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Wide Deployment of Deep Learning 

Self-driving Medical Diagnosis  

• Safety- and security-critical domain 
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• AI failure 

 

 

 

 

 

Robustness and Interpretability Are Important 

Robustness Issue Interpretability Issue 
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Challenge 

• Black-box nature 
• End-to-end training 

 

• Complexity 
• VGG16: 138 million parameters  

• AmoebaNet-B: 557 million parameters  

• BERT-large: 340 million parameters  
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Robustness of DNNs 

• Robustness 
• “The degree to which a system or component can function correctly in the 

presence of invalid inputs or stressful environmental conditions” (IEEE Std 610.12-
1990) 

• We focus on the robustness of DNNs against invalid inputs  
 

• Invalid input 
• Invalid inputs for a deep learning model are the samples that do not come from 

the training data distribution of the model 
• Real-world corner case → accidental failure 

• Adversarial sample → intentional failure 
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Interpretability of DNNs 

Training 
Data 

Learning  
Process 

Model Output Explanation User 

• Interpretability 
• “Interpretability is the degree to which a human can understand the cause of a 

decision” [Molnar, 2020] 

 

• Model explanation 
• Reveal the ground of a model’s decision 
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Outline 

• Topic 1: Detecting Real-world Corner Cases for DNNs 

 

• Topic 2: Synthesizing Adversarial Samples against Undefended DNNs 

 

• Topic 3: Synthesizing Adversarial Samples against Defended DNNs 

 

• Topic 4: Global Explanations of DNNs 

 

• Conclusion and Future Work 
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Outline 

• Topic 1: Detecting Real-world Corner Cases for DNNs 

 

• Topic 2: Synthesizing Adversarial Samples against Undefended DNNs 

 

• Topic 3: Synthesizing Adversarial Samples against Defended DNNs 

 

• Topic 4: Global Explanations of DNNs 

 

• Conclusion and Future Work 
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Motivation 

• Real-world corner case 
• Naturally occurred, but often unusual samples that are overlooked during the 

design of the system 

• Accidental failure 

 

 

 

 

 

 

[Zhang et al., 2018] 
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Motivation 

• Existing effort 
• Testing: synthesize real-world corner cases 

• Debugging: fix the discovered failures 

• Drawback: limited data during development vs. innumerable working conditions 
during deployment 

 

• Detection 
• Ensure DNNs’ correct functionality during deployment 

• Enable fail-safe action 

 

• Research question 
• How can we detect real-world corner cases? 
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Method 

• Motivation 
• DNNs vs. traditional software 

 

• Real-world corner case 
• Invalid inputs that exceed the capacity of DNNs 

 

• Input validation for traditional software 
• Ensure only valid data can enter the system 

 



                            15  WU, Weibin On the Robustness and Interpretability of Deep Learning Models 

• DNNs vs. traditional software 
• Unlike traditional programs, DNNs’ function is learned automatically from the 

training data, instead of being programmed by developers 

• How to model the specification of DNNs and derive the validation rules? 

 

 

 

 

 

Challenge 

𝒙 ← 1 − 𝒙 

Validation: 
𝒙 ∈ 0, 1 ? 

Image Complement 

Yes 
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• Deep Validation (DV) 
• Each layer performs relatively simple functions 

• Validate the inputs of each layer 
• 𝑓𝑖  : output of the 𝑖-th layer 

• 𝑑𝑖: estimate the discrepancy of the input of layer 𝑖 to its valid range 

 

Method 
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• How to compute 𝑑𝑖?  

• Resort to the training data: one-class SVM 
• Only need valid samples 

•  𝑑𝑖: signed distance to the learned separating hyperplane 

 

Deep Validation 

𝑑𝑖 Valid input range for layer 𝑖 

New input to layer 𝑖 
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Deep Validation 

• Framework 
• 𝑑𝑖: signed distance to the learned separating hyperplane in layer 𝑖 → single 

validator in layer 𝑖 

• joint(𝑑1, … , 𝑑𝐿−1) =  𝑑𝑖 → joint validator  
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Experiments 

 • Dataset 
• MNIST: seven-layer CNN 
• CIFAR-10: DenseNet  
• SVHN: seven-layer CNN 

 

• Baseline 
• Adversarial sample detection method 

• Feature Squeezing 
• Kernel Density Estimation 

 

• Metric: ROC-AUC score (↑) 
• Reflect both the true positive rate (TPR) and the false positive rate (FPR) 
• Higher ROC-AUC score → better detection performance 
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• Synthesize real-world corner cases 
• Metamorphic testing technique 

• Over 65.8% misclassification 

 

Experiments 
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Experiments 

Dataset Method 
Overall ROC-AUC Score 

(SCCs) 

MNIST 

Deep Validation 0.9937 

Feature Squeezing 0.9784 

Kernel Density Estimation 0.1436 

CIFAR-10 

Deep Validation 0.9805 

Feature Squeezing 0.8796 

Kernel Density Estimation 0.1254 

SVHN 

Deep Validation 0.9506 

Feature Squeezing 0.6870 

Kernel Density Estimation 0.2543 

• Do adversarial sample detection methods really capture the valid input 
range of DNNs? – No 

• SCCs: only view successful corner cases that can cause misclassification as true 
positives 
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Experiments 

Configuration Transformation Method Used to Synthesize Corner Cases Overall ROC-
AUC Score 

(SCCs) 
Validator Layer No. Rotation Shear Scale Translation Complement Combined 

Single 
Validator 

1 0.8760 0.9987 0.8827 0.8952 1.0000 1.0000 0.9440 
2 0.9200 0.9719 0.8048 0.8893 1.0000 0.9996 0.9324 
3 0.9741 0.9797 0.9591 0.9728 0.9850 0.9197 0.9618 
4 0.9740 0.9823 0.9224 0.9657 0.9876 0.9670 0.9657 
5 0.9732 0.9788 0.9053 0.9602 0.9861 0.9630 0.9601 
6 0.9659 0.9889 0.9237 0.9620 0.9871 0.9786 0.9676 

Best Transformation-
specific Single Validator 

3 1 3 3 1, 2 1 6 

Joint Validator 0.9891 0.9991 0.9881 0.9844 1.0000 1.0000 0.9937 

• Single validator vs. joint validator (MNIST as an example) 
• A joint validator often provides additional gains  
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Experiments 

Attack Method FGSM BIM CW∞  CW2 CW0 JSMA 
Overall 

ROC-AUC 
Score 

Target Label - - Next LL Next LL Next LL Next LL 

Success Rate 0.4300 0.9100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6650 0.5150 

SAEs 

Deep 
Validation 

1.0000 1.0000 0.9992 0.9965 0.9347 0.9758 0.9329 0.9651 0.9851 0.9944 0.9755 

Feature 
Squeezing 

0.9970 0.9972 1.0000 1.0000 0.9993 0.9996 0.9920 0.9920 0.9973 0.9972 0.9971 

AEs 

Deep 
Validation 

1.0000 1.0000 0.9992 0.9965 0.9347 0.9758 0.9329 0.9651 0.9282 0.8399 0.9572 

Feature 
Squeezing 

0.9441 0.9691 1.0000 1.0000 0.9993 0.9996 0.9920 0.9920 0.8169 0.6870 0.9400 

• Can Deep Validation also spot adversarial samples as invalid inputs? 
• Yes, with great promise 

• SAEs: only view successful adversarial examples as true positives 

• AEs: view all adversarial examples as true positives 
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Summary 

1. We introduce Deep Validation as the first framework to automatically 
validate internal inputs and detect real-world corner cases for DNNs 

 

2. We conduct extensive experiments to confirm the superior 
performance of Deep Validation to state-of-the-art baselines 

 

3. We break the unexplored belief that previous detection methods 
against intentional attacks can capture the valid input range of DNNs 
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Outline 

• Topic 1: Detecting Real-world Corner Cases for DNNs 

 

• Topic 2: Synthesizing Adversarial Samples against Undefended DNNs 

 

• Topic 3: Synthesizing Adversarial Samples against Defended DNNs 

 

• Topic 4: Global Explanations of DNNs 

 

• Conclusion and Future Work 
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• Adversarial sample 
• Intentionally crafted inputs that can cause wrong predictions of the models 

• Imperceptible changes to the clean images 

• Unnatural artifacts 

• Intentional failure 

 

Motivation 

Panda (confidence: 57.7%) Gibbon (confidence: 99.3%) 

[Goodfellow et al., 2015] 
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• Test the robustness of undefended DNNs against intentional failures 
• Attack undefended DNNs by generating adversarial samples under the assumed 

threat model (in this thesis, the transfer-based setting) 

• The first step to debug 

• Transfer-based setting 
• Devise adversarial samples with an off-the-shelf local/source model 𝑓 

• Directly use the resultant example to fool the remote target/victim model 𝑓𝑣 

• High threat in practice 

 

 

Motivation 

Target Model 𝑓𝑣 
Local Model 𝑓 

Attacker 
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• Research question 
• How to generate the adversarial counterpart 𝐱𝑎𝑑𝑣  of a seed image 𝐱 under the 

following transfer-based setting? 
• 𝑀: attack method 

• 𝑦: ground-truth label 

• 𝜖: perturbation budget 

• 𝑓𝑣: undefended victim model, 𝑓: undefended local model 

 

 

 

 

Motivation 

Generate an adversarial image 𝐱𝑎𝑑𝑣 with a local 
model 𝑓 by perturbing a seed image 𝐱  

𝐱𝑎𝑑𝑣  is misclassified by the undefended victim 
model 𝑓𝑣 

The perturbation is human-imperceptible 
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Challenge 

• Existing effort 
• Employ white-box attack strategies to attack local models 

• 𝐽: cross-entropy loss 

 

 

 

• Overfitting issue: low transferability 
 

 

 

Maximize the cross-entropy loss of the local model 
𝑓 with respect to the ground-truth label 𝑦 

𝐱𝑎𝑑𝑣 can fool the local model 𝑓 

𝐱𝑎𝑑𝑣 cannot fool the victim model 𝑓𝑣 
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• Motivation 
• Introduce a regularization term to guide the search of adversarial samples 

towards the common vulnerable directions of different models 

 

• What different models have in common? 

• Attention pattern: the critical features that models employ to make predictions 

 

 

 

 

 

Method 
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Method 

• Attention-guided Transfer Attack (ATA) 

 

 

 

 
Attention Extraction 

Attention Destruction 
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Attention Extraction 

• Attention weight 
• 𝐴𝑘

𝑐 : the 𝑐-th feature map in layer 𝑘 

• 𝑍: normalizing constant 
 

 

 

 

 

 

Spatially pooled gradients with respect to 𝐴𝑘
𝑐   
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Attention Extraction 

Combine feature maps 𝐴𝑘
𝑐  based on their attention 

weights 𝛼𝑘
𝑐  

• Attention map 
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• Attack object function  
• The weighted sum of the cross-entropy loss 𝐽 of the local model 𝑓 and the 

changes of the attention maps 𝐻𝑘
𝑦

  

 

 

 

 

Attention Destruction 
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Optimization Algorithm 

Iteratively perturb the current image 

𝐱𝑘
𝑎𝑑𝑣 along with the sign of the 

gradient of the attack object function  
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Experiments 

• Dataset 
• Development set: ILSVRC 2012 validation set 

• Test set: ImageNet-compatible dataset released by the NeurIPS 2017 adversarial 
competition  

 

• Baseline 
• White-box attack: FGSM, BIM 

• Transfer-based attack: TAP 

 

• Metric: accuracy on adversarial samples (↓) 
• Lower accuracy → better attack performance 
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Experiments 

  
Attack  Res-v2  Inc-v3  Inc-v4  IncRes-v2 Ensemble 

None  89.60% 96.40% 97.60% 100% 99.80% 

Res-v2 

FGSM 14.60% 56.30% 64.80% 66.80% 63.10% 

BIM 4.40% 53.20% 62.00% 63.80% 54.30% 

TAP 9.50% 51.20% 60.10% 55.50% 50.30% 

ATA  (Ours) 8.70% 52.90% 58.30% 55.10% 49.40% 

Inc-v3 

FGSM 65.70% 27.20% 70.20% 72.90% 76.20% 

BIM   76.80% 0.01% 67.70% 70.20% 73.60% 

TAP 48.20% 0.10% 24.50% 26.30% 34.20% 

ATA  (Ours) 47.20% 0.10% 22.10% 25.70% 31.90% 

Inc-v4 

FGSM 68.30% 67.10% 50.30% 72.80% 76.40% 

BIM   62.10% 40.90% 0.90% 69.10% 55.50% 
TAP 58.40% 27.30% 1.80% 24.20% 51.70% 

ATA  (Ours) 59.90% 24.80% 0.90% 22.10% 50.30% 

IncRes-v2 

FGSM 71.70% 69.00% 76.50% 57.20% 78.70% 

BIM 60.40% 41.50% 51.50% 1.20% 54.50% 

TAP 53.30% 25.90% 33.20% 4.80% 48.20% 

ATA  (Ours) 49.80% 22.10% 30.10% 1.20% 45.30% 
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• Sample adversarial image 

 

 

 

• Complementary effect  
• TAP+ATA: add the proposed regularization term to the attack object function of 

TAP 

 

 

 

 

 
 

 

 

 

 

Experiments 

Attack  Res-v2  Inc-v3  Inc-v4  IncRes-v2 Ensemble 

TAP 58.40% 27.30% 1.80% 24.20% 51.70% 

TAP+ATA (Ours)  53.60% 22.70% 0.80% 19.80% 48.10% 

Clean Adversarial 
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Summary 

1. We propose a novel Attention-guided Transfer Attack to evaluate the 
robustness of undefended models against adversarial samples  

 

2. Extensive experiments confirm the effectiveness of our approach and 
its superiority to state-of-the-art baselines 

 

3. Our strategy can be conveniently combined with other transfer-based 
attacks to further improve their performance 
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Outline 

• Topic 1: Detecting Real-world Corner Cases for DNNs 

 

• Topic 2: Synthesizing Adversarial Samples against Undefended DNNs 

 

• Topic 3: Synthesizing Adversarial Samples against Defended DNNs 

 

• Topic 4: Global Explanations of DNNs 

 

• Conclusion and Future Work 
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• Test the robustness of defended DNNs against intentional failures 
• Attack defended DNNs by generating adversarial samples under the assumed 

threat model (in this thesis, the transfer-based setting) 

• Evaluate different defenses 

• Research question 
• How to generate the adversarial counterpart 𝐱𝑎𝑑𝑣  of a seed image 𝐱 under the 

following transfer-based setting? 
• 𝑓𝑑𝑣: defended victim model, 𝑓: undefended local model 

 

 

 

Motivation 

Generate an adversarial image 𝐱𝑎𝑑𝑣 with a local 
model 𝑓 by perturbing a seed image 𝐱 

𝐱𝑎𝑑𝑣  is misclassified by the defended victim model 𝑓𝑑𝑣 

The perturbation is human-imperceptible 
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Challenge 

• Adversarial noise is vulnerable to defenses 
• Overfit to undefended local model 

• Small magnitude: easy to “de-noise” adversarial samples via image 
transformations (transformation-based defenses) 

 

• Existing effort 
• Data augmentation: train adversarial samples to become effective against 

common image transformations, like resizing 

• Drawback: overfit to the applied image transformations 
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Method 

The image transformation 𝐻 itself 
will not cause misclassification  

• Motivation 
• Augment the hardest transformations (data) 

 

• Challenge 
• How to identify the most harmful image transformation to an adversarial image 
𝐱𝑎𝑑𝑣? 
• 𝐻: image transformation function with the parameter 𝜃𝐻 

• Inner maximization: find the adversarial image 𝐱𝑎𝑑𝑣 to cause misclassification 

• Outer minimization: find the image transformation 𝐻 to de-noise 𝐱𝑎𝑑𝑣 
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• Workaround 
• Restrict the hypothesis space of H to be some class of convolutional neural 

networks 𝑇(𝐱; 𝜃𝑇) – adversarial transformation network 

 

 

 

 

 

• Merit 
• CNNs possess the capacity to generate diverse image distortions  

• Convenient to learn 𝑇 in an end-to-end manner 

 

Method 
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Method 

• Outer minimization 
• Training loss function of the adversarial transformation network 𝑇 

• ①: minimize the cross-entropy loss 𝐽 on the transformed adversarial image 𝑇(𝐱𝑎𝑑𝑣) 

• ②: minimize the cross-entropy loss 𝐽 on the transformed clean image 𝑇(𝐱) 

• ③: control the transformation strength to perform regularization  

• How to solve the min-max problem? 

① ② ③ 
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Method 

• Inner maximization 
• Fooling object function to search for the adversarial image 𝐱𝑎𝑑𝑣 

• ①: maximize the cross-entropy loss 𝐽 on the transformed adversarial image 𝑇(𝐱𝑎𝑑𝑣) 

• ②: maximize the cross-entropy loss 𝐽 on the adversarial image 𝐱𝑎𝑑𝑣 

• How to solve the min-max problem? 

① ② 
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Training Algorithm 

Iteratively solve the inner 
maximization problem 

Iteratively solve the outer 
minimization problem 
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• Adversarial Transformation-enhanced Transfer Attack (ATTA) 
• Attack object function 

• ①: maximize the cross-entropy loss 𝐽 on the adversarial sample 𝐱𝑎𝑑𝑣 

• ②: maximize the cross-entropy loss 𝐽 on the transformed adversarial sample 𝑇(𝐱𝑎𝑑𝑣) 

 

Method 

① ② 

The Cascaded Network 
𝑓(𝑇 𝐱 )   
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Optimization Algorithm 

Iteratively perturb the current image 

𝐱𝑘
𝑎𝑑𝑣 along with the sign of the 

gradient of the attack object function  
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Experiments 

• Dataset 
• Development set: ILSVRC 2012 training set 

• Test set: ILSVRC 2012 validation set  

• Target model 
• Defended model: adversarial training, transformation-based defense 

• Undefended model 

• Baseline 
• White-box attack: FGSM, BIM 

• Transfer-based attack: TIM  

• Metric: fooling rate (↑) 
• Error rate on adversarial samples 

• Higher fooling rate → better attack performance 
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Experiments 

  Attack  Res-v2  Inc-v3  Inc-v4  IncRes-v2  Inc-v3ens3  Inc-v3ens4  IncRes-v2adv 

Res-v2 

FGSM  
BIM  
TIM  

ATTA (Ours)  

85.4  
95.6  
98.8  
99.8  

43.7  
46.8  
65.2  
64.3  

35.2  
38.0  
59.8   
61.8  

33.2  
36.2  
57.4  
59.2  

22.6  
27.6  
35.6  
42.1  

22.2  
25.3  
31.7  
38.9  

14.3 
17.4 
25.8 
29.1 

Inc-v3 

FGSM  
BIM  
TIM  

ATTA (Ours)  

34.3  
33.2  
39.2  
44.8  

72.8  
99.9  
100  
100  

29.8  
32.3  
44.3   
52.9  

27.1  
29.8  
45.8  
53.2  

14.9  
11.8  
23.2  
25.1  

13.6  
11.5   
24.9  
27.9  

17.9 
17.6 
16.4 
18.8 

Inc-v4 

FGSM  
BIM  
TIM  

ATTA (Ours)  

31.7  
37.9  
41.4  
43.8  

32.9  
59.1  
64.3  
66.8  

49.7  
99.1   
99.6  
99.6  

28.2  
30.9  
48.2  
59.2  

11.9  
14.7  
25.7  
32.1  

13.1  
14.7  
25.2  
29.2  

6.2 
7.1 

16.9 
20.8 

IncRes-v2 

FGSM  
BIM  
TIM  

ATTA (Ours)  

29.3  
39.6  
43.1  
44.8  

31.0  
58.5  
62.9  
68.9  

23.5  
23.5   
55.4   
65.2  

42.8  
42.8  
98.9  
98.9  

13.1  
15.2   
31.8  
33.0  

12.7  
13.1  
29.2  
31.9  

7.3 
7.1 

20.6 
24.3 

• Attack undefended and adversarially trained models 
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Experiments 

Attack  HGD  R&P  NIPS-r3  FD  ComDefend  RS  Average 

FGSM  
BIM  
TIM  

ATTA (Ours)  

8.9  
12.1  
73.3  
85.9  

16.8  
19.3  
69.8  
83.2  

23.1  
23.8  
79.4  
89.5  

19.2  
21.8  
78.2  
84.4  

13.4  
17.2  
69.2  
79.9  

6.8  
8.9  
36.2  
47.4  

14.7 
17.2 
67.7 
78.4 

• Sample adversarial image 
 

 

 

 

Clean Transformed Adversarial 

• Attack transformation-based defenses 

 



                            53  WU, Weibin On the Robustness and Interpretability of Deep Learning Models 

• Complementary effect 
• Easy to combine our method with others 

• Attack both the original classifier and the network cascaded with 𝑇 via SI-NI-TI-
DIM 

Experiments 

  Attack  Res-v2  Inc-v3  Inc-v4  IncRes-v2  Inc-v3ens3  Inc-v3ens4  IncRes-v2adv 

Res-v2  
SI-NI-TI-DIM  

AT-SI-NI-TI-DIM (Ours)  
99.8  
99.8  

78.3  
80.1  

70.2  
74.9  

71.8  
74.9  

34.9  
36.8  

35.9  
37.3  

30.2 
33.2 

Inc-v3  
SI-NI-TI-DIM  

AT-SI-NI-TI-DIM (Ours)  
48.3  
49.1  

100  
100  

54.3  
55.9  

56.2  
57.1  

27.8  
27.8  

28.1  
28.6  

24.5 
24.9 

Inc-v4  
SI-NI-TI-DIM  

AT-SI-NI-TI-DIM (Ours)  
49.5  
50.4  

72.1  
75.2  

99.6  
99.6  

60.3  
62.8  

33.2  
33.9  

31.8  
32.3  

26.9 
27.6 

IncRes-v2  
SI-NI-TI-DIM  

AT-SI-NI-TI-DIM (Ours)  
50.1  
55.3  

72.9  
77.8  

69.6  
74.2  

98.9  
98.9  

34.5  
36.5  

32.7  
34.9  

27.4 
29.1 
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Summary 

1. We propose a novel Adversarial Transformation-enhanced Transfer 
Attack to evaluate the robustness of defended models against 
adversarial samples 

 

2. Extensive experiments confirm the effectiveness of our approach and 
its superiority to state-of-the-art baselines 

 

3. Our strategy can be conveniently combined with other transfer-based 
attacks to further improve their performance 
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Outline 

• Topic 1: Detecting Real-world Corner Cases for DNNs 

 

• Topic 2: Synthesizing Adversarial Samples against Undefended DNNs 

 

• Topic 3: Synthesizing Adversarial Samples against Defended DNNs 

 

• Topic 4: Global Explanations of DNNs 

 

• Conclusion and Future Work 
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Motivation 

• Explain and understand the behaviors of DNNs 
• Promote the interpretability and trustworthiness of DNNs: prerequisite for the 

broad deployment of DNNs 
• Spot latent defects, e.g., robustness issues 

 

• Research question 
• How to obtain global explanations of DNNs? 

• Global: category-wide 
• Explanation: concept attribution 

 

• Concept attribution 
• Measure the importance of human-understandable notions to model predictions 

• E.g., to what extent the banded texture is related to the prediction of a zebra 

• Merit 
• Directly bridge the discrepant thinking of humans and models 
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Challenge 

[Kim et al., 2018] 

• Existing effort 
• Only consider the proximity of individual instances 

• Drawback: myopic conclusion 
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• Motivation 
 

Method 

(1) Feature attribution: 
feature importance 

(2) Concept attribution: 
concept importance 
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Attacking for Interpretability (AfI) 

(1) Feature attribution: 
feature occlusion 

(2) Concept attribution: 
semantic task 
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Feature Occlusion 

• Motivation 
• The basic reasoning  process of a model 

• The features of class 𝑦 in image 𝐱 are more prominent ⟺ the label prediction for image 𝐱 is 𝑦  

• Logic equivalence  

• (1) The label prediction for image 𝐱 is 𝑦 →  

the features of class 𝑦 in image 𝐱 are more prominent 

• (2) The label prediction for image 𝐱 is not 𝑦 → 

the features of class 𝑦 in image 𝐱 are less prominent 
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• Learn a global feature occluder 𝛿∗ to perform feature occlusion 
(attacking) 
• D: magnitude measure (𝑙1 norm) 

• 𝑡: transformation function – (1) applying uniform random noise and (2) random 
rotation  

 

Feature Occlusion 

Find the minimal occluder 𝛿∗  

𝛿 can cause misclassification 

𝛿 can cause misclassification even after the transformation 𝑡 

The original image 𝐱𝑖  and the transformed one 𝑡(𝐱𝑖) are 
correctly classified 

𝛿∗ works for a class of samples  
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• Compute feature importance 𝑠𝑙
′𝑗

 
• The importance score of the feature that the 𝑗-th neuron in the 𝑙-th layer detects  

• (1) The label prediction for image 𝐱 is 𝑦 → the features of class 𝑦 in image 𝐱 are more 
prominent 

• (2) The label prediction for image 𝐱 is not 𝑦 → the features of class 𝑦 in image 𝐱 are less 
prominent 

 

 

 

 

 

 

 

 

 

 

Feature Attribution 

The average change of the neuron’s outputs after 
occlusion over a class of samples 

Remove negative importance 
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• Derive a class-specific meta-detector 𝑓𝑙
′ 

• Channel importance score (CIS)  
• 𝐵: normalizing constant  

• 𝑃𝑙
𝑐: the index set of neurons in the 𝑐-th feature map of layer 𝑙 

 

 

 

 

• Meta-detector 
• 𝐴𝑙

𝑐: the 𝑐-th feature map of layer 𝑙 

Concept Attribution 

Spatially pooled feature importance scores 

𝑠𝑙
′𝑗

 of a feature map 

Combine feature maps 𝐴𝑙
𝑐 based 

on channel importance scores 𝜔𝑙
𝑐 
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Concept Attribution 

• Concept importance: the representation capacity of the meta-detector 
for a concept of interest  
• Qualitative attribution: generation task 

• Visualize the class concept 

• Generate images that can highly activate the meta-detector 

 

• Quantitative attribution: concept classification 
• Measure the importance of user-defined concepts 

• Discrepancy of the concept data to random ones: Maximum Mean Discrepancy (MMD) as the 
measure 
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Experiments 

• Dataset 
• ImageNet (ILSVRC2012) : ResNet-50, GoogLeNet, VGG-16 

 

• Baseline 
• TCAV 

 

• Metric  
• The smallest sufficient concepts (SSCs): the smallest set of concepts sufficing for 

models to predict the target class 

• The smallest destroying concepts (SDCs): the smallest concept collections whose 
absence will incur wrong predictions 

• More accurate estimations of SSCs and SDCs → more accurate estimations of 
concept importance 
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• Evaluation of the concept attribution results 
• Regard semantic image segments as the representation of concepts 

 
 

 

Experiments 

SSC 

SDC 
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Experiments 

SSC 

SDC 



                            68  WU, Weibin On the Robustness and Interpretability of Deep Learning Models 

Experiments 

Chickadee 

Tarantula 

ResNet-50 GoogLeNet VGG-16 Example Image 

• Class concept visualization 
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• User-defined concept attribution 

Experiments 



                            70  WU, Weibin On the Robustness and Interpretability of Deep Learning Models 

Summary 

1. We propose a novel concept attribution framework (Attacking for 
Interpretability) for global explanations of DNNs 

 

2. Experimental results show that our framework provides more accurate 
estimations of concept importance than existing proposals 

 

3. We demonstrate the use cases of our method in providing insights into 
DNNs 
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Outline 

• Topic 1: Detecting Real-world Corner Cases for DNNs 

 

• Topic 2: Synthesizing Adversarial Samples against Undefended DNNs 

 

• Topic 3: Synthesizing Adversarial Samples against Defended DNNs 

 

• Topic 4: Global Explanations of DNNs 

 

• Conclusion and Future Work 
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Conclusion 

DNNs 

Robustness 

Interpretability 

Accidental 
Failure 

Intentional 
Failure 

Model 
Explanation 

AfI 

ATA 

DV 

ATTA 

 The first input validation 
framework for DNNs 

 Detect real-world corner cases 

 A  plug-in regularization term 
 Test the robustness of 

undefended DNNs 

 A  plug-in network 
 Test the robustness of 

defended DNNs 

 Concept attribution framework 
 Global explanations of DNNs 
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Future Work 

[Pei et al., 2017] 

• Test the robustness of DNNs against accidental failures 
• Synthesize diverse real-world corner cases 

• Challenge 
• Existing image transformation techniques have limited diversity 

• Test oracle problem 
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• Self-explainable DNNs  
• Produce both decisions and explanations 

• Challenge 
• Require a new learning paradigm 

Future Work 

Training 
Data 

New Learning  
Process 

Model Output User 
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Thanks! 
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