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• Traditional software

Software is Everywhere

Software is Eating the World --- Marc Andreessen, The Wall Street Journal

• Intelligent software
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Software Reliability is Crucial

• Software reliability is important to both service providers and end users!

Revenue Loss User DissatisfactionA Tiny Problem
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Real-World Examples

148,213 websites 121,176 unique domains

[Statistics from: https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/]

• Unreliable traditional software
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Real-World Examples

• Unreliable intelligent software
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Software reliability is a must
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Software reliability engineering is challenging

since the increasing complexity and scale of 

software make it hard to comprehend
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Software Reliability is Challenging

• Traditional Software Complexity
• Hadoop: 4,103,332 lines of code in 14 languages

• Intelligent Software Complexity
• BERT-large (Google): 340 million parameters

• T5 (Google): 11 billion parameters

• GPT-3 (OpenAI): 175 billion parameters
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If we cannot understand the software, 

how could we keep it reliable?

Interpretability is the first step
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Traditional Software Interpretation

• Development Practices
o source code readability, e.g., writing code comments

• Static Program Analysis
o control-flow analysis 

odata-flow analysis 

o abstract interpretation 

• Dynamic Program Analysis
o testing 

oprogram slicing 

omonitoring, e.g., logs
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Intelligent Software Interpretation

• A thriving research area under study
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Intelligent Software Interpretation

• Interpretability helps the intelligent software reliability.
o testing:

o robustness and safety

• interpretability ↑ reliability ↑

o debugging
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Thesis Contributions

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Ø The first empirical study
on log anomaly detection

Ø Release a toolkit for reuse

Ø Efficient cascading
clustering algorithm

Ø Correlates with KPIs
to identify problems

Ø Gradient information to
explain model predictions
by word importance

Ø Detect under-translation
errors

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

Ø Phrase-table to globally
explain model behaviors

Ø Explain model learning
dynamics and advanced
techniques.

[Chapter 3]

[ISSRE’16]
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[EMNLP’20]*
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Automated Log Interpretation -- Motivation

• Manual analysis of logs is almost infeasible.

• Logs are generated at a high rate. (10+ TB/hour)

• Large-scale software is often implemented by hundreds of developers.

• Manual inspection is error-prone.

Automated Log Interpretation
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Automated Log Interpretation

Log Parsing Feature Extraction Log Mining

• A general framework
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Automated Log Interpretation

Log Parsing Feature Extraction Log Mining
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Automated Log Interpretation

Log Parsing Feature Extraction Log Mining

30 mins 30 mins

Step: 10 min

30 mins 30 mins

oTask identifier:

Job ID, Process ID, etc

oTime stamp:

1) Fixed window

2) Sliding window

An example of HDFS logs

Log Sequence Grouping
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Automated Log Interpretation

oEach feature denotes a log event in the log sequence.

o For example

E1 E2 E3 E4 E5 E6

[ 1, 0, 2, 3, 1, 0 ]

E1 occurs once

E4 occurs three times.

Feature Vectorization

Log Parsing Feature Extraction Log Mining
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Automated Log Interpretation

o Problem Identification

Normal cases

Different problem typesAnomalies

Normal cases

o Anomaly Detection

Log Parsing Feature Extraction Log Mining
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Outline

• Topic 1: Log-based Anomaly Detection

• Topic 2: Log-based Problem Identification

• Topic 3: Gradient-based Attribution Estimation

• Conclusion and Future Work
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Outline

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

[Chapter 3]

• Topic 1: Log-based Anomaly Detection
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Log-based Anomaly Detection

• Motivation:
o Lack of comparison among existing anomaly detection methods.

oThe state-of-the-art anomaly detection methods are unknown.

oNo open-source tools are currently available.

• Contribution:
oprovide the first empirical study on log-based anomaly detection methods.

o release the toolset for public reuse.
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Anomaly Detection Methods

• State-of-the-art research studies (Before 2016)

o Failure diagnosis using decision trees [ICAC’04]

o Failure prediction in IBM bluegene/l event logs [ICDM’07]

oDetecting largescale system problems by mining console logs [SOSP’09] 

oMining invariants from console logs for system problem detection. [USENIX 

ATC’10]

o Log clustering based problem identification for online service systems [ICSE’16] 

o…
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Anomaly Detection Methods

• Taxonomy

Anomaly Detection

Supervised

Logistic Regression

Decision Tree

Support Vector Machine

Unsupervised

Log Clustering

PCA

Invariants Mining
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Anomaly Detection Methods

• PCA

• Sn: Normal Space principal components

• Sa: Anomaly Space remaining components

• Check whether the projected vector is far
from the normal space
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Experiments

• Datasets

• Evaluation metric:

Precision / Recall / F1-Score

Time-stamp

Task-identifier
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Experiments

• Accuracy of supervised methods

HDFS BGL (Fixed window) BGL (Sliding window)

Finding 1: Supervised anomaly detection achieves high precision, while recall varies.
Finding 2: Sliding windows achieve higher accuracy than fixed windows.
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Experiments

• Accuracy of unsupervised methods

HDFS BGL (Sliding window)

Finding 3: Unsupervised methods generally achieve inferior performance against 
supervised methods. 
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Experiments

• Various hyper-parameters settings

Supervised Methods Unsupervised Methods

Findings 4: The window size and step size affect both supervised and unsupervised 
methods a lot.
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Experiments

• Efficiency

Finding 5: Most anomaly detection methods scale linearly with log size

HDFS BGL (Sliding window)
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Summary

• Provide an empirical study of six SOTA anomaly detection methods. 

• Compare their accuracy and efficiency on two representative log datasets. 

• Release an open-source toolkit for easy reuse and further study. 
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Outline

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

[Chapter 4]

• Topic 2: Log-based Problem Identification
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• Problem type matters

• Some types of problem are more impactful, should be fixed with a higher
priority.

Background

Report to
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1. Lack of labels

2. Huge log size

Challenges

Unsupervised Methods

Inefficient
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3. Highly imbalanced log distribution
oHigh service availability in cloud-based online service systems

Challenges

99.999%
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3. Highly imbalanced log distribution
oproblems occasionally happen, demonstrating a long-tail distribution.

4. Problem impact
odifficult to quantitatively identify the impact of a problem.

Challenges

normal cases

problems
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• System KPIs (Key Performance Indicators)
omeasure the system‘s health status in a certain time period

§ Failure Rate

§ Service Availability

§ Average Request Latency

• periodically collected

KPI

1h 1h 1h 1h

Failure rate 0.48 0.23 0.14 0.53

Time interval
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Log3C: Cascading Clustering and Correlation Analysis

Method

Framework of Log3C

Input: Raw logs, KPIs

Output: Clusters of impactful problems
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Parsing and Vectorization

• Logs are parsed into log events with log parsing.

• Different log events play different roles in problem identification.
• IDF weighting

• Importance weighting
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Traditional clustering methods are infeasible.

Cascading Clustering

Log 

Sequences
Sampling

Matched 

data

Mismatched 

data

Clustering &

Pattern extraction 
Matching 
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• Group log sequences with cascading clustering in each time interval

Cascading Clustering
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• Impactful problems: Can lead to the degradation of KPI.

• Goal: Identify clusters that are highly correlated with KPI’s changes.

Correlation Analysis

1. correlate cluster sizes—KPI values with the

Multivariate Linear Regression (MLR)

2. t-statistic hypothesis test
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• Datasets: Real-world data from the service system X

• Manual labelling

Experiments

1. Problem or not?

2. Problem type?
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• Effectiveness Evaluation:
oProblem Detection (Binary Classification)

Precision / Recall / F1-Measure

oProblem Identification (Clustering)
Normalized Mutual Information (NMI) ~ between [0, 1]

• Efficiency Evaluation:
oClustering Time (in seconds)

Experiments
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• Accuracy of Problem Detection:

Experiments
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• Accuracy of Problem Identification (NMI):

Experiments

Log3C-SC is the comparison method, which replaces the Cascading Clustering with 
the standard clustering (HAC)
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• Efficiency of Cascading Clustering (seconds):

Experiments
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• Cascading clustering under various configurations

Experiments

Decreasing sample rate does not sacrifice the accuracy while greatly 
reducing the time
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• Propose Cascading Clustering, an efficient clustering method.

• Propose the Log3C framework, leverage the KPI information as the
supervision.

• Experiments on real-world datasets confirm its effectiveness and
efficiency.

• Deployed to the actual maintenance of Microsoft products.

Summary
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Outline

Interpretability-driven
SRE

Traditional Software Intelligent Software

Log-based Anomaly
Detection

Log-based Problem
Identification

Gradient-based
Attribution Estimation

Phrase-table-based
Knowledge Assessment

[Chapter 5]

• Topic 3: Gradient-based Attribution Estimation
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• What is the “Log” in intelligent software?

oParameters? Millions, Billions

oArchitecture? CNN, RNN

oGradient Information

Background

Input

Prediction

(Output)
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• Neural Machine Translation (NMT) as the intelligent software

Background

The weather is really

Translate

今天 天⽓ 真 不错Chinese

English nice today
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• How to “interpret” the intelligent software?
o Input-output correspondence

• Word Importance: the importance of each input word to the output
sentence.

• Also applicable in the adversarial attack and defense.

Background



57HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Challenges

1. Traditional methods on interpreting NMT:

• Attention: attention is not explanation [Jain et al. 2019]

• Erasure: it requires the reference [Li et al. 2016]

• Causality: it requires a Variational Auto Encoder model and ensembles the

attention. [Alvarez-Melis et al. 2017]
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Challenges

2. The basic gradient information does not apply to deep neural networks

f(x) = 1 − ReLU(1−x)

f(0) = 0

f(1) = 1

ReLU

gradient is 0 since f is flat when x = 1

Gradient Saturation
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Integrated Gradients

• Intuition: find a baseline input x’ to calculate the relative feature
importance in x

• F : the model, e.g., Transformer, RNNSearch

• m: the m-th word in the input sentence

• n: the n-th word in the output sentence

• alpha: interpolation ratio

Method

X

X’
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• Integrated Gradients with approximation

• S: Total interpolation steps

• k: the k-th interpolation step

Method

X

X’
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• Word Importance:
• Step 1: Estimate the integrated gradient of each word pair;

• Step 2: Sum the contribution of an input word to all output words;

• Step 3: Normalize with the Softmax function.

Method
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• Translation performance when perturbing the most important words

• Perturbation Types:
• Deletion

• Mask

• Grammatical Replacement

Evaluation Metric

Original Input:

Perturbed Input:
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• Effectiveness of different word importance estimation methods.

Experiments

Finding 1: Important words are more influential on translation performance than the others.
Finding 2: The gradient-based method is superior to comparative methods (e.g., Attention) in 
estimating word importance. 
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• Further experiments on model structures, language pairs, and directions.

Experiments

Finding 3: The proposed method is consistently effective against model structures, language
pairs and translation directions
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• Comparison with the supervised erasure method.

• Erasure:
• Estimate the word importance by perturbing each word one by one
and calculate the performance drop

Experiments

∆ 𝐵𝐿𝐸𝑈

0.5

1.7

2.3

0.8
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• Machine translation problems

Experiments

Reference

Under-translation

Mis-translation

Over-translation
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• Detecting under-translation errors without reference
• a straightforward method: words with the least word importance (top N%)

Experiments

Original Input:

F1-measure
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• We approach understanding NMT by investigating the word importance 
via a gradient-based method.

• Empirical results show that the proposed method is superior to baseline
methods. 

• Our study suggests the possibility of detecting the under-translation error
via a gradient-based method.

Summary
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Outline

• Topic 1: Log-based Anomaly Detection

• Topic 2: Log-based Problem Identification

• Topic 3: Gradient-based Attribution Estimation

• Conclusion and Future Work
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Conclusion

Interpretability-
driven SRE

Traditional
Software

Intelligent
Software

Log-based Anomaly
Detection

Ø The first empirical study
Ø Release a toolkit for reuse

Ø Highly imbalanced data w/o labels

Ø Cascading clustering and
Correlation with KPI

Ø Gradient information for word
importance

Ø Detect translation errors

Log-based Problem
Identification

Gradient-based

Attribution Estimation

Phrase-table-based

Knowledge Assessment
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Future Work

• Interpretable automated log analysis

Logs

KPIs

Traffic

Trust? Not trust?

ALERT !!!
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Future Work

• Robustness of Intelligent Software
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Intelligent Log Analysis

• LogPAI (Log analytics power by AI)

LoggingStatements

[ASE’ 2018]
Loghub

[Arxiv’ 2020]
Logzip

[ASE’ 2019]
Logparser

[ICSE’ 2019]
[TDSC’ 2017]
[DSN’ 2016]

Loglizer &

Log3C

[ISSRE’ 2016]
[FSE’ 2018]
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Open-Source Projects

• LogPAI on GitHub

— Log Analytics Powered by AI

§ 2000+ stars

§ 800+ forks

§ Release a large dataset (77GB log)
Downloads:
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Thanks!
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Back up slides
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Software Reliability is Challenging

• Intelligent Software Complexity
• BERT (Google):

base: 110 million parameters with 12 layers and 12 attention heads

large: 340 million parameters with 24 layers and 16 attention heads

• T5 (Google): 11 billion parameters

• GPT-3 (OpenAI): 175 billion parameters
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An Overview
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Intelligent Log Analysis

• Log Generation
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Interpretability

• Interpretability is the degree to which a human can understand the cause 
of a decision

• Human-understandable insights
• visual explanations

• natural language explanations

• domain specific explanations

• sometimes referred as “Program Analysis”, “Program Comprehension”,
“Program Understanding”
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• Interpretability is approached from the following aspects:

• Input-Output Attribution

• Internal Representations

• Data Point Attribution

Background
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Experiments

• Why PCA does not perform well on BGL?

The BGL data distribution after PCA projection, normal cases and anomalies are not
separable
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• NMT model structures

Background



86HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

• Linguistic Analysis on important words
• POS Tag

Experiments

Finding 4: Certain syntactic categories have higher importance while the 
categories vary across language pairs. 
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• Linguistic Analysis on important words
• Fertility: word alignment

Experiments

Finding 5: Words of high fertility are always important. 
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Outline

• Topic 1: Log-based Anomaly Detection

• Topic 2: Log-based Problem Identification

• Topic 3: Gradient-based Attribution Estimation

• Topic 4: Phrase-table-based Knowledge Assessment

• Conclusion and Future Work
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• NMT evolution path

• Essential translation knowledge should be the same
• bilingual lexicons (translation model)

• grammar (reordering and language models)

Motivations

Rule-based 
Machine

Translation

Statistical
Machine

Translation

Neural
Machine

Translation
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Motivations

1. The input-output attribution provides local explanations only

2. There is no previous work on the knowledge assessment in NMT
oHow to represent the knowledge?

oHow to quantitatively assess the knowledge?

It’s a nice day

Translate

C'est une belle journéeFrench

English
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Method

• Bilingual knowledge:

• Bilingual knowledge is at the core of adequacy modelling, a major 
weakness of NMT models 

• We propose to assess the bilingual knowledge with the statistical 
translation model, also known as the phrase table. 

a une

nice belle
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An Example

• Phrase table extracted from the NMT model
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Method

• Phrase table extraction
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Method

• Implementation
1. Force-decode the training examples

2. Build masked training data, $MASK$

3. Extract the phrase table

4. Remove phrase pairs that contain the $MASK$
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Experiments

• RQ1: Is phrase table a reasonable bilingual knowledge representation?

• Evaluation metric for phrase table

o Phrase Table Size o Recovery Percent oTranslation Quality

The extracted phrase table correlates well with the NMT performance,
consistent across language pairs, random seeds and model structures. 
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Experiments

• RQ2: How do NMT models learn the bilingual knowledge during training?

• Different types of phrase pairs with increasing complexity
o Phrase Length o Reordering Type o Word Fertility

NMT models tend to learn simple patterns first and complex patterns later. 
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Experiments

• RQ3: Are the phrase pairs never forgotten once learnt?

Forgetting dynamics occur in the learning of bilingual knowledge. 
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Experiments

• RQ4: Does the trained NMT model sufficiently exploit the bilingual 
knowledge embedded in the training examples? 

NMT models distill the bilingual knowledge by discarding those low-quality 
phrase pairs. 



99HE, Shilin Interpretability-driven Intelligent Software Reliability Engineering

Experiments

• Revisit recent advances
• Model capacity

• Data Augmentation

• Domain Adaptation

Increasing the model capacity does not increase the bilingual knowledge

Data Augmentation induces new knowledge and enhance existing 
knowledge over the baseline

Domain Adaptation learns more and better bilingual knowledge from the in-

domain data while forgetting partial out-of-domain knowledge 
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Experiments

• Revisit recent advances
• Model capacity

Increasing the model capacity does not increase the bilingual knowledge
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Experiments

• Revisit recent advances
• Data augmentation 
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Experiments

• Revisit recent advances
• Domain Adaptation
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Discussion

• Potential applications:
• Error diagnosis: debugs mistaken predictions by tracing associated phrase pairs 

• Curriculum learning: dynamically assigns more weights to unlearned instances

• Phrase memory: stores unlearned phrases in NMT to query when generating 
translations

C'est une belle Phrase Table
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Summary

• We interpret NMT models by assessing the bilingual knowledge with the 
phrase table.

• Extensive experiments show that the phrase table is reasonable and 
consistent.

• Equipped with the interpretable phrase table, we obtain several
interesting findings.
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Conclusion

Interpretability-
driven SRE

Traditional
Software

Intelligent
Software

Log-based Anomaly
Detection

Ø Experience report
Ø Release toolkit for reuse

Ø Highly imbalanced data w/o labels

Ø Cascading clustering and
Correlation with KPI

Ø Gradient information for word
importance

Ø Detect translation errors

Log-based Problem
Identification

Gradient-based

Attribution Estimation

Phrase-table-based

Knowledge Assessment Ø Phrase-table to globally explain
model behaviors

Ø Explain recent model improvements
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Thesis Contributions


