3)
HiGRU (T)	75.41	91.64	79.79	70.74	80.6(0.5)	79.4(0.5)
HiGRU-f (T)	76.69	88.91	80.25	75.92	81.5(0.7)	80.4(0.5)
HiGRU-sf(T)	74.78	89.65	80.50	77.58	82.1(0.4)	80.6 (0.2)

Results on the IEMOCAP dataset

Experiments: Main Results

Friends, EmotionPush

- Combining the two training sets brings opposite effects to respective testing sets
- EmotionPush is more imbalanced and can be alleviated slightly with Friends

Model	Train Friends (F)				Train				Emot	ionPus	sh (E)		
Wodel	ITam	Ang	Joy	Sad	Neu	WA	UWA	Ang	Joy	Sad	Neu	WA	UWA
SA-BiLSTM [81]	F+E	49.1	68.8	30.6	90.1	-	59.6	24.3	70.5	31.0	94.2	-	55.0
CNN-DCNN [78]	F+E	55.3	71.1	55.3	68.3	-	62.5	45.9	76.0	51.7	76.3	-	62.5
$bcLSTM_*$	F	64.7	69.6	48.0	75.6	72.4(4.2)	64.4(1.6)	32.9	69.9	47.1	78.0	74.7(4.4)	57.0(2.1)
bcGRU	\mathbf{F}	69.5	65.4	52.9	74.7	71.7(4.7)	65.6(1.2)	33.7	71.1	57.2	76.1	73.9(2.9)	59.5(1.8)
$bcLSTM_*$	F+E	54.5	75.6	$\bar{43.4}$	73.0	70.5(4.5)	61.6(1.6)	52.4	79.1	54.7	73.3	73.4(3.8)	64.9(2.1)
bcGRU	F+E	59.0	78.6	42.3	71.4	70.2(5.1)	62.8(1.4)	49.4	74.8	61.9	72.4	72.1(4.3)	64.6(1.8)
HiGRU	F	66.9	73.0	51.8	77.2	74.4 (1.7)	67.2(0.6)	55.6	78.1	57.4	73.8	73.8(2.0)	66.3(1.7)
HiGRU-f	\mathbf{F}	69.1	72.1	60.4	72.1	71.3(2.9)	68.4(1.0)	55.9	78.9	60.4	72.4	73.0(2.2)	66.9(1.2)
HiGRU-sf	F	70.7	70.9	57.7	76.2	74.0(1.4)	68.9 (1.5)	57.5	78.4	64.1	72.5	73.0(1.6)	68.1(1.2)
HiGRU	F+E	55.4	81.2	51.4	64.4	65.8(4.2)	63.1(1.5)	50.8	76.9	69.0	75.7	75.3(1.7)	68.1(1.2)
HiGRU-f	F+E	54.9	78.3	55.5	68.7	68.5(3.0)	64.3(1.2)	58.3	79.1	69.6	70.0	71.5(2.5)	69.2(0.9)
HiGRU-sf	F+E	56.8	81.4	52.2	68.7	69.0(2.0)	64.8(1.3)	57.8	79.3	66.3	77.4	77.1(1.0)	70.2(1.1)
							-4.1						+2.1

Results on the Friends and EmotionPush datasets

Experiments: Analysis

Successful cases

Speaker	Utterance	Truth	bcGRU	HiGRU-sf
Scene 1				
Phoebe	Okay. Oh but don't tell	Neu	Neu	Neu
	them Monica's pregnant be-			
	cause they frown on that.			
Rachel	Okay.	Neu	Neu	Neu
Phoebe	Okay.	Neu	Neu	Neu
Scene 2				
Phoebe	Yeah! Sure! Yep! Oh,	Joy	Ang	Joy
	y'know what? If I heard			
	a shot right now, I'd throw			
C	my body on you.	011	1	1
Gary	Oh yeah? Well maybe you	Other	/	/
	and I should take a walk			
	through a bad neighbor-			
	hood.			
Phoebe	Okay!	Joy	Ang	Joy
Gary	All right.	Neu	Neu	Neu

- The ground-truth label seems inappropriate given this parting situation
- HiGRU-sf captures the melancholic atmosphere

Speaker	Utterance	Truth	bcGRU	HiGRU-sf
Scene 3				
Female	Can I send you, like videos	Other	/	/
	and stuff? What about			
	when they start walking.			
Male	Yeah yeah yeah.	Sad	Hap	Sad
Male	You you record every sec-	Hap	Hap	Sad
	ond. You record every sec-			
	ond because I want to see it			
	all. Okay?			
Male	If I don't get to see it now, I	Other	/	/
	get to see it later at least,			
	you know? You've got to			
	keep it all for me; all right?			
Female	Okay.	Sad	Neu	Sad

"Okay" expresses distinct emotions in three different scenes

Summary

- Proposed a hierarchical gated recurrent unit (HiGRU) to exploit both the context of words and the context of utterances
- Promoted HiGRU to two progressive variants, HiGRU-f and HiGRU-sf, to effectively incorporate the individual word- and utterance-level information and the long-range contextual information, respectively
- Achieved consistent improvements over SOTA methods on three ERC datasets, namely, IEMOCAP, Friends and EmotionPush

□ Introduction

Context Enhancement with Intra-Sample Structure Mining

Outline Self-Supervised Learning with Intra-Sample Structure Mining

Data Rejuvenation with Inter-Sample Quality Mining

□ Self-Training Sampling with Inter-Sample Quality Mining

Conclusion

Motivation

- Hierarchical text format contains rich information but also makes it more difficult for label annotation
 - Subtle differences between emotions
 - Effect of context
 - => Data scarcity issue

Model	Conv	versa	tion	\mathbf{U}_{1}	Utterance			
mouer	Train	Val	Test	Train	Val	Test		
IEMOCAP	96	24	31	3,569	721	1,208		
Friends	720	80	200	$10,\!561$	$1,\!178$	2,764		
$\operatorname{EmotionPush}$	720	80	200	10,733	$1,\!202$	$2,\!807$		
EmoryNLP	713	99	85	$9,\!934$	$1,\!344$	1,328		
MOSEI*	$2,\!250$	300	676	$16,\!331$	1,871	4,662		

Unlabeled conversation data has become massively available, e.g., the subtitles of movies and TV shows in OpenSubtitles

Statistics of labeled datasets for ERC

Motivation

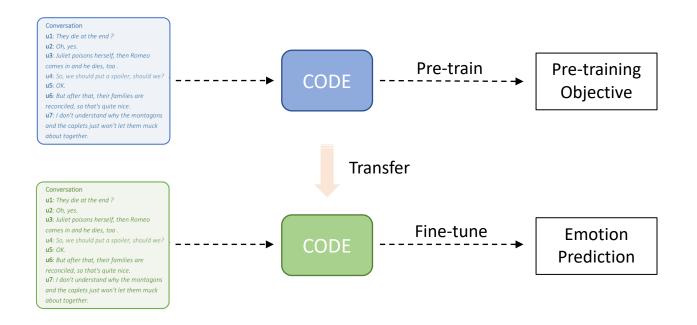
Research problem

- Data scarcity: leverage unlabeled conversation data in a self-supervised fashion by exploiting the hierarchical structure of conversations
- Main findings
 - Proposed a conversation completion task to pre-train a context-dependent encoder (Pre-CODE) to learn from unlabeled conversation data
 - Fine-tuned the Pre-CODE on the datasets of ERC and achieved significant improvements of the performance over the baselines
 - Demonstrated that both utterance and conversation encoders are well pre-trained and pre-training particularly benefits the prediction of minority classes

Approach: Pre-Training Fine-tuning Paradigm

Basic pipeline

- Model each conversation with a context-dependent encoder (CODE)
- Pre-train on the proposed conversation completion (ConvCom) task
- Fine-tune the pre-trained model on the labeled datasets



Approach: Pre-Training Task

u5: OK.

Conversation completion task

Task definition. Given a conversation, $U = \{u_1, u_2, \dots, u_L\}$, we mask a target utterance u_l as $U \setminus u_l = \{\dots, u_{l-1}, [mask], u_{l+1}, \dots\}$ to create a question, and try to retrieve the correct utterance u_1 from the whole training corpus

Question

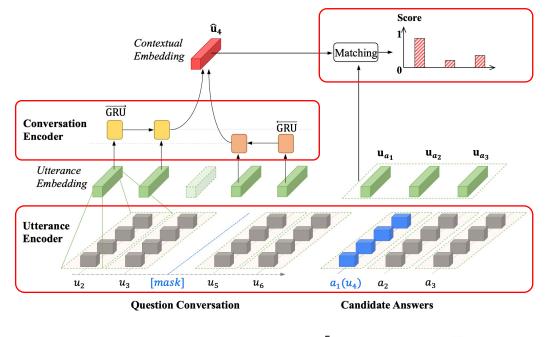
u1: They die at the end? **u2**: Oh, yes. Conversation u3: Juliet poisons herself, then Romeo comes in and he dies, too. u1: They die at the end? u4: [mask] u2: Oh, yes. u5: OK. u3: Juliet poisons herself, then Romeo **u6**: But after that, their families are comes in and he dies, too. reconciled, so that's quite nice. u4: So, we should put a spoiler, should we? u7: I don't understand why the montagons and the caplets just won't let them muck **u6**: But after that, their families are about together. reconciled, so that's quite nice. **u7**: *I* don't understand why the montagons Candidate Answers and the caplets just won't let them muck **1**. So, we should put a spoiler, should we? about together. **2**. I struggle to keep a goldfish alive, to be honest.

3. What do you want, Gallo?

An example in the conversation completion task

Approach: Architecture

- Context-dependent encoder: a vanilla HiGRU model
 - Fuse the representations of nearby utterances and apply text matching to find the most likely candidate



Noise contrastive estimation:
$$\mathcal{F} = -\sum_{j} \left[\log \sigma(\mathbf{\hat{u}}_{j}^{\top} \mathbf{u}_{a_{1}}) + \sum_{n=2}^{N} \log \sigma(-\mathbf{\hat{u}}_{j}^{\top} \mathbf{u}_{a_{n}}) \right]$$

Experiments: Data Preparation

- OpenSubtitles 2016 English
 - Remove the first and last 10 utterances for each episode
 - Split the conversations into shorter pieces with 5 to 100 utterances
 - Remove the short conversations such that over half of the utterances contain less than 8 words each
 - Split the data into training, validation, and testing sets by the ratio of 90:5:5

Set	Conversation	Utterance (A	vg.) Word (Avg.)
Train	58360	41.3	10.1
Val	3186	41.0	10.1
Test	3297	40.8	10.1

Statistics of the created datasets for the pre-training task

Experiments: Pre-Training Phase

- Evaluation metric
 - R_{N'@}k: the recall of the true positives among k best-matched answers from N' available candidates
- Model scales
 - Small, medium, large: 150, 300, 450 as the hidden sizes

Model	d_u/d_c	$\mathbf{R}_{5}@1$	\mathbf{R}_{5} @2	${f R}_{11}$ @1	${f R}_{11}$ @2
SMALL	150	70.8	88.0	56.2	72.7
Medium	300	73.8	89.7	$\begin{array}{c} 56.2 \\ 60.4 \end{array}$	76.4
LARGE	450	77.2	91.3	64.2	79.1

CODE is indeed able to capture the structure of conversations and perform well in the conversation completion task

The performance of CODE in varied capacities on the conversation completion pre-training task

Experiments: Fine-Tuning Phase

Evaluation metrics

• F1 score (F1), weighted accuracy (WA)

Compared baselines

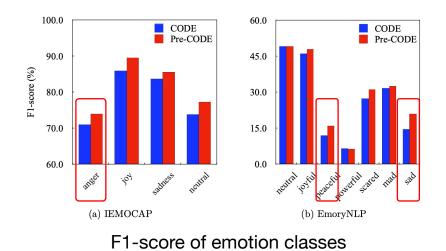
- CNN-DCNN (SocialNLP@ACL'18), SA-BiLSTM (SocialNLP@ACL'18)
- bcLSTM (ACL'17), CMN (NAACL'18), SCNN (AAAI'18), HiGRU (NAACL'19)
- bcLSTM*, bcGRU, CODE_{MED}

					Model	IEM	OCAP	Emor	yNLP	MO	SEI^*
Model	Frie	ends	Emot	ionPush	Model	F1	WA	F1	WA	F1	WA
	F1	WA	F1	WA	bcLSTM [4]	_	73.6	_	_	_	_
CNN-DCNN [78];	_	67.0	_	75.7	CMN [5]	_	74.1	_	_	_	_
SA-BiLSTM [81]	—	79.8	—	87.7	SCNN [72]	_	_	26.9	37.9	-	_
HiGRU [36]	_	74.4	_	73.8	HiGRU-sf $[36]$	—	82.1	—	—	—	—
$bcLSTM_*$	63.1	79.9	$\bar{60.3}^{-}$	84.8	$bcLSTM_*$	76.6	77.1	25.5	33.5	29.1	56.3
bcGRU	62.4	77.6	60.5	84.6	bcGRU	77.6	78.2	26.1	33.1	28.7	56.4
CODE-MED	62.4	78.0	60.3	84.2	CODE-MED	78.6	79.6	26.7	34.7	29.7	56.6
Pre-CODE	65.9	81.3	62.6	84.7	Pre-CODE	81.5	82.9	29.1	36.1	31.7	57.1

Fine-tuning results on IEMOCAP, EmoryNLP, MOSEI, Friends and EmotionPush

Experiments: Analysis

- Minority classes
 - Pre-training particularly improves the prediction accuracy of minority classes



- Layer effects
 - The pre-trained utterance encoder can boost performance
 - Adding the pre-trained conversation encoder brings additional gains

Layers	IEMOCAP	Friends
PRE-CODE + Re-W	81.6	64.5
Pre-CODE	81.5	65.9 📉
CODE + Pre-U	80.1	64.8
CODE	78.6	62.4 🌙

Ablation study on pre-trained layers

Experiments: Analysis

Speaker	Utterance	Truth	CODE	Pre-CODE
Example 1				
Joey	Come on, Lydia, you	Neu	Neu	Neu
	can do it.			
Joey	Push!	Joy	Ang	Ang
Joey	Push 'em out, push	Joy	Neu	Neu
	'em out, harder,			
	harder.			
Joey	Push 'em out, push	Joy	Ang	Joy
	'em out, way out!			
Joey	Let's get that ball and	Joy	Neu	Joy
	really move, hey, hey,			
-	ho, ho.	-		
Joey	Let's I was just	Joy	Neu	Neu
т	yeah, right.	т	٨	٨
Joey	Push!	Joy	Ang	Ang
Joey	Push!	Joy	Ang	Ang
$Example \ 2$				
$\operatorname{Sp1}$	It's so hard not to cry	Sad	Ang	Sad
$\operatorname{Sp2}$	What happened	Neu	Neu	Neu
$\operatorname{Sp1}$	I lost another 3 set	Sad	Neu	Sad
	game			
$\operatorname{Sp2}$	It's ok person_145	Neu	Neu	Neu
$\operatorname{Sp1}$	Why does it hurt so	Sad	Neu	Sad
	much			
$\operatorname{Sp2}$	Everybody loses	Neu	Neu	Neu

 Pre-trained models also make mistakes when the utterance is too short to provide information

• Pre-training performs better on minority emotion classes, e.g., Sad, here

Summary

- Proposed a conversation completion task to pre-train a context-dependent encoder (Pre-CODE) to learn from unlabeled conversation data
- Fine-tuned the Pre-CODE on the datasets of ERC and achieved significant improvements of the performance over the baselines
- Demonstrated that both utterance and conversation encoders are well pre-trained and pre-training particularly benefits the prediction of minority classes

□ Introduction

Context Enhancement with Intra-Sample Structure Mining

Self-Supervised Learning with Intra-Sample Structure Mining

Data Rejuvenation with Inter-Sample Quality Mining

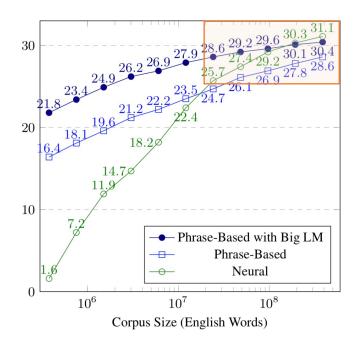
□ Self-Training Sampling with Inter-Sample Quality Mining

Conclusion

Outline

Motivation

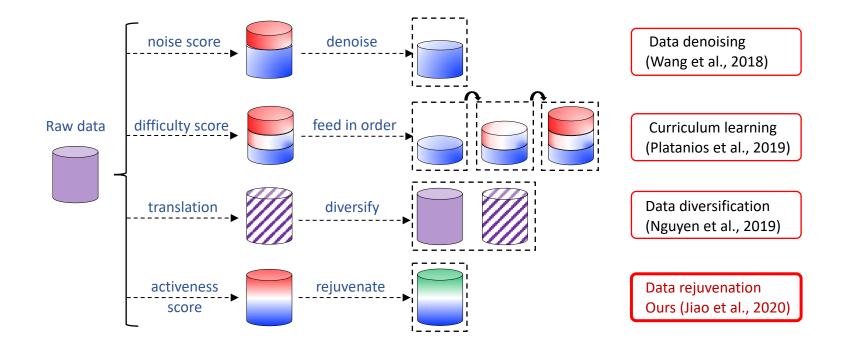
Data is the fuel of neural machine translation models



BLEU scores with varying amounts of training data (Koehn and Knowles 2017)

- Challenges on large-scale data
 - Complex patterns
 - Potential noises
 - \Rightarrow Low efficiency
 - \Rightarrow Limited performance

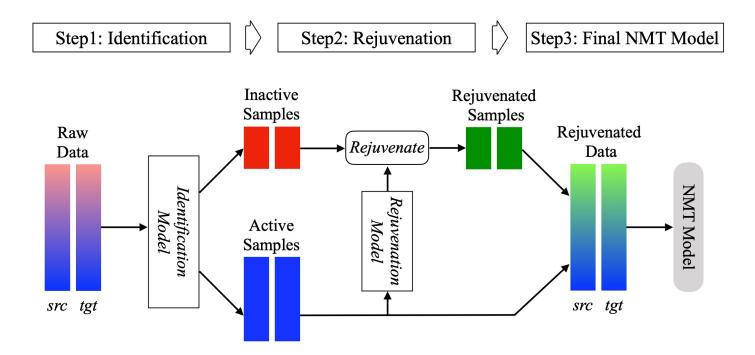
Data manipulation to exploit training data



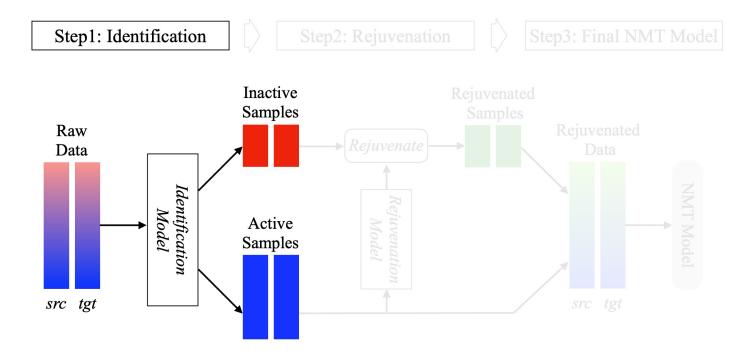
Research problem

- Inactive samples: training samples that only marginally contribute to or even inversely harm the performance of NMT models
- Main findings
 - Demonstrated the existence of inactive samples in large-scale translation datasets, which mainly depends on the data distribution
 - Proposed a general framework to rejuvenate the inactive samples to improve the training of NMT models
 - Achieved significant improvements over SOTA Transformer and DynamicConv models on WMT14 En-De and En-Fr translation tasks, without model modification

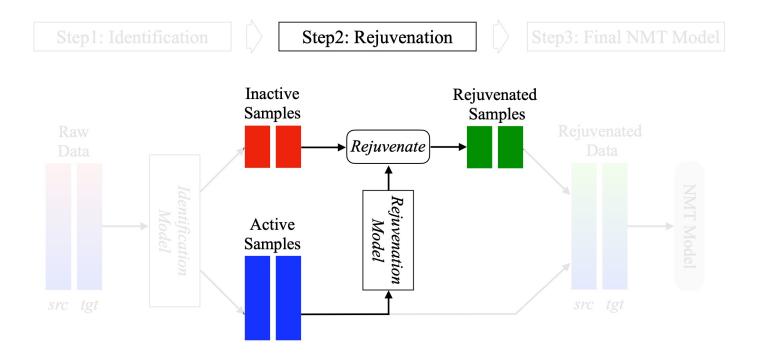
General pipeline



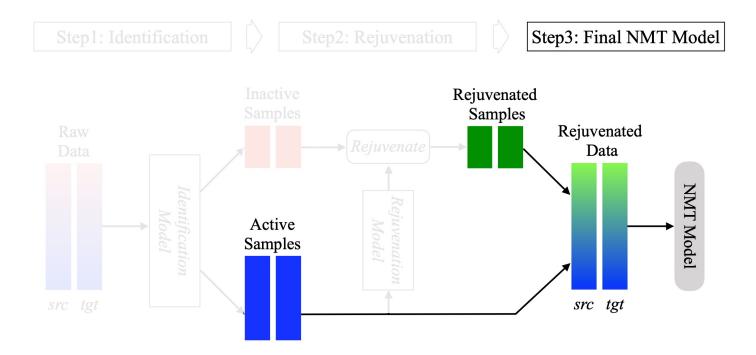
General pipeline



General pipeline



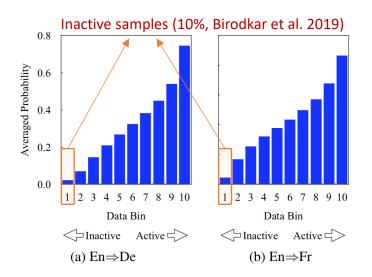
General pipeline



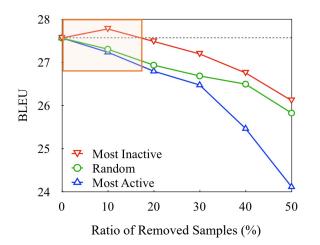
Approach: Identification of Inactive Samples

- Identification model: an NMT model trained on raw training data
 - Activeness metric: model output probability

$$I(\mathbf{y}|\mathbf{x}) = \prod_{t=1}^{T} p(y_t|\mathbf{x}, \mathbf{y}_{< t})$$



Probability diagram on WMT14 (a) $En \Rightarrow De$ and (b) $En \Rightarrow Fr$ training data

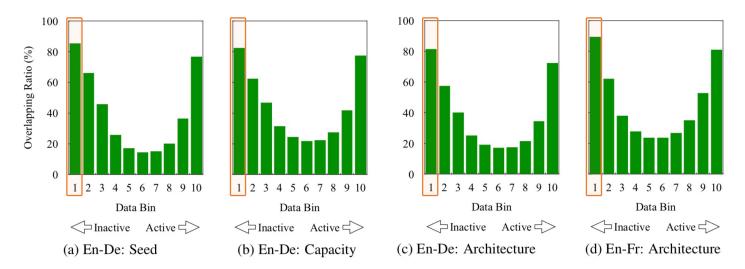


Translation performance with the most inactive samples removed

Approach: Identification of Inactive Samples

Consistency: factors that may affect the identification NMT model

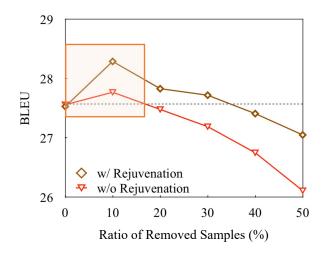
- Random seed: 1, 12, 123, 1234, 12345
- Model capacity: tiny (256 x 3), base (512 x 6), big (1024 x 6)
- Architecture: LSTM, Transformer, DynamicConv



Ratio of samples that are shared by different model variants: random seed (a), model capacity (b), model architecture on $En \Rightarrow De$ (c) and $En \Rightarrow Fr$ (d) datasets

Approach: Rejuvenation of Inactive Samples

- Rejuvenation model: an NMT model trained on active samples
 - Forward translation: simplify the target sentences of inactive samples



Effect of the ratio of samples regarded as inactive samples for rejuvenation

Training Data	BLEU	\triangle
Raw Data	27.5	_
- 10% Inactive Samples	27.8	+0.3
+ Rejuvenated Samples	28.3	+0.8
-10% Random Samples	27.4	-0.1
+ Rejuvenated Samples	27.3	-0.2

Comparing data rejuvenation on identified inactive samples and forward translation on randomly selected samples

Experiments: Setup

Datasets

- Bitext: WMT14 English=>German (4.5M), English=>French (35.5M)
- Evaluation: newstest2013 as the valid set, newstest2014 as the test set
- Models
 - LSTM: 32K tokens/batch, 100K steps
 - Transformer-base: 32K tokens/batch, 100K steps; ablation study
 - Transformer-big:
 - Normal: 32K tokens/batch, 300K steps
 - $\,\circ\,$ Large-batch: 460K tokens/batch, 30K steps
 - DynamicConv: 32K tokens/batch, 100K steps

Evaluation metrics

- BLEU score: n-gram matches between each candidate translation and the reference translations
- Compare-mt: significance test

Experiments: Main Results

Comparison with vanilla baseline models

System	Architecture	En⇒De		En⇒Fr		
System	memocoure	BLEU	\triangle	BLEU	Δ	
Existing NMT Systems						
Vegraphi et al [14]	TRANSFORMER-BASE	27.3	_	38.1	_	
Vaswani et al. [14]	TRANSFORMER-BIG	28.4	_	41.0	_	
Ott et al. [15]	SCALE TRANSFORMER	29.3	_	43.2	_	
Wu et al. [91]	DynamicConv	29.7		43.2		
	Our NMT Systems					
	LSTM	26.5	_	40.6	_	
	+ Data Rejuvenation	27.0^{\uparrow}	+0.5	41.1^{\uparrow}	+0.5	
	TRANSFORMER-BASE	27.5	_	40.2		
	+ Data Rejuvenation	28.3^{\uparrow}	+0.8	41.0^{\uparrow}	+0.8	
This work	TRANSFORMER-BIG	28.4	_	42.4	_	
	+ Data Rejuvenation	29.2↑	+0.8	43.0^{\uparrow}	+0.6	
	+ Large Batch	29.6	-	43.5	_	
	+ Data Rejuvenation	30.3↑	+0.7	44.0^{\uparrow}	+0.5	
	DynamicConv	29.7	_	43.3	_	
	+ Data Rejuvenation	30.2^{\uparrow}	+0.5	43.9^{\uparrow}	+0.6	

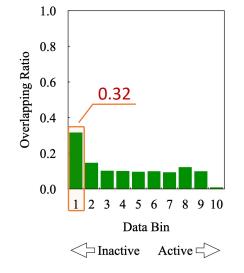
Evaluation of translation performance across model architectures and language pairs. " \uparrow / \uparrow ": indicate statistically significant improvement over the corresponding baseline p < 0.05/0.01 respectively

Effective Training with Data Engineering

Experiments: Main Results

Comparison with related data manipulation methods

Model	BLEU	Δ
TRANSFORMER-BASE	27.5	-
+ Data Rejuvenation	28.3	+0.8
+ Data Diversification-BT	26.9	-0.6
+ Data Rejuvenation	27.9	+0.4
+ Data Diversification-FT	28.1	+0.6
$+ \ Data \ Rejuvenation$	28.5	+1.0
+ Data Denoising	28.1	+0.6
+ Data Rejuvenation	28.6	+1.1



Evaluation of Comparison with related data manipulation approaches. Results are reported on the $En \Rightarrow De$ test set.

Overlapping of samples in the order identified by us and that by data denoising

Experiments: Analysis

Linguistic properties



Linguistic properties of different training samples: frequency rank (\uparrow more difficult), coverage (\downarrow more difficult), and uncertainty (\uparrow more difficult)

Experiments: Analysis

Inactive sample cases

	Side	Sentence
	х	The Second World War finished the destruction of the first .
En⇒De	Y	Der zweite Weltkrieg tat dann das sene und zerstörte den Rest . =>En: The Second World War then did his and destroyed the rest .
	Υ'	Der Zweite Weltkrieg beendete die Zerstörung des ersten =>En: The Second World War ended the destruction of the first .
	х	Anything denied by the latter was effectively confirmed as true . passive voice
En⇒Fr	Y	Tout ce <u>que démentait</u> ette agence se révélait dans la pratique bien réel . active voice =>En: Everything that <u>this agency denied</u> turned out to be very real in practice .
н 	Y'	Toute chose <u>niée par ce dernier</u> a été effectivement confirmée comme vraie . =>En: Anything <u>denied by the latter</u> has actually been confirmed to be true .

Inactive samples from the training sets of $En \Rightarrow De$ and $En \Rightarrow Fr$:

- X, Y and Y' represent the source sentence, target sentence, and the rejuvenated target sentence, respectively
- Y and Y' are also translated into English (=>En:) by Google Translate for reference
- For either sample, the underlined phrases correspond to the same content

Summary

- Demonstrated the existence of inactive samples in large-scale translation datasets, which mainly depends on the data distribution
- Proposed a general framework to rejuvenate the inactive samples to improve the training of NMT models
- Achieved significant improvements over SOTA Transformer and DynamicConv models on WMT14 En-De and En-Fr translation tasks, without model modification

□ Introduction

Context Enhancement with Intra-Sample Structure Mining

Outline

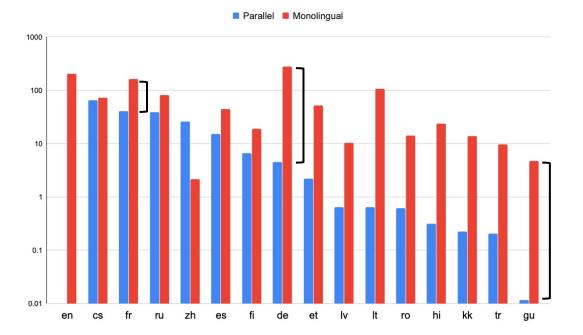
Self-Supervised Learning with Intra-Sample Structure Mining

Data Rejuvenation with Inter-Sample Quality Mining

□ Self-Training Sampling with Inter-Sample Quality Mining

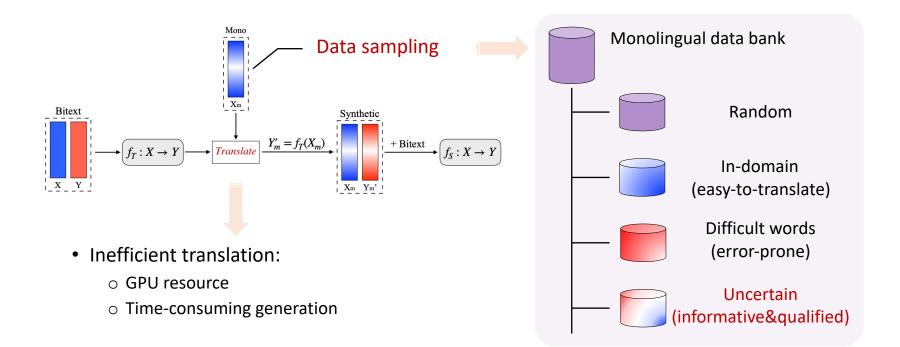
Conclusion

Unlabeled monolingual data is a huge resource for NMT



Number of parallel and monolingual training samples in millions for languages in WMT training corpora (Siddhant et al. ACL2020)

- Leverage monolingual data by data augmentation
 - Self-training: pair each monolingual sentence at source-side with a synthetic sentence at target-side by translating



Research Problem

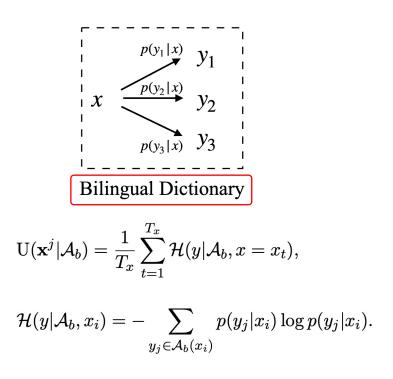
• Monolingual data sampling: select a subset from the large-scale monolingual data bank for self-training to further improve the performance of NMT models

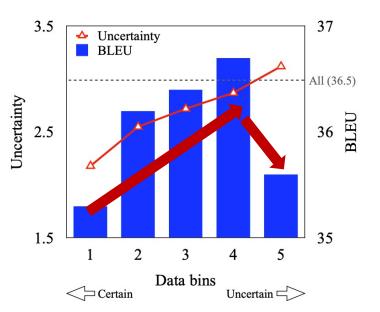
Main findings

- Demonstrated that random sampling is sub-optimal when performing self-training
- Proposed an uncertainty-based sampling strategy to prefer monolingual sentences with relatively high uncertainty
- Achieved significant improvements on large-scale translation tasks, WMT English=>German and English=>Chinese, with large-scale monolingual data
- Demonstrated that the proposed approach particularly improves the translation quality of uncertain sentences, and the prediction accuracy of low-frequency words

Preliminary

- Monolingual data uncertainty
 - Translation entropy of a source sentence to the target language

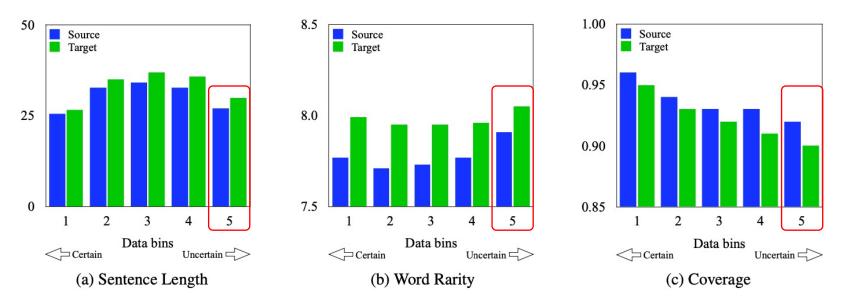




Translation performance vs. the uncertainty of monolingual data, evaluated on WMT19 En-De

Preliminary

- Linguistic properties versus translation uncertainty
 - Monolingual sentences with higher uncertainty are usually longer (except for bin 5)
 - Bin 5 contains noticeably more rare words than the other bins
 - The overall coverage in bin 5 is the lowest



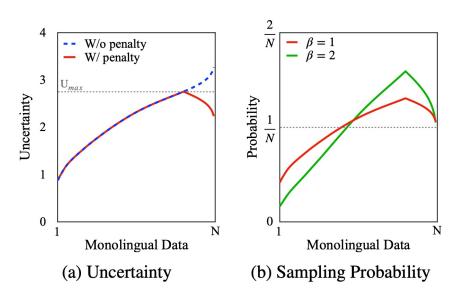
Comparison of monolingual sentences with varied uncertainty in terms of linguistic properties

Approach: Uncertainty-Based Sampling

- Sample monolingual sentences according to translation uncertainty
 - Prefer high-uncertainty sentences
 - Penalize sentences with excessively high uncertainty

$$p = \frac{\left[\alpha \cdot \mathrm{U}(\mathbf{x}^{j}|\mathcal{A}_{b})\right]^{\beta}}{\sum_{\mathbf{x}^{j} \in \mathcal{M}_{x}} \left[\alpha \cdot \mathrm{U}(\mathbf{x}^{j}|\mathcal{A}_{b})\right]^{\beta}},$$
$$\alpha = \begin{cases} 1, \quad \mathrm{U}(\mathbf{x}^{j}|\mathcal{A}_{b}) \leq \mathrm{U}_{max},\\ max(\frac{2\mathrm{U}_{max}}{\mathrm{U}(\mathbf{x}^{j}|\mathcal{A}_{b})} - 1, 0), \text{ otherwise.} \end{cases}$$

- U_{max}: threshold for penalizing
 - Uncertainty of the sample at the R% percentile of the parallel data
 - For En=>De, $U_{max}(R = 90) = 2.90$
- *β*: steepness of distribution

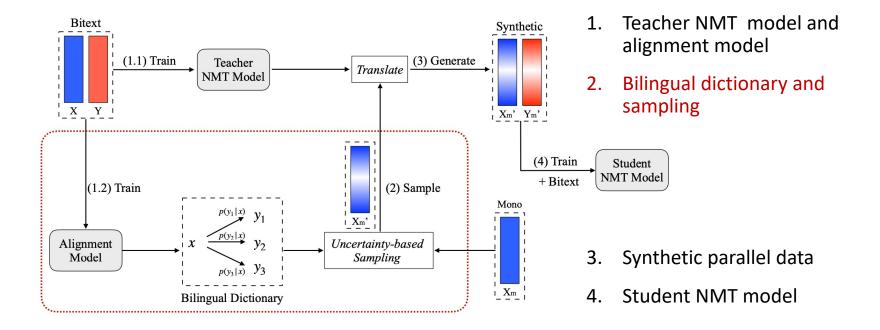


Distribution of modified monolingual uncertainty and sampling probability

Approach: Uncertainty-Based Sampling

Overall framework

• Add only one step to the standard self-training pipeline, i.e., data sampling



Effective Training with Data Engineering

Experiments: Setup

Datasets

- Bitext: WMT English=>German (36.8M), English=>Chinese (22.1M)
- Monolingual: newscrawl 2011 2019 English (200M)
- Evaluation: newstest2018 as the valid set, newstest2019/2020 as test sets

Models

- Transformer-base: ablation study; 32K tokens/batch, 150K steps
- Transformer-big: large-scale scenario; 460K tokens/batch, 30K steps

Evaluation metrics

- SacreBLEU: detokenized BLEU score
- Compare-mt: significance test, output analysis

Experiments: Constrained Scenario

Hyper-parameters

- Best values: R = 90, $\beta = 2$
- $U_{max}(R = 90) = 2.90$

B	LEU		R	
2.		100	90	80
β	1 2 3	36.6 36.7 36.5	36.7 36.9 36.5	36.6 36.6 36.5

- Comparison with related methods
 - Random sampling (RandSamp)
 - Difficult word by frequency (DWF)
 - Source language model (SrcLM)
 - Our uncertainty-based sampling (UncSamp)

Translation performance vs. β and R on En=>De

Data	2019	2020	Avg
RandSamp	40.9	31.6	36.2
DWF	39.6	30.1	34.8
SrcLM	41.1	32.0	36.5
UNCSAMP	41.6	32.3	36.9
+ Filtering	41.5	32.7	37.1

Comparison with related methods on En=>De

Experiments: Unconstrained Scenario

- Sample from the full set of large-scale monolingual data (200M)
 - Transformer-big + large batch training
 - Full bitext training data

System	Data	En⇒De			En⇒Zh		
System	Dutu	2019	2020	Avg	2019	2020	Avg
We at al. $(2010b)$	BITEXT	37.3	_	_	_	_	_
Wu et al. (2019b)	+RANDSAMP	39.8	_	_	_	_	_
Shi at al. (2020)	BITEXT	_	_	_	_	38.6	_
Shi et al. (2020)	+RANDSAMP	_	_	_	_	41.9	_
	BITEXT	39.6	31.0	35.3	37.1	42.5	39.8
This Work	+RANDSAMP	41.6	33.1	37.3	37.6	43.8	40.7
	+SRCLM	41.7	33.1	37.4	37.3	44.0	40.7
	+UNCSAMP	42.5↑	34.4↑	38.4	38.2个	44.3 [↑]	41.3

Translation performance on WMT $En \Rightarrow De$ and WMT $En \Rightarrow Zh$ test sets. Our UncSamp approach achieves further improvements over the RandSamp method.

Experiments: Analysis

- Understand which aspects of translation outputs are improved
 - Uncertain sentences
 - Low-frequency words

Unc	BITEXT	RANDSAMP	UNCSAMP		
			BLEU	$\triangle(\%)$	
Low	38.1	39.7	41.5	8.9	
Med	34.2	36.7	37.4	9.3	
High	31.0	33.4	34.4	10.9	

Translation performance vs. sentence uncertainty

Freq	BITEXT	RANDSAMP	UNCSAMP		
			Fmeas	$\triangle(\%)$	
Low	52.3	53.8	54.7	4.5	
Med	65.2	66.5	66.9	2.6	
High	70.3	71.6	72.0	2.4	

Prediction accuracy vs. word frequency

Uncertain monolingual sentences contain more medium- to low-frequency words at the target side

Summary

- Demonstrated that random sampling is sub-optimal when performing self-training
- Proposed an uncertainty-based sampling strategy to prefer monolingual sentences with relatively high uncertainty
- Achieved significant improvements on large-scale translation tasks, WMT English=>German and English=>Chinese, with large-scale monolingual data
- Demonstrated that the proposed approach particularly improves the translation quality of uncertain sentences, and the prediction accuracy of low-frequency words

Introduction

□ Context Enhancement with Intra-Sample Structure Mining

Outline

□ Self-Supervised Learning with Intra-Sample Structure Mining

Data Rejuvenation with Inter-Sample Quality Mining

□ Self-Training Sampling with Inter-Sample Quality Mining

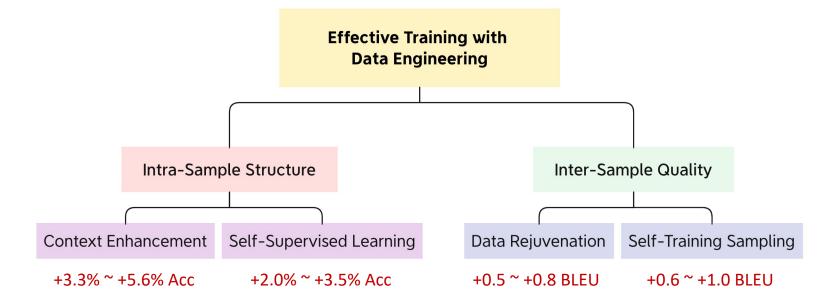
Conclusion

JIAO Wenxiang

Effective Training with Data Engineering

Conclusion

We exploit the training data with intra-sample structure and intersample quality information for effective training of NLP models



All the four studies consistently improve the effectiveness of model training!

Acknowledgement

Supervisors:

Prof. Irwin King and Prof. Michael R. Lyu

Committees:

Prof. Kevin Yip, Prof. Xunying Liu, and Prof. Shou-De Lin

Mentors during internship in Tencent AI Lab:

Dr. Xing Wang and Dr. Zhaopeng Tu

- Group fellows
- My girlfriend:
 - Miss Yuye Wang
- My family

Publications During Ph.D. Study

- Wenxiang Jiao, Haiqin Yang, Irwin King, Michael R. Lyu. "HiGRU: Hierarchical Gated Recurrent Units for Utterance- Level Emotion Recognition". In Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (<u>NAACL-HLT 2019</u>), pp. 397-406, Minneapolis, USA, June 2 - June 7, 2019.
- Wenxiang Jiao, Michael R. Lyu, Irwin King. "Real-Time Emotion Recognition via Attention Gated Hierarchical Memory Network". In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (<u>AAAI 2020</u>), pp. 8002-8009, New York, USA, February 7 - February 12, 2020.
- **3.** Wenxiang Jiao, Michael R. Lyu, Irwin King. "Exploiting Unsupervised Data for Emotion Recognition in Conversations". In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP (EMNLP- Findings 2020), pp. 4839-4846, Online, USA, November 16 November 20, 2020.
- Wenxiang Jiao, Xing Wang, Shilin He, Irwin King, Michael R. Lyu, Zhaopeng Tu. "Data Rejuvenation: Exploiting Inactive Training Examples for Neural Machine Translation". In Proceed- ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020), pp. 2255-2266, Online, USA, November 16 - November 20, 2020.
- 5. Wenxiang Jiao, Xing Wang, Zhaopeng Tu, Shuming Shi, Michael R. Lyu, Irwin King. "Self-training Sampling with Monolingual Data Uncertainty for Neural Machine Translation". In Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (<u>ACL-IJCNLP 2021</u>), To appear, Online, Thailand, August 1 August 6, 2021.

香港中文大學 The Chinese University of Hong Kong

Thank You!

Q&A: General

Question: The first two studies are more related to model design, right?

Answer:

- 1. Indeed, the first two studies involve some design of the models. However, as mentioned, the data format plays an important role in determining the model architecture. We focus on the intra-sample structure information, which provides signals for developing more advanced models and learning more accurate representations. Therefore, it inevitably includes some improvement of previous models. The first study on HiGRU can be considered as the preparation for the second study on Pre-CODE.
- 2. Nevertheless, there are still efforts required for data engineering in Pre-CODE, including the cleaning and filtering of data, and the construction of the questions and answers based on the unlabeled conversation data.

Q&A: General

- Question: Did you try to investigate inter-sample quality on ERC or intrasample structure on MT?
- Answer:
 - 1. We tried to study inter-sample quality on ERC, e.g., applying self-training on ERC, but did not attain any improvement. Because the dataset is too small, and the teacher model is not strong enough to produce high-quality synthetic data.
 - 2. We did not investigate intra-sample structure on MT because the sentence structure does not contain information as rich as conversations and is also already well modeled by current self-attention networks.

Q&A: General

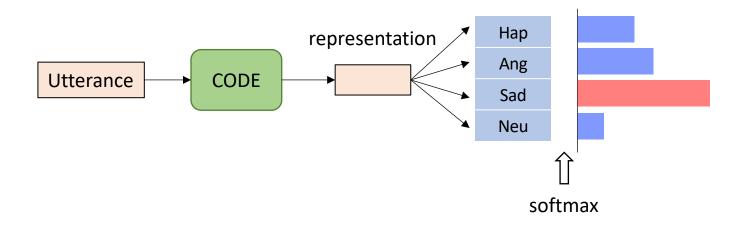
- Question: Why didn't you choose generation tasks that involve conversations for inter-sample quality? May be better to include intrasample structure studies?
- Answer:
 - 1. The main reason is that tasks like conversation generation are not defined well. There is no consistent framework for training, or standard criteria for evaluation. Therefore, it will be hard to assess the advantages of our studies convincingly.
 - In contrast, MT is a classic generation tasks, with standard frameworks (e.g., Transformer), datasets (e.g., WMT shared tasks), and evaluation metrics (e.g., BLEU score). Besides, MT involves multiple languages, which help us to gain more understanding on the interaction between languages.

Q&A: General

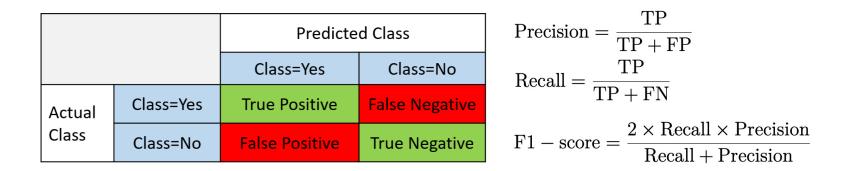
- Question: <u>Computation cost</u>?
- Answer: It is mainly related to the model size and data size.
 - 1. The models for HiGRU and Pre-CODE are shallow networks with RNNs, while that for DataReju and UncSamp are Transformer-big models.
 - 2. Training sets for the first two contain less than 40K sentences while contain more than 10M sentence pairs for the latter two.

Methods	Params	Num of Sent	GPU x Num	Prep Time/h	Train Time/h	Total/h
Higru	<10M	< 11K	1080Ti x 1	N/A	0.5	0.5
Pre-CODE	<10M	< 40K + < 2M	1080Ti x 1	4.0	8.0 + 0.5	12.5
DataReju	213M	< 35M + < 3.5M	V100 x 8	1.5	16.0 + 16.0	34.0
UncSamp	213M	< 36.8M + < 40M	V100 x 8	12.0	16.0 + 16.0	44.0

- Question: How to make the prediction of emotions?
- Answer:
 - 1. Maximum probability prediction. For a conversation, we feed it into the model and obtain the representation of each utterance. Calculate the relevance with all emotion embeddings, use softmax to normalize, and select the best.



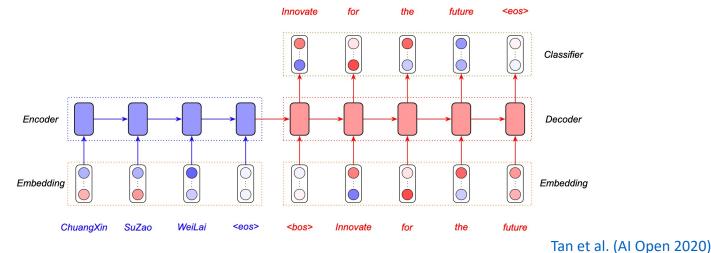
- Question: How to calculate <u>accuracy</u>, and <u>F1-score</u>?
- Answer: Take a binary classification as an example.
 - 1. Precision: The ratio of correctly predicted positive observations to the total predicted positive observations.
 - 2. Recall: The ratio of correctly predicted positive observations to the total observations in actual Class=Yes, i.e., accuracy.
 - 3. F1-score: The harmonic average of Precision and Recall.



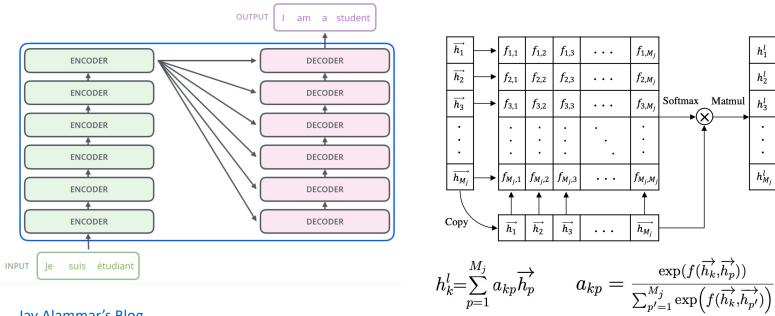
- Question: How to choose and use the <u>noise utterances</u> in Pre-CODE?
- Answer:
 - 1. For each conversation, we randomly sample 10 noise utterances from the other conversations.
 - 2. These 10 noise utterances are shared by all the masked ground-truth utterances in the conversations.
 - 3. We dynamically sample the 10 noise utterances in each epoch.

- Question: How about using <u>documents</u> for pre-training?
- Answer:
 - 1. It is doable to pre-train on normal documents rather than conversations, since both text formats contain the hierarchical context. The learned representations could be a useful initialization for downstream ERC tasks.
 - 2. However, there might be domain or style mis-matching issues, as documents are usually more formal and less emotional. The domain gap may make this kind of pre-training less optimal.

- Question: What is an <u>encoder-decoder</u> framework?
- Answer:
 - 1. The encoder-decoder framework represents a type of neural networks for learning the pattern of paired sentences. It contains an encoder and a decoder. The encoder encodes the source sentence, and the decoder predicts the output to match the target sentence. Conventionally, the encoder and decoder are RNNs. But now, it could be CNNs or self-attention networks.



- Question: What is the Transformer model?
- Answer:
 - 1. Transformer is a kind of encoder-decoder model that adopts the selfattention mechanism for modeling the text sequence.



Jay Alammar's Blog

JIAO Wenxiang

Effective Training with Data Engineering

 h_1^l

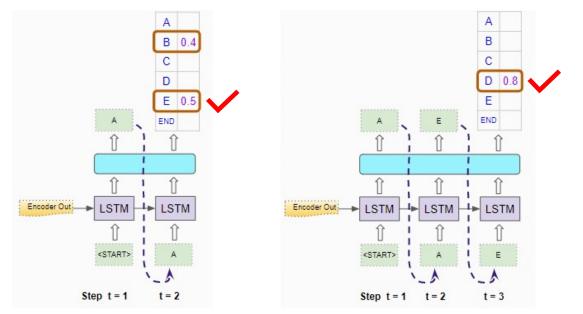
 h_2^l

 h_3^l

. .

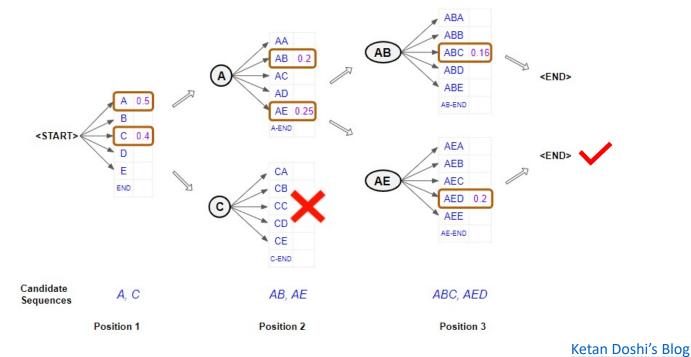
 $h_{M_j}^l$

- Question: How to generate the translation during inference?
- Answer:
 - 1. Auto-regressive decoding, i.e., to predict the word at step t based on previously predicted words. Greedy search, i.e., to choose the word with the highest probability.



Ketan Doshi's Blog

- Question: How to generate the translation sentence?
- Answer:
 - 1. Beam search algorithm, i.e., to maintain k partial translations with the highest joint probabilities at each step, where k is the beam width.

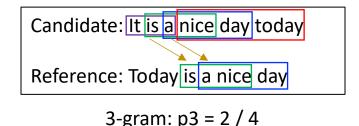


- Question: How to calculate the <u>BLEU</u> score?
- Answer:
 - BLEU denotes "Bilingual Evaluation Understudy", which calculates the ratio of matched n-grams between a candidate translation and a (or multiple) reference translation. Usually, we use 4-gram BLEU, i.e., N = 4.

Source: 今天天气不错 Candidate: It is a nice day today Reference: Today is a nice day

$$\begin{aligned} \text{BLEU} &= \text{BP} \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right) \\ \text{BP} &= \begin{cases} 1, & \text{if } c > r \\ \exp\left(1 - \frac{r}{c}\right), & \text{if } c \leq r \end{cases} \end{aligned}$$

Candidate: It is a nice day today Reference: Today is a nice day



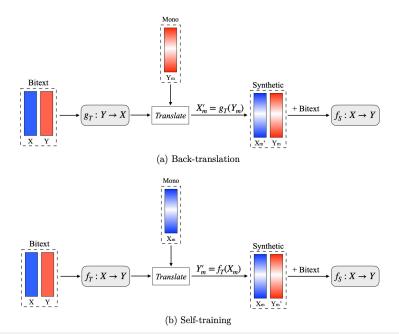
Question: What is the difference between the <u>multi-BLEU</u> and <u>sacreBLEU</u>?

Answer:

- 1. Multi-BLEU is the tokenized BLEU, which is usually calculated with selfdeveloped tokenizers. For the same candidate translation, the different tokenizers will result in different BLEU scores, making it unfair to compare the results of different institutions.
- SacreBLEU is the detokenized BLEU, which aims to eliminate such an inconsistency of tokenizers. It collects all the publicly available test sets. Users can upload their detokenized candidate translations to the API, and SacreBLEU will use a unified tokenizer and report the BLEU score.

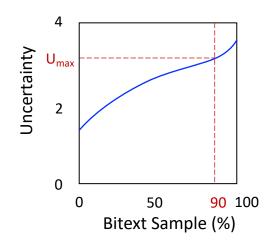
Detokenized: It's a nice day today! Tokenized-1: It 's a nice day today ! Tokenized-2: It 's a nice day today !

- Question: How to perform <u>forward-translation</u> (i.e., self-training) or back-translation?
- Answer:
 - 1. Both pair each monolingual sentence with a synthetic sentence by translating through a Teacher NMT model.



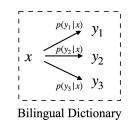
- Question: We see that <u>filtering</u> is applied upon the proposed <u>UncSamp</u>. What and why?
- Answer:
 - 1. After our UncSamp is applied and we obtain the synthetic parallel data, we train a language model on the target sentences of the original parallel data. This target language model is used to remove synthetic parallel data that is distant to the domain of the original parallel data.
 - 2. It serves as an additional tool to reduce the effect of unqualified synthetic parallel data.

- Question: It is still unclear how to decide the Umax.
- Answer:
 - 1. Calculate the uncertainty of source sentences in the original parallel data (bitext) and sort them.
 - 2. Find the sentence ranked at the 90% position of all the sentences, and choose its uncertainty as Umax.
 - 3. We assume the NMT model cannot learn the sentences with uncertainty over Umax, therefore cannot produce high-quality synthetic data.



- Question: How to calculate the linguistic properties?
- Answer:
 - 1. <u>Frequency rank</u>: The frequency rank of a word is its position in the dictionary where words are sorted in the descending order of their frequencies.
 - 2. <u>Word rarity</u>: Word rarity also measures the frequency of words in a sentence with a higher value indicating a more rare sentence.
 - 3. <u>Coverage</u>: Firstly, we train an alignment model on the training data by *fast-align*, and force-align the source and target sentences of each subset. Then we calculate the ratio of source words being aligned by any target words.
 - 4. <u>Uncertainty</u>: Translation entropy of a source sentence to the target language.

 $ext{WR}(\mathbf{x}) = -rac{1}{T_x}\sum_{t=1}^{T_x}\log p(x_t)$



$$\mathrm{U}(\mathbf{x}^{j}|\mathcal{A}_{b}) = \frac{1}{T_{x}}\sum_{t=1}^{T_{x}}\mathcal{H}(y|\mathcal{A}_{b}, x = x_{t}),$$

$$\mathcal{H}(y|\mathcal{A}_b,x_i) = -\sum_{y_j\in\mathcal{A}_b(x_i)} p(y_j|x_i)\log p(y_j|x_i).$$

Q&A: General

- Question: <u>Future directions</u>?
- Answer:
 - 1. Low-frequency words in self-training.
 - Low-frequency/high-uncertainty sentences cannot be well translated by the teacher model.
 - 2. Low-frequency issues in multilingual NMT models.
 - Low-frequency issues have been barely discussed in the multilingual settings.
 - 3. Self-supervised multilingual pre-training.
 - Multilingual pre-training on large-scale monolingual data is a promising direction, which will bring benefits to low-resource translation tasks and low-frequency words translation.