
1HE, Shilin

Interpretability-driven Intelligent
Software Reliability Engineering

HE, Shilin

Ph.D. Oral Defense

Supervisor: Prof. Michael R. Lyu

2020/09/03

2HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Traditional software

Software is Everywhere

Software is Eating the World --- Marc Andreessen, The Wall Street Journal

• Intelligent software

3HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Software Reliability is Crucial

• Software reliability is important to both service providers and end users!

Revenue Loss User DissatisfactionA Tiny Problem

4HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Real-World Examples

148,213 websites 121,176 unique domains

[Statistics from: https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/]

• Unreliable traditional software

5HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Real-World Examples

• Unreliable intelligent software

6HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Software reliability is a must

7HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Software reliability engineering is challenging

since the increasing complexity and scale of

software make it hard to comprehend

8HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Software Reliability is Challenging

• Traditional Software Complexity
• Hadoop: 4,103,332 lines of code in 14 languages

• Intelligent Software Complexity
• BERT-large (Google): 340 million parameters

• T5 (Google): 11 billion parameters

• GPT-3 (OpenAI): 175 billion parameters

9HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

If we cannot understand the software,

how could we keep it reliable?

Interpretability is the first step

10HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Traditional Software Interpretation

• Development Practices
o source code readability, e.g., writing code comments

• Static Program Analysis
o control-flow analysis

odata-flow analysis

o abstract interpretation

• Dynamic Program Analysis
o testing

oprogram slicing

omonitoring, e.g., logs

11HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Intelligent Software Interpretation

• A thriving research area under study

12HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Intelligent Software Interpretation

• Interpretability helps the intelligent software reliability.
o testing:

o robustness and safety

• interpretability ↑ reliability ↑

o debugging

13HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Thesis Contributions

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Ø The first empirical study
on log anomaly detection

Ø Release a toolkit for reuse

Ø Efficient cascading
clustering algorithm

Ø Correlates with KPIs
to identify problems

Ø Gradient information to
explain model predictions
by word importance

Ø Detect under-translation
errors

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

Ø Phrase-table to globally
explain model behaviors

Ø Explain model learning
dynamics and advanced
techniques.

[Chapter 3]

[ISSRE’16]

14HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Thesis Contributions

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Ø The first empirical study
on log anomaly detection

Ø Release toolkit for reuse

Ø Efficient cascading
clustering algorithm

Ø Correlates with KPIs
to identify problems

Ø Gradient information to
explain model predictions
by word importance

Ø Detect under-translation
errors

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

Ø Phrase-table to globally
explain model behaviors

Ø Explain model learning
dynamics and advanced
techniques.

[Chapter 4]

[FSE’18]

15HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Thesis Contributions

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Ø The first empirical study
on log anomaly detection

Ø Release toolkit for reuse

Ø Efficient cascading
clustering algorithm

Ø Correlates with KPIs
to identify problems

Ø Gradient information to
explain model predictions
by word importance

Ø Detect under-translation
errors

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

Ø Phrase-table to globally
explain model behaviors

Ø Explain model learning
dynamics and advanced
techniques.

[Chapter 5]

[EMNLP’19]

16HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Thesis Contributions

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Ø The first empirical study
on log anomaly detection

Ø Release toolkit for reuse

Ø Efficient cascading
clustering algorithm

Ø Correlates with KPIs
to identify problems

Ø Gradient information to
explain model predictions
by word importance

Ø Detect under-translation
errors

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

Ø Phrase-table to globally
explain model behaviors

Ø Explain model learning
dynamics and advanced
techniques.

[Chapter 6]

[EMNLP’20]*

17HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Automated Log Interpretation -- Motivation

• Manual analysis of logs is almost infeasible.

• Logs are generated at a high rate. (10+ TB/hour)

• Large-scale software is often implemented by hundreds of developers.

• Manual inspection is error-prone.

Automated Log Interpretation

18HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Automated Log Interpretation

Log Parsing Feature Extraction Log Mining

• A general framework

19HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Automated Log Interpretation

Log Parsing Feature Extraction Log Mining

20HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Automated Log Interpretation

Log Parsing Feature Extraction Log Mining

30 mins 30 mins

Step: 10 min

30 mins 30 mins

oTask identifier:

Job ID, Process ID, etc

oTime stamp:

1) Fixed window

2) Sliding window

An example of HDFS logs

Log Sequence Grouping

21HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Automated Log Interpretation

oEach feature denotes a log event in the log sequence.

o For example

E1 E2 E3 E4 E5 E6

[1, 0, 2, 3, 1, 0]

E1 occurs once

E4 occurs three times.

Feature Vectorization

Log Parsing Feature Extraction Log Mining

22HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Automated Log Interpretation

o Problem Identification

Normal cases

Different problem typesAnomalies

Normal cases

o Anomaly Detection

Log Parsing Feature Extraction Log Mining

23HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Outline

• Topic 1: Log-based Anomaly Detection

• Topic 2: Log-based Problem Identification

• Topic 3: Gradient-based Attribution Estimation

• Conclusion and Future Work

24HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Outline

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

[Chapter 3]

• Topic 1: Log-based Anomaly Detection

25HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Log-based Anomaly Detection

• Motivation:
o Lack of comparison among existing anomaly detection methods.

oThe state-of-the-art anomaly detection methods are unknown.

oNo open-source tools are currently available.

• Contribution:
oprovide the first empirical study on log-based anomaly detection methods.

o release the toolset for public reuse.

26HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Anomaly Detection Methods

• State-of-the-art research studies (Before 2016)

o Failure diagnosis using decision trees [ICAC’04]

o Failure prediction in IBM bluegene/l event logs [ICDM’07]

oDetecting largescale system problems by mining console logs [SOSP’09]

oMining invariants from console logs for system problem detection. [USENIX

ATC’10]

o Log clustering based problem identification for online service systems [ICSE’16]

o…

27HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Anomaly Detection Methods

• Taxonomy

Anomaly Detection

Supervised

Logistic Regression

Decision Tree

Support Vector Machine

Unsupervised

Log Clustering

PCA

Invariants Mining

28HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Anomaly Detection Methods

• PCA

• Sn: Normal Space principal components

• Sa: Anomaly Space remaining components

• Check whether the projected vector is far
from the normal space

29HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Datasets

• Evaluation metric:

Precision / Recall / F1-Score

Time-stamp

Task-identifier

30HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Accuracy of supervised methods

HDFS BGL (Fixed window) BGL (Sliding window)

Finding 1: Supervised anomaly detection achieves high precision, while recall varies.
Finding 2: Sliding windows achieve higher accuracy than fixed windows.

31HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Accuracy of unsupervised methods

HDFS BGL (Sliding window)

Finding 3: Unsupervised methods generally achieve inferior performance against
supervised methods.

32HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Various hyper-parameters settings

Supervised Methods Unsupervised Methods

Findings 4: The window size and step size affect both supervised and unsupervised
methods a lot.

33HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Efficiency

Finding 5: Most anomaly detection methods scale linearly with log size

HDFS BGL (Sliding window)

34HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Summary

• Provide an empirical study of six SOTA anomaly detection methods.

• Compare their accuracy and efficiency on two representative log datasets.

• Release an open-source toolkit for easy reuse and further study.

35HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Outline

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

[Chapter 4]

• Topic 2: Log-based Problem Identification

36HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Problem type matters

• Some types of problem are more impactful, should be fixed with a higher
priority.

Background

Report to

37HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

1. Lack of labels

2. Huge log size

Challenges

Unsupervised Methods

Inefficient

38HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

3. Highly imbalanced log distribution
oHigh service availability in cloud-based online service systems

Challenges

99.999%

39HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

3. Highly imbalanced log distribution
oproblems occasionally happen, demonstrating a long-tail distribution.

4. Problem impact
odifficult to quantitatively identify the impact of a problem.

Challenges

normal cases

problems

40HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• System KPIs (Key Performance Indicators)
omeasure the system‘s health status in a certain time period

§ Failure Rate

§ Service Availability

§ Average Request Latency

• periodically collected

KPI

1h 1h 1h 1h

Failure rate 0.48 0.23 0.14 0.53

Time interval

41HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Log3C: Cascading Clustering and Correlation Analysis

Method

Framework of Log3C

Input: Raw logs, KPIs

Output: Clusters of impactful problems

42HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Parsing and Vectorization

• Logs are parsed into log events with log parsing.

• Different log events play different roles in problem identification.
• IDF weighting

• Importance weighting

43HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Traditional clustering methods are infeasible.

Cascading Clustering

Log

Sequences
Sampling

Matched

data

Mismatched

data

Clustering &

Pattern extraction
Matching

44HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Group log sequences with cascading clustering in each time interval

Cascading Clustering

45HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Impactful problems: Can lead to the degradation of KPI.

• Goal: Identify clusters that are highly correlated with KPI’s changes.

Correlation Analysis

1. correlate cluster sizes—KPI values with the

Multivariate Linear Regression (MLR)

2. t-statistic hypothesis test

46HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Datasets: Real-world data from the service system X

• Manual labelling

Experiments

1. Problem or not?

2. Problem type?

47HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Effectiveness Evaluation:
oProblem Detection (Binary Classification)

Precision / Recall / F1-Measure

oProblem Identification (Clustering)
Normalized Mutual Information (NMI) ~ between [0, 1]

• Efficiency Evaluation:
oClustering Time (in seconds)

Experiments

48HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Accuracy of Problem Detection:

Experiments

49HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Accuracy of Problem Identification (NMI):

Experiments

Log3C-SC is the comparison method, which replaces the Cascading Clustering with
the standard clustering (HAC)

50HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Efficiency of Cascading Clustering (seconds):

Experiments

51HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Cascading clustering under various configurations

Experiments

Decreasing sample rate does not sacrifice the accuracy while greatly
reducing the time

52HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Propose Cascading Clustering, an efficient clustering method.

• Propose the Log3C framework, leverage the KPI information as the
supervision.

• Experiments on real-world datasets confirm its effectiveness and
efficiency.

• Deployed to the actual maintenance of Microsoft products.

Summary

53HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Outline

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

[Chapter 5]

• Topic 3: Gradient-based Attribution Estimation

54HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• What is the “Log” in intelligent software?

oParameters? Millions, Billions

oArchitecture? CNN, RNN

oGradient Information

Background

Input

Prediction

(Output)

55HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Neural Machine Translation (NMT) as the intelligent software

Background

The weather is really

Translate

今天 天⽓ 真 不错Chinese

English nice today

56HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• How to “interpret” the intelligent software?
o Input-output correspondence

• Word Importance: the importance of each input word to the output
sentence.

• Also applicable in the adversarial attack and defense.

Background

57HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Challenges

1. Traditional methods on interpreting NMT:

• Attention: attention is not explanation [Jain et al. 2019]

• Erasure: it requires the reference [Li et al. 2016]

• Causality: it requires a Variational Auto Encoder model and ensembles the

attention. [Alvarez-Melis et al. 2017]

58HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Challenges

2. The basic gradient information does not apply to deep neural networks

f(x) = 1 − ReLU(1−x)

f(0) = 0

f(1) = 1

ReLU

gradient is 0 since f is flat when x = 1

Gradient Saturation

59HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Integrated Gradients

• Intuition: find a baseline input x’ to calculate the relative feature
importance in x

• F : the model, e.g., Transformer, RNNSearch

• m: the m-th word in the input sentence

• n: the n-th word in the output sentence

• alpha: interpolation ratio

Method

X

X’

60HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Integrated Gradients with approximation

• S: Total interpolation steps

• k: the k-th interpolation step

Method

X

X’

61HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Word Importance:
• Step 1: Estimate the integrated gradient of each word pair;

• Step 2: Sum the contribution of an input word to all output words;

• Step 3: Normalize with the Softmax function.

Method

62HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Translation performance when perturbing the most important words

• Perturbation Types:
• Deletion

• Mask

• Grammatical Replacement

Evaluation Metric

Original Input:

Perturbed Input:

63HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Effectiveness of different word importance estimation methods.

Experiments

Finding 1: Important words are more influential on translation performance than the others.
Finding 2: The gradient-based method is superior to comparative methods (e.g., Attention) in
estimating word importance.

64HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Further experiments on model structures, language pairs, and directions.

Experiments

Finding 3: The proposed method is consistently effective against model structures, language
pairs and translation directions

65HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Comparison with the supervised erasure method.

• Erasure:
• Estimate the word importance by perturbing each word one by one
and calculate the performance drop

Experiments

∆ 𝐵𝐿𝐸𝑈

0.5

1.7

2.3

0.8

66HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Machine translation problems

Experiments

Reference

Under-translation

Mis-translation

Over-translation

67HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Detecting under-translation errors without reference
• a straightforward method: words with the least word importance (top N%)

Experiments

Original Input:

F1-measure

68HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• We approach understanding NMT by investigating the word importance
via a gradient-based method.

• Empirical results show that the proposed method is superior to baseline
methods.

• Our study suggests the possibility of detecting the under-translation error
via a gradient-based method.

Summary

69HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Outline

• Topic 1: Log-based Anomaly Detection

• Topic 2: Log-based Problem Identification

• Topic 3: Gradient-based Attribution Estimation

• Conclusion and Future Work

70HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Conclusion

Interpretability-
driven SRE

Traditional
Software

Intelligent
Software

Log-based Anomaly
Detection

Ø The first empirical study
Ø Release a toolkit for reuse

Ø Highly imbalanced data w/o labels

Ø Cascading clustering and
Correlation with KPI

Ø Gradient information for word
importance

Ø Detect translation errors

Log-based Problem
Identification

Gradient-based

Attribution Estimation

Phrase-table-based

Knowledge Assessment

71HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Future Work

• Interpretable automated log analysis

Logs

KPIs

Traffic

Trust? Not trust?

ALERT !!!

72HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Future Work

• Robustness of Intelligent Software

73HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Publications
[1] Shilin He, Xing Wang, Shuming Shi, Michael R. Lyu, Zhaopeng Tu. Assessing the Bilingual Knowledge

Learned by Neural Machine Translation Models. (EMNLP 2020) *

[2] Shilin He, Yongchang Hao, Xing Wang, Shuming Shi, Michael R. Lyu, Zhaopeng Tu. Multi-Task Learning

with Auxiliary Autoregressive Decoder for Non-Autoregressive Machine Translation. (EMNLP 2020) *

[3] Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu. Loghub: A Large Collection of System Log Datasets

towards Automated Log Analytics (Arxiv 2020)

[4] Shilin He, Zhaopeng Tu, Xing Wang, Longyue Wang, Michael R. Lyu, Shuming Shi. Towards

Understanding Neural Machine Translation with Word Importance. (EMNLP 2019)

[5] Shilin He, Qingwei Lin, Jianguang Lou, Hongyu Zhang, Michael R. Lyu, Dongmei Zhang. Identifying

Impactful Service System Problems via Log Analysis. (ESEC/FSE 2018)

[6] Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu. Experience Report: System Log Analysis for Anomaly

Detection. (ISSRE2016)

* denotes in submission

74HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Publications
[7] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, Michael R. Lyu. Logzip: Extracting Hidden

Structures via Iterative Clustering for Execution Log Compression. (ASE 2019)

[8] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, Michael R. Lyu. Tools and

Benchmarks for Automated Log Parsing. (ICSE 2019)

[9] Pinjia He, Zhuangbin Chen, Shilin He, Michael R. Lyu. Characterizing the Natural Language Descriptions

in Software Logging Statements. (ASE 2018)

[10] Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R. Lyu. Towards Automated Log Parsing for Large-

Scale Log Data Analysis. IEEE Transactions on Dependable and Secure Computing (TDSC 2017)

[11] Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R. Lyu. An Evaluation Study on Log Parsing and Its Use

in Log Mining. (DSN 2016)

75HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Intelligent Log Analysis

• LogPAI (Log analytics power by AI)

LoggingStatements

[ASE’ 2018]
Loghub

[Arxiv’ 2020]
Logzip

[ASE’ 2019]
Logparser

[ICSE’ 2019]
[TDSC’ 2017]
[DSN’ 2016]

Loglizer &

Log3C

[ISSRE’ 2016]
[FSE’ 2018]

76HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Open-Source Projects

• LogPAI on GitHub

— Log Analytics Powered by AI

§ 2000+ stars

§ 800+ forks

§ Release a large dataset (77GB log)
Downloads:

77HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Thanks!

78HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Back up slides

79HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Software Reliability is Challenging

• Intelligent Software Complexity
• BERT (Google):

base: 110 million parameters with 12 layers and 12 attention heads

large: 340 million parameters with 24 layers and 16 attention heads

• T5 (Google): 11 billion parameters

• GPT-3 (OpenAI): 175 billion parameters

80HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

An Overview

81HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Intelligent Log Analysis

• Log Generation

82HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Interpretability

• Interpretability is the degree to which a human can understand the cause
of a decision

• Human-understandable insights
• visual explanations

• natural language explanations

• domain specific explanations

• sometimes referred as “Program Analysis”, “Program Comprehension”,
“Program Understanding”

83HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Interpretability is approached from the following aspects:

• Input-Output Attribution

• Internal Representations

• Data Point Attribution

Background

84HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Why PCA does not perform well on BGL?

The BGL data distribution after PCA projection, normal cases and anomalies are not
separable

85HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• NMT model structures

Background

86HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Linguistic Analysis on important words
• POS Tag

Experiments

Finding 4: Certain syntactic categories have higher importance while the
categories vary across language pairs.

87HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Linguistic Analysis on important words
• Fertility: word alignment

Experiments

Finding 5: Words of high fertility are always important.

88HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Outline

• Topic 1: Log-based Anomaly Detection

• Topic 2: Log-based Problem Identification

• Topic 3: Gradient-based Attribution Estimation

• Topic 4: Phrase-table-based Knowledge Assessment

• Conclusion and Future Work

89HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• NMT evolution path

• Essential translation knowledge should be the same
• bilingual lexicons (translation model)

• grammar (reordering and language models)

Motivations

Rule-based
Machine

Translation

Statistical
Machine

Translation

Neural
Machine

Translation

90HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Motivations

1. The input-output attribution provides local explanations only

2. There is no previous work on the knowledge assessment in NMT
oHow to represent the knowledge?

oHow to quantitatively assess the knowledge?

It’s a nice day

Translate

C'est une belle journéeFrench

English

91HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Method

• Bilingual knowledge:

• Bilingual knowledge is at the core of adequacy modelling, a major
weakness of NMT models

• We propose to assess the bilingual knowledge with the statistical
translation model, also known as the phrase table.

a une

nice belle

92HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

An Example

• Phrase table extracted from the NMT model

93HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Method

• Phrase table extraction

94HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Method

• Implementation
1. Force-decode the training examples

2. Build masked training data, $MASK$

3. Extract the phrase table

4. Remove phrase pairs that contain the $MASK$

95HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• RQ1: Is phrase table a reasonable bilingual knowledge representation?

• Evaluation metric for phrase table

o Phrase Table Size o Recovery Percent oTranslation Quality

The extracted phrase table correlates well with the NMT performance,
consistent across language pairs, random seeds and model structures.

96HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• RQ2: How do NMT models learn the bilingual knowledge during training?

• Different types of phrase pairs with increasing complexity
o Phrase Length o Reordering Type o Word Fertility

NMT models tend to learn simple patterns first and complex patterns later.

97HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• RQ3: Are the phrase pairs never forgotten once learnt?

Forgetting dynamics occur in the learning of bilingual knowledge.

98HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• RQ4: Does the trained NMT model sufficiently exploit the bilingual
knowledge embedded in the training examples?

NMT models distill the bilingual knowledge by discarding those low-quality
phrase pairs.

99HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Revisit recent advances
• Model capacity

• Data Augmentation

• Domain Adaptation

Increasing the model capacity does not increase the bilingual knowledge

Data Augmentation induces new knowledge and enhance existing
knowledge over the baseline

Domain Adaptation learns more and better bilingual knowledge from the in-

domain data while forgetting partial out-of-domain knowledge

100HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Revisit recent advances
• Model capacity

Increasing the model capacity does not increase the bilingual knowledge

101HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Revisit recent advances
• Data augmentation

102HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Revisit recent advances
• Domain Adaptation

103HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Discussion

• Potential applications:
• Error diagnosis: debugs mistaken predictions by tracing associated phrase pairs

• Curriculum learning: dynamically assigns more weights to unlearned instances

• Phrase memory: stores unlearned phrases in NMT to query when generating
translations

C'est une belle Phrase Table

104HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Summary

• We interpret NMT models by assessing the bilingual knowledge with the
phrase table.

• Extensive experiments show that the phrase table is reasonable and
consistent.

• Equipped with the interpretable phrase table, we obtain several
interesting findings.

105HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Conclusion

Interpretability-
driven SRE

Traditional
Software

Intelligent
Software

Log-based Anomaly
Detection

Ø Experience report
Ø Release toolkit for reuse

Ø Highly imbalanced data w/o labels

Ø Cascading clustering and
Correlation with KPI

Ø Gradient information for word
importance

Ø Detect translation errors

Log-based Problem
Identification

Gradient-based

Attribution Estimation

Phrase-table-based

Knowledge Assessment Ø Phrase-table to globally explain
model behaviors

Ø Explain recent model improvements

106HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Thesis Contributions

