
Learning	with	Limited	Samples
Shouyuan	Chen

The	Chinese	University	of	Hong	Kong
October	29, 2014

Introduction

samples	are	sometimes	very	expensive.

• decision	making	/	prediction	using	a	limited	number	of	samples.

movie	recommendation

2

Introduction

samples	are	sometimes	very	expensive.

• decision	making	/	prediction	using	a	limited	number	of	samples.

clinical	trials

....

movie	recommendation

2

Introduction

samples	are	sometimes	very	expensive.

• decision	making	/	prediction	using	a	limited	number	of	samples.

clinical	trials

....

movie	recommendation

2

Introduction

samples	are	sometimes	very	expensive.

• decision	making	/	prediction	using	a	limited	number	of	samples.

clinical	trials

....

movie	recommendation

4

2

31

4 5

2

us
er
s

movies

2

Introduction

samples	are	sometimes	very	expensive.

• decision	making	/	prediction	using	a	limited	number	of	samples.

clinical	trials

....

movie	recommendation

4

? ? 2??

31

4 5

2

us
er
s

movies

2

Introduction

multi-armed	bandits

• sequential	decision-making	problem

• exploration and exploitation using	limited	samples

tensor	completion

4
2

31
4 5
2

compressed sensing matrix completion tensor completion

3

Outline

multi-armed	bandits

• Part	II:	Combinatorial	pure	exploration	of	multi-armed	bandits

• Part	III:	Linear	combinatorial	bandits	&	Fast	approximation	for
ridge	regression

tensor	completion

• Part	IV:	Exact	and	stable	recovery	for	pairwise	interaction	Tensors

4

Part	II
Combinatorial	Pure	Exploration	of

Multi-Armed	Bandits

Single-armed	bandit

arm

6

Single-armed	bandit

arm play

6

Single-armed	bandit

arm play reward

sampled independently from
an unknown distribution

(reward distribution)

6

Multi-armed	bandit

n arms

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Multi-armed	bandit

n arms

play

MAB player

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Multi-armed	bandit

n arms

MAB player

reward

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Multi-armed	bandit

n arms

play

MAB player

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Multi-armed	bandit

n arms

MAB player

reward

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Multi-armed	bandit

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Multi-armed	bandit

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Multi-armed	bandit

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Multi-armed	bandit

n arms

play reward

MAB player

goal: maximize the cumulative reward

take all rewards

in the end...

exploitation v.s. exploration

play reward

n arms

pure exploration
player

pure exploration

goal: find the single best arm
(largest expected reward)

(1) forfeit all rewards

in the end...

(2) output 1 arm

7

Combinatorial	Pure	Exploration	of	MAB

Combinatorial	Pure	Exploration	(CPE)
• play	one	arm	at	each	round

• find	the	optimal set of	arms M∗ ∈ M
▶ maximize	the	sum	of	expected	rewards	of	arms	in	the	set.
▶ M ⊆ 2[n] is	the	collection	of	admissible	sets.

What	kind	of	admissible	sets?

k-sets
spanning	trees

paths

s t

matchings

8

Combinatorial	Pure	Exploration	of	MAB

Combinatorial	Pure	Exploration	(CPE)
• play	one	arm	at	each	round

• find	the	optimal set of	arms M∗ ∈ M
▶ maximize	the	sum	of	expected	rewards	of	arms	in	the	set.
▶ M ⊆ 2[n] is	the	collection	of	admissible	sets.

What	kind	of	admissible	sets?

k-sets
spanning	trees

paths

s t

matchings

8

Combinatorial	Pure	Exploration	of	MAB

Combinatorial	Pure	Exploration	(CPE)
• play	one	arm	at	each	round

• find	the	optimal set of	arms M∗ ∈ M
▶ maximize	the	sum	of	expected	rewards	of	arms	in	the	set.
▶ M ⊆ 2[n] is	the	collection	of	admissible	sets.

What	kind	of	admissible	sets?

k-sets

spanning	trees

paths

s t

matchings

8

Combinatorial	Pure	Exploration	of	MAB

Combinatorial	Pure	Exploration	(CPE)
• play	one	arm	at	each	round

• find	the	optimal set of	arms M∗ ∈ M
▶ maximize	the	sum	of	expected	rewards	of	arms	in	the	set.
▶ M ⊆ 2[n] is	the	collection	of	admissible	sets.

What	kind	of	admissible	sets?

k-sets
spanning	trees

paths

s t

matchings

8

Motivating	Examples

• k-sets
▶ finding	the	top-k arms.

• matching

worker task

productivity
(unknown)

Goal:
1) estimate the productivities from tests.
2) find the optimal 1-1 assignment.

• spanning	trees	and	paths

link delay

Goal:
1) estimate the delays from measurements
2) find the minimum spanning tree
 or shortest path.

9

Motivating	Examples

• k-sets
▶ finding	the	top-k arms.

• matching

worker task

productivity
(unknown)

Goal:
1) estimate the productivities from tests.
2) find the optimal 1-1 assignment.

• spanning	trees	and	paths

link delay

Goal:
1) estimate the delays from measurements
2) find the minimum spanning tree
 or shortest path.

9

Motivating	Examples

• k-sets
▶ finding	the	top-k arms.

• matching

worker task

productivity
(unknown)

Goal:
1) estimate the productivities from tests.
2) find the optimal 1-1 assignment.

• spanning	trees	and	paths

link delay

Goal:
1) estimate the delays from measurements
2) find the minimum spanning tree
 or shortest path.

9

Our	Results

• Algorithms
▶ two	general	learning	algorithms	for	a	wide	range	of M.

• Upper	bounds
▶ sample	complexity	/	probability	of	error.
▶ exchange	class: a	new	tool	for	analysis.

• Lower	bound
▶ algorithms	are optimal (within	log	factors)	for	many	types	of M (in

particular, bases	of	a	matroid).

10

Our	Results

• Algorithms
▶ two	general	learning	algorithms	for	a	wide	range	of M.

• Upper	bounds
▶ sample	complexity	/	probability	of	error.
▶ exchange	class: a	new	tool	for	analysis.

• Lower	bound
▶ algorithms	are optimal (within	log	factors)	for	many	types	of M (in

particular, bases	of	a	matroid).

10

Our	Results

• Algorithms
▶ two	general	learning	algorithms	for	a	wide	range	of M.

• Upper	bounds
▶ sample	complexity	/	probability	of	error.
▶ exchange	class: a	new	tool	for	analysis.

• Lower	bound
▶ algorithms	are optimal (within	log	factors)	for	many	types	of M (in

particular, bases	of	a	matroid).

10

Related	Work

• Combinatorial	bandits
▶ sets	of	arms	are	played	at	each	round.
▶ minimizing	the cumulative	regret, instead	of finding	the	best	set.

▶ the	two	problems	are	fundamentally	different.

• Pure	exploration	of	multi-armed	bandits
▶ finding	single	best	arm: matching	upper	and	lower	bounds	are

known.
▶ finding	top-k arms: only	upper	bounds	are	known.

• Our	results
▶ the	first	lower	bound	of	top-k problem.
▶ the	first	upper	and	lower	bounds	for	other	combinatorial

constraints.

11

Related	Work

• Combinatorial	bandits
▶ sets	of	arms	are	played	at	each	round.
▶ minimizing	the cumulative	regret, instead	of finding	the	best	set.

▶ the	two	problems	are	fundamentally	different.

• Pure	exploration	of	multi-armed	bandits
▶ finding	single	best	arm: matching	upper	and	lower	bounds	are

known.
▶ finding	top-k arms: only	upper	bounds	are	known.

• Our	results
▶ the	first	lower	bound	of	top-k problem.
▶ the	first	upper	and	lower	bounds	for	other	combinatorial

constraints.

11

Related	Work

• Combinatorial	bandits
▶ sets	of	arms	are	played	at	each	round.
▶ minimizing	the cumulative	regret, instead	of finding	the	best	set.

▶ the	two	problems	are	fundamentally	different.

• Pure	exploration	of	multi-armed	bandits
▶ finding	single	best	arm: matching	upper	and	lower	bounds	are

known.
▶ finding	top-k arms: only	upper	bounds	are	known.

• Our	results
▶ the	first	lower	bound	of	top-k problem.
▶ the	first	upper	and	lower	bounds	for	other	combinatorial

constraints.

11

Two	Settings

• Fixed	budget
▶ play	for T rounds.
▶ make	the	prediction	after	finished.
▶ goal: minimize	the	probability	of	error

• Fixed	confidence
▶ play	for	any	number	of	rounds.
▶ make	the	prediction	after	finished
▶ guarantee	that	probability	of	error < δ.
▶ goal: minimize	the	number	of	rounds	(sample	complexity).

12

Two	Settings

• Fixed	budget
▶ play	for T rounds.
▶ make	the	prediction	after	finished.
▶ goal: minimize	the	probability	of	error

• Fixed	confidence
▶ play	for	any	number	of	rounds.
▶ make	the	prediction	after	finished
▶ guarantee	that	probability	of	error < δ.
▶ goal: minimize	the	number	of	rounds	(sample	complexity).

12

CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

notations

• for	each	arm i ∈ [n] in	each	round t
▶ empirical	mean: w̄t(i)
▶ confidence	interval: radt(i) (proportional	to 1/

√
nt(i))

• maximization	oracle: Oracle(· · ·)
▶ Oracle(v) = maxM∈M

∑
i∈M v(i) for	any n-dimensional	vector v

13

CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

notations

• for	each	arm i ∈ [n] in	each	round t
▶ empirical	mean: w̄t(i)
▶ confidence	interval: radt(i) (proportional	to 1/

√
nt(i))

• maximization	oracle: Oracle(· · ·)
▶ Oracle(v) = maxM∈M

∑
i∈M v(i) for	any n-dimensional	vector v

13

CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

notations

• for	each	arm i ∈ [n] in	each	round t
▶ empirical	mean: w̄t(i)
▶ confidence	interval: radt(i) (proportional	to 1/

√
nt(i))

• maximization	oracle: Oracle(· · ·)
▶ Oracle(v) = maxM∈M

∑
i∈M v(i) for	any n-dimensional	vector v

13

CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

Oracle(w̄t)
M̄t

Step 1

+radt(i)�radt(i)Step 2 w̃t(i) = w̄t(i) ± radt(i)

Oracle(w̃t)

M̃t

13

CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

Oracle(w̄t)
M̄t

Step 1

+radt(i)�radt(i)Step 2 w̃t(i) = w̄t(i) ± radt(i)

Oracle(w̃t)

M̃t

13

CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

Oracle(w̄t)
M̄t

Step 1

+radt(i)�radt(i)Step 2 w̃t(i) = w̄t(i) ± radt(i)

Oracle(w̃t)

M̃t

If:
Then: Stop and output

M̄t = M̃t

M̄t

13

CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

Oracle(w̄t)
M̄t

Step 1

1 2 3 4

Step 3

3
1
2
4

radt

13

CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

Oracle(w̄t)
M̄t

Step 1

1 2 3 4

Step 3

3
1
2
4

radt

Play arm 3!
Go to t+1 round.3

3

13

CLUCB:	Sample	Complexity

Our	sample	complexity	bound	depends	on	two	quantities.

• H: only	depends	on	expected	rewards

• width(M): only	depends	on	the	structure	of M

Theorem

With	probability	at	least 1− δ, CLUCB algorithm:

1. outputs	the	optimal	set M∗ ≜ argmaxM∈M w(M).

2. uses	at	most O(width(M)2H log(nH/δ)) rounds.

14

CLUCB:	Sample	Complexity

Our	sample	complexity	bound	depends	on	two	quantities.

• H: only	depends	on	expected	rewards

• width(M): only	depends	on	the	structure	of M

Theorem

With	probability	at	least 1− δ, CLUCB algorithm:

1. outputs	the	optimal	set M∗ ≜ argmaxM∈M w(M).

2. uses	at	most O(width(M)2H log(nH/δ)) rounds.

14

Sample	complexity	(1): H

• ∆e: gap of	arm e ∈ [n]

∆e =

{
w(M∗)−maxM∈M:e∈M w(M) if e ̸∈ M∗,

w(M∗)−maxM∈M:e ̸∈M w(M) if e ∈ M∗

▶ stability	of	the	optimality	of M∗ regarding	to	arm e.

• H =
∑

e∈[n]∆
−2
e

15

Exchange	class: Overview

Intuitions

• An	exchange	class	is	a	“proxy”	for	the	structure	of M in	the
analysis.

• An	exchange	class	is	a	collection	of	“patches”	that	are	used	to
interpolate	between	subsets.

...

+-

Top-K
+

-

Spanning	tree

+
++

- - -

...

...

Matching

+
+ +

+

- - -s t

Path

Figure

16

Exchange	class: Formal	definition

Exchange	set

An exchange	set b is	an	ordered	pair	of	disjoint	sets b = (b+, b−)
where b+ ∩ b− = ∅ and b+, b− ⊆ [n].
Let M be	any	set. We	also	define	two	operators:

• M⊕ b ≜ M\b− ∪ b+.

• M⊖ b ≜ M\b+ ∪ b−.

Exchange	class

We	call	a	collection	of	exchange	sets B an exchange	class	for M if B
satisfies	the	following	property. For	any M,M′ ∈ M such	that M ̸= M′

and	for	any e ∈ (M\M′), there	exists	an	exchange	set (b+, b−) ∈ B
which	satisfies	five	constraints: (a) e ∈ b−, (b) b+ ⊆ M′\M, (c)
b− ⊆ M\M′, (d) (M⊕ b) ∈ M and (e) (M′ ⊖ b) ∈ M.

17

Exchange	class: Width

Width: definition

width(B) = max
(b+,b−)∈B

|b+|+ |b−|.

width(M) = min
B∈Exchange(M)

width(B),

where Exchange(M) is	the	family	of	all	possible	exchange	classes	for
M.

Width: examples

• k-sets, spanning	tree, matroids: width(M) = 2.

• matchings, paths	(in	DAG) width(M) = O(|V|).

18

Sample	complexity	of	examples

Recall	that

Theorem

With	probability	at	least 1− δ, CLUCB algorithm:

1. outputs	the	optimal	set M∗.

2. uses	at	most Õ(width(M)2H) rounds.

Plug	in	the	widths	of	examples

Corollary	(Sample	Complexity	of	Examples)

• k-sets, spanning	trees, bases	of	a	matroid: Õ(H).

• matchings, paths	(in	DAG): Õ(|V|2H).

19

Sample	complexity	of	examples

Recall	that

Theorem

With	probability	at	least 1− δ, CLUCB algorithm:

1. outputs	the	optimal	set M∗.

2. uses	at	most Õ(width(M)2H) rounds.

Plug	in	the	widths	of	examples

Corollary	(Sample	Complexity	of	Examples)

• k-sets, spanning	trees, bases	of	a	matroid: Õ(H).

• matchings, paths	(in	DAG): Õ(|V|2H).

19

Lower	bound

An	algorithm A is	a δ-correct	algorithm, if A’s	probability	of	error	is	at
most δ for	any	expected	rewards.

Theorem	(Problem	dependent	lower	bound)

Given	any	expected	rewards, any δ-correct	algorithm	must	use	at	least
Ω(H log(1/δ)) rounds.

Remarks:

• k-sets, spanning	trees, bases	of	a	matroid: CLUCB’s	sample
complexity Õ(H) is optimal (up	to	log	factors).

• other M in	general: a	gap	of Õ(width(M)2) = Õ(n2).

20

Lower	bound

An	algorithm A is	a δ-correct	algorithm, if A’s	probability	of	error	is	at
most δ for	any	expected	rewards.

Theorem	(Problem	dependent	lower	bound)

Given	any	expected	rewards, any δ-correct	algorithm	must	use	at	least
Ω(H log(1/δ)) rounds.

Remarks:

• k-sets, spanning	trees, bases	of	a	matroid: CLUCB’s	sample
complexity Õ(H) is optimal (up	to	log	factors).

• other M in	general: a	gap	of Õ(width(M)2) = Õ(n2).

20

Lower	bound

An	algorithm A is	a δ-correct	algorithm, if A’s	probability	of	error	is	at
most δ for	any	expected	rewards.

Theorem	(Problem	dependent	lower	bound)

Given	any	expected	rewards, any δ-correct	algorithm	must	use	at	least
Ω(H log(1/δ)) rounds.

Remarks:

• k-sets, spanning	trees, bases	of	a	matroid: CLUCB’s	sample
complexity Õ(H) is optimal (up	to	log	factors).

• other M in	general: a	gap	of Õ(width(M)2) = Õ(n2).

20

CSAR:	Fixed	budget	algorithm

phase 1

phase 2

phase 3

phase n

......

end

output

in	each	phase	(n phases	in	total):

• 1	arm	is accepted or rejected.

• active	arms are	sampled	for	a
same	number	of	times.

accepted: include in the output

rejected: exclude from the output

active: neither accepted nor rejected.
require more samples

21

CSAR:	Fixed	budget	algorithm

phase 1

phase 2

phase 3

phase n

......

end

output

in	each	phase	(n phases	in	total):

• 1	arm	is accepted or rejected.

• active	arms are	sampled	for	a
same	number	of	times.

accepted: include in the output

rejected: exclude from the output

active: neither accepted nor rejected.
require more samples

21

CSAR:	Fixed	budget	algorithm

phase 1

phase 2

phase 3

phase n

......

end

output

in	each	phase	(n phases	in	total):

• 1	arm	is accepted or rejected.

• active	arms are	sampled	for	a
same	number	of	times.

accepted: include in the output

rejected: exclude from the output

active: neither accepted nor rejected.
require more samples

21

CSAR:	Fixed	budget	algorithm

phase 1

phase 2

phase 3

phase n

......

end

output

in	each	phase	(n phases	in	total):

• 1	arm	is accepted or rejected.

• active	arms are	sampled	for	a
same	number	of	times.

accepted: include in the output

rejected: exclude from the output

active: neither accepted nor rejected.
require more samples

21

CSAR:	Fixed	budget	algorithm

phase 1

phase 2

phase 3

phase n

......

end

output

in	each	phase	(n phases	in	total):

• 1	arm	is accepted or rejected.

• active	arms are	sampled	for	a
same	number	of	times.

accepted: include in the output

rejected: exclude from the output

active: neither accepted nor rejected.
require more samples

problem: which	arm	to	accept	or
reject?

21

CSAR:	Fixed	budget	algorithm

problem: which	arm	to	accept	or	reject?

• accept/reject	the	arm	with	the	largest empirical	gap.

∆̄e =

{
w̄t(M̄t)− max

M∈Mt:e∈M w̄t(M) if e ̸∈ M̄t,

w̄t(M̄t)− max
M∈Mt:e ̸∈M w̄t(M) if e ∈ M̄t

▶ Mt = {M : M ∈ M,At ⊆ M,Bt ∩M = ∅}.
▶ At: accepted	arms, Bt: rejected	arms	(up	to	phase t).

▶ ∆̄e can	be	computed	using	a	maximization	oracle.

• recall	the	(unknown) gap of	arm e:

∆e =

{
w(M∗)−maxM∈M:e∈M w(M) if e ̸∈ M∗,

w(M∗)−maxM∈M:e ̸∈M w(M) if e ∈ M∗

21

CSAR:	Fixed	budget	algorithm

problem: which	arm	to	accept	or	reject?

• accept/reject	the	arm	with	the	largest empirical	gap.

∆̄e =

{
w̄t(M̄t)− max

M∈Mt:e∈M w̄t(M) if e ̸∈ M̄t,

w̄t(M̄t)− max
M∈Mt:e ̸∈M w̄t(M) if e ∈ M̄t

▶ Mt = {M : M ∈ M,At ⊆ M,Bt ∩M = ∅}.
▶ At: accepted	arms, Bt: rejected	arms	(up	to	phase t).
▶ ∆̄e can	be	computed	using	a	maximization	oracle.

• recall	the	(unknown) gap of	arm e:

∆e =

{
w(M∗)−maxM∈M:e∈M w(M) if e ̸∈ M∗,

w(M∗)−maxM∈M:e ̸∈M w(M) if e ∈ M∗

21

CSAR:	Fixed	budget	algorithm

problem: which	arm	to	accept	or	reject?

• accept/reject	the	arm	with	the	largest empirical	gap.

∆̄e =

{
w̄t(M̄t)− max

M∈Mt:e∈M w̄t(M) if e ̸∈ M̄t,

w̄t(M̄t)− max
M∈Mt:e ̸∈M w̄t(M) if e ∈ M̄t

▶ Mt = {M : M ∈ M,At ⊆ M,Bt ∩M = ∅}.
▶ At: accepted	arms, Bt: rejected	arms	(up	to	phase t).
▶ ∆̄e can	be	computed	using	a	maximization	oracle.

• recall	the	(unknown) gap of	arm e:

∆e =

{
w(M∗)−maxM∈M:e∈M w(M) if e ̸∈ M∗,

w(M∗)−maxM∈M:e ̸∈M w(M) if e ∈ M∗

21

CSAR:	Probability	of	error

Theorem	(Probability	of	error	of	CSAR)

Given	any	budget T > n, CSAR correctly	outputs	the	optimal	set M∗
with	probability	at	least

1− 2
Õ
(
− T

width(M)2H

)

and	uses	at	most T rounds.

Remark: To	guarantee	a	constant	probability	of	error	of δ, both	CSAR
and	CLUCB need T = Õ(width(M)2H) rounds.

22

CSAR:	Probability	of	error

Theorem	(Probability	of	error	of	CSAR)

Given	any	budget T > n, CSAR correctly	outputs	the	optimal	set M∗
with	probability	at	least

1− 2
Õ
(
− T

width(M)2H

)

and	uses	at	most T rounds.

Remark: To	guarantee	a	constant	probability	of	error	of δ, both	CSAR
and	CLUCB need T = Õ(width(M)2H) rounds.

22

Summary

• combinatorial	pure	exploration: a	general	framework	that	covers
many	pure	exploration	problems	in	MAB.

▶ find	top-k arms, optimal	spanning	trees, matchings	or	paths.

• two	general	algorithms	for	the	problem
▶ only	need	a	maximization	oracle	for M.
▶ comparable	performance	guarantees.

• our	algorithm	is	optimal	(up	to	log	factors)	for	matroids.
▶ including k-sets	and	spanning	trees.

23

Part	III
Linear	Combinatorial	Bandits

&

Fast	relative-error	approximation
for	ridge	regression

Linear	bandits

recommender
system

user

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Linear	bandits

recommend

recommender
system

user

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Linear	bandits

recommender
system

user

rating

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Linear	bandits

recommend

recommender
system

user

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Linear	bandits

recommender
system

rating

user

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Linear	bandits

recommender
system

user

recommend rating

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Linear	bandits

recommender
system

user

recommend rating

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Linear	bandits

recommender
system

user

recommend rating

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Linear	bandits

recommender
system

user

recommend rating

n arms

play reward

MAB player

• the	number	of	arms	(movies) n is	very	large
▶ challenge: many	arms	will	never	be	played.
▶ solution: more	assumptions	on	the	rewards	(ratings)

• linear	bandits
▶ each	arm i has	a	feature	vector vi ∈ Rd

▶ an	unknown	vector u ∈ Rd

▶ playing	arm i gives	a	random	reward ri = uTvi + ϵ
▶ ϵ is	a	zero-mean	r.v.

▶ algorithms	with Õ(
√
T) regret [APS11].

25

Recommendations...

Recommendations...

• rarely	recommend	a single movie.

• better	recommend	a set of	movies.
▶ a	set	of	movies	that	are favorable and diverse.

26

Recommendations... Recommendations...

• rarely	recommend	a single movie.

• better	recommend	a set of	movies.
▶ a	set	of	movies	that	are favorable and diverse.

26

Linear	Combinatorial	Bandits

.....

n arms

round 1

round 2

.....

linear	combinatorial	bandits

• a set of	arms St ∈ M are	played	on	each	round t.

• observation: rewards {r(t)i | i ∈ St}
▶ r(t)i = uTvi + ϵ

(t)
i

• reward	function: the	player	earns	a	reward fr(t),V(St).

26

Reward	function
we	allow	a	broad	class	of fr,V(St) that	satisfy

• monotone and Lipschitz	continuous in	terms	of r.
• an α-maximization	oracle

▶ approximation	ratio α ∈ (0, 1].

a	reward	function	for	movie	recommendation

fr,V(S) =
∑
i∈S

ri︸ ︷︷ ︸
sum	of	ratings

+λ g({vi | i ∈ S})︸ ︷︷ ︸
diversity	of	movies

.

• QZ13	proposed	such	a g(X) using	log-determinants
▶ maximal	when	vectors	in X are	orthogonal
▶ submodular	and	monotone

▶ greedy	algorithm	has	approximation	ratio 1− 1/e
▶ =⇒ a (1− 1/e)-maximization	oracle

27

Reward	function
we	allow	a	broad	class	of fr,V(St) that	satisfy

• monotone and Lipschitz	continuous in	terms	of r.
• an α-maximization	oracle

▶ approximation	ratio α ∈ (0, 1].

a	reward	function	for	movie	recommendation

fr,V(S) =
∑
i∈S

ri︸ ︷︷ ︸
sum	of	ratings

+λ g({vi | i ∈ S})︸ ︷︷ ︸
diversity	of	movies

.

• QZ13	proposed	such	a g(X) using	log-determinants
▶ maximal	when	vectors	in X are	orthogonal
▶ submodular	and	monotone

▶ greedy	algorithm	has	approximation	ratio 1− 1/e
▶ =⇒ a (1− 1/e)-maximization	oracle

27

Algorithm	and	Analysis

play all arms in

estimate u by
ridge regression

compute r(t)
+

St � Oracle(r(t)
+)St

observed rewards
{ri,t | i � St}

Theorem

The	algorithm’s α-regret	over T rounds	is Õ(
√
T).

• α-regret: αOPT(T)−
∑T

i=1 fr(t),V(St)

• OPT(T): the	largest	possible	reward	from T rounds

28

Ridge	regression

ridge	regression	problem

min
x

∥Ax − b∥22 + λ ∥x∥22 .

• design	matrix: A ∈ Rn×p and	response	vector: b ∈ Rp

optimal	solution
x∗ = AT(AAT + λIn)−1b.

• time	complexity: O(n2p)

• no	known	algorithms are	asymptotically	faster.

challenge
n ≫ p ≫ 1

29

Fast	relative-error	approximation

oblivious	subspace	embedding	(OSE)

A AST

n

p d

n

our	OSE based	solution

x̃ = AT(AST)†
T
(λ(AST)†

T
+ AST)†b.

Theorem

Given ϵ > 0, there	exists	a	way	to	construct S such	that, with	high
probability,

∥x̃ − x∗∥2 ≤ ϵ ∥x∗∥2
and	the	algorithm	runs	in O(nnz(A) + n3/ϵ) time.

30

Fast	relative-error	approximation

oblivious	subspace	embedding	(OSE)

A AST

n

p d

n

our	OSE based	solution

x̃ = AT(AST)†
T
(λ(AST)†

T
+ AST)†b.

Theorem

Given ϵ > 0, there	exists	a	way	to	construct S such	that, with	high
probability,

∥x̃ − x∗∥2 ≤ ϵ ∥x∗∥2
and	the	algorithm	runs	in O(nnz(A) + n3/ϵ) time.

30

Fast	relative-error	approximation

oblivious	subspace	embedding	(OSE)

A AST

n

p d

n

our	OSE based	solution

x̃ = AT(AST)†
T
(λ(AST)†

T
+ AST)†b.

Theorem

Given ϵ > 0, there	exists	a	way	to	construct S such	that, with	high
probability,

∥x̃ − x∗∥2 ≤ ϵ ∥x∗∥2
and	the	algorithm	runs	in O(nnz(A) + n3/ϵ) time.

30

Experiments

baselines

• sample: randomly	select	features

• project: compress A using	random	projection.

relative	error

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Sketch Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
la

ti
v
e
-E

rr
o
r

Sketching
Sampling
Projection

speedup	factors

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Sketch Size

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p
 F

a
ct

o
r

Sketching
Sampling

31

Summary

• linear	combinatorial	bandits
▶ a	generalization	of	linear	bandits	to	allow	multiple	plays
▶ allow	complicated	reward	functions
▶ an	algorithm	with	asymptotically	no-regret

▶ use	ridge	regression	to	estimate	the	unknown

▶ application: diversified	movie	sets	recommendation

• fast	ridge	regression
▶ the	first	algorithm	in o(n2p) time	with	relative-error	guarantee

32

Part	IV
Recovery	for	Pairwise	Interaction	Tensors

Matrix	completion

27 7 4 3

5 4 265

312 4 2

4 5 52 3

85221

users

m
ov

ie
s

• matrix	completion: recover	the	missing	entries.

• exact	recovery for low	rank matrices!
▶ via	convex	programming.
▶ need Õ(nr) samples	(observed	entries).

34

Matrix	completion

?? ? 4 ?

? ? 2??

31? ? ?

4 5 ?? ?

8??2?

users

m
ov

ie
s

• matrix	completion: recover	the	missing	entries.

• exact	recovery for low	rank matrices!
▶ via	convex	programming.
▶ need Õ(nr) samples	(observed	entries).

34

Tensor	completion

m
ov

ie
s

users loca
tion

s

?

?

?

?

?

2

22
4

43

3

• tensor	completion: recover	the	missing	entries.
• bad	news: much	harder	than	matrix	completion!

▶ low	rank	tensors?
▶ even	computing	the	rank	is	NP-hard.

• special	tensors?
• pairwise	interaction	tensors!

35

Tensor	completion

m
ov

ie
s

users loca
tion

s

?

?

?

?

?

2

22
4

43

3

• tensor	completion: recover	the	missing	entries.

• bad	news: much	harder	than	matrix	completion!
▶ low	rank	tensors?
▶ even	computing	the	rank	is	NP-hard.

• special	tensors?
• pairwise	interaction	tensors!

35

Tensor	completion

m
ov

ie
s

users loca
tion

s

?

?

?

?

?

2

22
4

43

3

• tensor	completion: recover	the	missing	entries.
• bad	news: much	harder	than	matrix	completion!

▶ low	rank	tensors?
▶ even	computing	the	rank	is	NP-hard.

• special	tensors?
• pairwise	interaction	tensors!

35

Tensor	completion

m
ov

ie
s

users loca
tion

s

?

?

?

?

?

2

22
4

43

3

• tensor	completion: recover	the	missing	entries.
• bad	news: much	harder	than	matrix	completion!

▶ low	rank	tensors?
▶ even	computing	the	rank	is	NP-hard.

• special	tensors?

• pairwise	interaction	tensors!

35

Tensor	completion

m
ov

ie
s

users loca
tion

s

?

?

?

?

?

2

22
4

43

3

• tensor	completion: recover	the	missing	entries.
• bad	news: much	harder	than	matrix	completion!

▶ low	rank	tensors?
▶ even	computing	the	rank	is	NP-hard.

• special	tensors?
• pairwise	interaction	tensors!

35

Pairwise	Interaction	Tensor

definition

Tijk = Aij + Bjk + Cki ∀(i, j, k) ∈ [n1]× [n2]× [n3]

• A ∈ Rn1×n2 ,B ∈ Rn2×n3 ,C ∈ Rn3×n1 .

• denote T = Pair(A,B,C)

36

Pairwise	Interaction	Tensor

definition

Tijk = Aij + Bjk + Cki ∀(i, j, k) ∈ [n1]× [n2]× [n3]

• A ∈ Rn1×n2 ,B ∈ Rn2×n3 ,C ∈ Rn3×n1 .

• denote T = Pair(A,B,C)

A

stack

stack stack

B C

+ +

36

Pairwise	Interaction	Tensor

definition

Tijk = Aij + Bjk + Cki ∀(i, j, k) ∈ [n1]× [n2]× [n3]

• A ∈ Rn1×n2 ,B ∈ Rn2×n3 ,C ∈ Rn3×n1 .

• denote T = Pair(A,B,C)

Pair(A,B,C)

• good	model	for	tag/item
recommendations [RT10, RFS10].

36

Pairwise	Interaction	Tensor

definition

Tijk = Aij + Bjk + Cki ∀(i, j, k) ∈ [n1]× [n2]× [n3]

• A ∈ Rn1×n2 ,B ∈ Rn2×n3 ,C ∈ Rn3×n1 .

• denote T = Pair(A,B,C)

Pair(A,B,C)

• good	model	for	tag/item
recommendations [RT10, RFS10].

36

Recovery	via	convex	programming

Tijk = Aij + Bjk + Cki ∀(i, j, k) ∈ [n1]× [n2]× [n3]

• observed	entries: Ω = {(i1, j1, k1), . . . , (im, jm, km)}.
▶ T ∈ Rn1×n2×n3 unknown	outside	of Ω

• A ∈ Rn1×n2 ,B ∈ Rn2×n3 ,C ∈ Rn3×n1 : unknown
▶ goal: recover A,B,C

Recovery	via	trace-norm	minimization

minimize
√
n3

∥∥∥Â
∥∥∥
∗
+

√
n1

∥∥∥B̂
∥∥∥
∗
+

√
n2

∥∥∥Ĉ
∥∥∥
∗

subject to Tijk = Âij + B̂jk + Ĉki ∀(i, j, k) ∈ Ω

37

Recovery	via	convex	programming

Tijk = Aij + Bjk + Cki ∀(i, j, k) ∈ [n1]× [n2]× [n3]

• observed	entries: Ω = {(i1, j1, k1), . . . , (im, jm, km)}.
▶ T ∈ Rn1×n2×n3 unknown	outside	of Ω

• A ∈ Rn1×n2 ,B ∈ Rn2×n3 ,C ∈ Rn3×n1 : unknown
▶ goal: recover A,B,C

Recovery	via	trace-norm	minimization

minimize
√
n3

∥∥∥Â
∥∥∥
∗
+

√
n1

∥∥∥B̂
∥∥∥
∗
+

√
n2

∥∥∥Ĉ
∥∥∥
∗

subject to Tijk = Âij + B̂jk + Ĉki ∀(i, j, k) ∈ Ω

37

Exact	recovery

minimize
√
n3

∥∥∥Â
∥∥∥
∗
+

√
n1

∥∥∥B̂
∥∥∥
∗
+

√
n2

∥∥∥Ĉ
∥∥∥
∗

subject to Tijk = Âij + B̂jk + Ĉki ∀(i, j, k) ∈ Ω

Theorem

• A,B,C are incoherent.

• number	of	samples |Ω| > Õ(nr).

• the	locations	of	samples	are	drawn	i.i.d. from [n1]× [n2]× [n3].

Then, with	high	probability, the	recovery	is	exact:

Â = A, B̂ = B, Ĉ = C.

38

Exact	recovery

minimize
√
n3

∥∥∥Â
∥∥∥
∗
+

√
n1

∥∥∥B̂
∥∥∥
∗
+

√
n2

∥∥∥Ĉ
∥∥∥
∗

subject to Tijk = Âij + B̂jk + Ĉki ∀(i, j, k) ∈ Ω

Theorem

• A,B,C are incoherent.

• number	of	samples |Ω| > Õ(nr).

• the	locations	of	samples	are	drawn	i.i.d. from [n1]× [n2]× [n3].

Then, with	high	probability, the	recovery	is	exact:

Â = A, B̂ = B, Ĉ = C.

38

With	noise
Z: stochastic	perturbation

T̂ijk = Tijk + Zijk ∀(i, j, k) ∈ Ω

minimize
√
n3

∥∥∥Â
∥∥∥
∗
+

√
n1

∥∥∥B̂
∥∥∥
∗
+

√
n2

∥∥∥Ĉ
∥∥∥
∗

subject to
∑

(i,j,k)∈Ω

(
T̂ijk − Âij − B̂jk − Ĉki

)2 ≤ δ2.

when	noiseless	recovery	occurs =⇒ noisy	variant	is	stable.

Theorem

• ∥Z∥F ≤ ϵ (and	other	conditions	for	exact	recovery)

Then, with	high	probability, the	recovery	is	stable∥∥∥Pair(Â, B̂, Ĉ)− T
∥∥∥
F
≤ Õ(rn3/2(δ + ϵ)).

39

With	noise
Z: stochastic	perturbation

T̂ijk = Tijk + Zijk ∀(i, j, k) ∈ Ω

minimize
√
n3

∥∥∥Â
∥∥∥
∗
+

√
n1

∥∥∥B̂
∥∥∥
∗
+

√
n2

∥∥∥Ĉ
∥∥∥
∗

subject to
∑

(i,j,k)∈Ω

(
T̂ijk − Âij − B̂jk − Ĉki

)2 ≤ δ2.

when	noiseless	recovery	occurs =⇒ noisy	variant	is	stable.

Theorem

• ∥Z∥F ≤ ϵ (and	other	conditions	for	exact	recovery)

Then, with	high	probability, the	recovery	is	stable∥∥∥Pair(Â, B̂, Ĉ)− T
∥∥∥
F
≤ Õ(rn3/2(δ + ϵ)).

39

With	noise
Z: stochastic	perturbation

T̂ijk = Tijk + Zijk ∀(i, j, k) ∈ Ω

minimize
√
n3

∥∥∥Â
∥∥∥
∗
+

√
n1

∥∥∥B̂
∥∥∥
∗
+

√
n2

∥∥∥Ĉ
∥∥∥
∗

subject to
∑

(i,j,k)∈Ω

(
T̂ijk − Âij − B̂jk − Ĉki

)2 ≤ δ2.

when	noiseless	recovery	occurs =⇒ noisy	variant	is	stable.

Theorem

• ∥Z∥F ≤ ϵ (and	other	conditions	for	exact	recovery)

Then, with	high	probability, the	recovery	is	stable∥∥∥Pair(Â, B̂, Ĉ)− T
∥∥∥
F
≤ Õ(rn3/2(δ + ϵ)).

39

Analysis

B

C

M

0

0

A

T132 = A13 + B32 + C21

T231 = A23 + B31 + C21

.....

• recover	matrix M.

• observations: sums	of	three	entries	of M.

• challenge: matrix	completion	with non-orthogonal obs. operators.
▶ [Gross	2009] resolved	the	case	with orthogonal obs. operators.
▶ ours	is	the	first	result	on	non-orthogonal	obs. operators.

40

Analysis

B

C

M

0

0

A
T1,3,2

T132 = A13 + B32 + C21

T231 = A23 + B31 + C21

.....

• recover	matrix M.

• observations: sums	of	three	entries	of M.

• challenge: matrix	completion	with non-orthogonal obs. operators.
▶ [Gross	2009] resolved	the	case	with orthogonal obs. operators.
▶ ours	is	the	first	result	on	non-orthogonal	obs. operators.

40

Analysis

B

C

M

0

0

A
T1,3,2

T2,3,1

T132 = A13 + B32 + C21

T231 = A23 + B31 + C21

.....

• recover	matrix M.

• observations: sums	of	three	entries	of M.

• challenge: matrix	completion	with non-orthogonal obs. operators.
▶ [Gross	2009] resolved	the	case	with orthogonal obs. operators.
▶ ours	is	the	first	result	on	non-orthogonal	obs. operators.

40

Analysis

B

C

M

0

0

A T132 = A13 + B32 + C21

T231 = A23 + B31 + C21

.....

• recover	matrix M.

• observations: sums	of	three	entries	of M.

• challenge: matrix	completion	with non-orthogonal obs. operators.
▶ [Gross	2009] resolved	the	case	with orthogonal obs. operators.
▶ ours	is	the	first	result	on	non-orthogonal	obs. operators.

40

Algorithms	and	Experiments

optimization	algorithms

• one	can	use	SDP to	solve	trace-norm	minimization	problems.
▶ too	slow	for	matrices	larger	than 100× 100.

• we	use	singular	value	thresholding	(SVT) method	to	solve	a
relaxed	version.

▶ much	faster	and	still	accurate.

experiments

• exact	recovery	experiments	on	synthetic	data

• movie	recommendation	with	time	information

41

Algorithms	and	Experiments

optimization	algorithms

• one	can	use	SDP to	solve	trace-norm	minimization	problems.
▶ too	slow	for	matrices	larger	than 100× 100.

• we	use	singular	value	thresholding	(SVT) method	to	solve	a
relaxed	version.

▶ much	faster	and	still	accurate.

experiments

• exact	recovery	experiments	on	synthetic	data

• movie	recommendation	with	time	information

41

Algorithms	and	Experiments

optimization	algorithms

• one	can	use	SDP to	solve	trace-norm	minimization	problems.
▶ too	slow	for	matrices	larger	than 100× 100.

• we	use	singular	value	thresholding	(SVT) method	to	solve	a
relaxed	version.

▶ much	faster	and	still	accurate.

experiments

• exact	recovery	experiments	on	synthetic	data

• movie	recommendation	with	time	information

41

Experiments: Exact	Recovery

empirical	recovery	probability
x-axis: number	of	samples	/	degree	of	freedom

42

Experiments: Exact	Recovery

empirical	recovery	probability	(high	resolution)
x-axis: number	of	samples	/	degree	of	freedom

42

Experiments: Movie	Recommendations

• datasets: movielens
▶ 1,000,209	timestamped	movie	ratings
▶ 6040	users, 3706	movies, 36	months	(0.104%	observed)

• baseline: matrix	completion
▶ ignore	time	information

 0 20 40 60 80 100

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

SVD truncation level

RM
SE MC

RPIT

43

Experiments: Movie	Recommendations

• datasets: movielens
▶ 1,000,209	timestamped	movie	ratings
▶ 6040	users, 3706	movies, 36	months	(0.104%	observed)

• baseline: matrix	completion
▶ ignore	time	information

 0 20 40 60 80 100

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

SVD truncation level

RM
SE MC

RPIT

43

Summary

• tensor	completion
▶ recover	the	missing	entries	of	a	tensor.
▶ difficult	for	general	tensors.

• pairwise	interaction	tensor
▶ a	simpler	replacement	for	general	tensors.

• exact	recovery	for	pairwise	interaction	tensor
▶ and	stable	for	noisy	observations.
▶ via	convex	programming.

44

Publications

Combinatorial	pure	exploration	of	multi-armed	bandits
Shouyuan	Chen, Tian	Lin, Irwin	King, Michael	R.	Lyu	and	Wei	Chen
To	appear	in NIPS 2014, Oral	presentation

Contextual	combinatorial	bandit	and	its	application	on	diversified	recommendation
Lijing	Qin, Shouyuan	Chen	and	Xiaoyan	Zhu
In SDM 2014, Best	Student	Paper	Award	Runner-Up

Fast	relative-error	approximation	for	ridge	regression
Shouyuan	Chen, Yang	Liu, Michael	R.	Lyu, Irwin	King	and	Shengyu	Zhang
Technical	report	2014

Exact	and	stable	recovery	of	pairwise	interaction	tensors
Shouyuan	Chen, Michael	R.	Lyu, Irwin	King	and	Zenglin	Xu

In NIPS 2013, Spotlight

45

Thank	you!

Experiments	of	Linear	Combinatorial	Bandits

47

	Introduction
	Combinatorial Pure Exploration Bandits
	Linear Combinatorial Bandits
	Recovery for Pairwise Interaction Tensor
	Backup

