

Interpretability-driven Intelligent Software Reliability Engineering

HE, Shilin

Ph.D. Oral Defense

Supervisor: Prof. Michael R. Lyu

2020/09/03

Software is Everywhere

• Traditional software

Intelligent software

Software is Eating the World --- Marc Andreessen, The Wall Street Journal

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Software Reliability is Crucial

• Software reliability is important to both service providers and end users!

Real-World Examples

• Unreliable traditional software

Microsoft news recap: **Azure outage** problems explained ... OnMSFT (blog) - 11 Apr 2020 Sit back, grab some coffee, and enjoy the read! Microsoft explains recent **Azure outage** problems in Europe due to "constrained capacity". Azure ...

Google outage hits Gmail, Snapchat and Nest The Guardian - 8 Apr 2020 Google declared the outage resolved at 4:57pm BST. Big cloud providers such as Google Cloud Platform, Amazon Web Services (AWS) and ...

AWS cloud issues hit Sydney region CRN Australia - 22 Jan 2020 #aws outage Sydney - Its been 3 hours already ...Anyone knows what's happening and recovery timeframe. Impacted ones include glue services ...

AWS suffers cloud problems in Sydney region iTnews - 22 Jan 2020

[Statistics from: https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/]

Real-World Examples

• Unreliable intelligent software

Software reliability is a must

Software reliability engineering is challenging

since the increasing complexity and scale of software make it hard to comprehend

Software Reliability is Challenging

- Traditional Software Complexity
 - Hadoop: 4,103,332 lines of code in 14 languages

Language	Code Lines	Comment Lines	Comment Ratio	Blank Lines	Total Lines	Total Percentage
Java	1,688,473	543,932	24.4%	287,755	2,520,160	61.4%
XML	1,149,831	31,931	2.7%	36,977	1,218,739	29.7%
C++	122,960	51,981	29.7%	25,464	200,405	4.9%

- Intelligent Software Complexity
 - **BERT**-large (Google): 340 million parameters
 - T5 (Google): 11 billion parameters
 - GPT-3 (OpenAI): 175 billion parameters

If we cannot understand the software, how could we keep it reliable?

Interpretability is the first step

Traditional Software Interpretation

• Development Practices

o source code readability, e.g., writing code comments

Static Program Analysis

 control-flow analysis
 data-flow analysis
 abstract interpretation

• Dynamic Program Analysis • testing

 \circ program slicing

o monitoring, e.g., logs

- 1 | 2008-11-09 20:55:54 PacketResponder 0 for block blk_321 terminating
- 2 2008-11-09 20:55:54 Received block blk_321 of size 67108864 from /10.251.195.70
- 3 2008-11-09 20:55:54 PacketResponder 2 for block blk_321 terminating
- 4 2008-11-09 20:55:54 Received block blk_321 of size 67108864 from /10.251.126.5
- 5 2008-11-09 21:56:50 10.251.126.5:50010:Got exception while serving blk_321 to /10.251.127.243
- 6 2008-11-10 03:58:04 Verification succeeded for blk_321
- 7 2008-11-10 10:36:37 Deleting block blk_321 file /mnt/ hadoop/dfs/data/current/subdir1/blk_321
 - 2008-11-10 10:36:50 Deleting block blk_321 file /mnt/ hadoop/dfs/data/current/subdir51/blk_321

8

Intelligent Software Interpretation

• A thriving research area under study

Intelligent Software Interpretation

• Interpretability helps the intelligent software reliability. • testing: • debugging

(b) Explanation

 \circ robustness and safety

interpretability ↑ reliability ↑

- The first empirical study on log anomaly detection
 Release a toolkit for reuse
- Efficient cascading clustering algorithm
- Correlates with KPIs to identify problems
- Gradient information to explain model predictions by word importance
- Detect under-translation errors
- Phrase-table to globally explain model behaviors
- Explain model learning dynamics and advanced techniques.

[ISSRE'16]

Interpretability-driven Intelligent Software Reliability Engineering

- The first empirical study on log anomaly detection
 Release toolkit for reuse
- Efficient cascading clustering algorithm
- Correlates with KPIs to identify problems
- Gradient information to explain model predictions by word importance
- Detect under-translation errors
- Phrase-table to globally explain model behaviors
- Explain model learning dynamics and advanced techniques.

[FSE'18]

[EMNLP'19]

[EMNLP'20]*

Automated Log Interpretation -- Motivation

- Manual analysis of logs is almost infeasible.
 - Logs are generated at a high rate. (10+ TB/hour)
 - Large-scale software is often implemented by hundreds of developers.
 - Manual inspection is error-prone.

Automated Log Interpretation

• A general framework

01	Name=Request (GET:http://AAA:1000/BBBB/sitedata.html)	t_41bx0
02	Leaving Monitored Scope (EnsureListItemsData) Execution Time=52.9013	t_51xi4
03	HTTP request URL: /14/Emails/MrX(MrX@mail.com)/1c-48f0-b29.eml	t_23hl3
04	HTTP Request method: GET	t_41bx0
05	HTTP request URL: /55/RST/UVX/ADEG/Lists/Files/docXX.doc	t_01mu1
06	Overridden HTTP request method: GET	t_41bx0
07	HTTP request URL: http://AAA:1000/BBBB/sitedata.html	t_41bx0
08	Leaving Monitored Scope (Request (POST:http://AAA:100/BBBB/	t_41bx0
	sitedata.html)) Execution Time=334.319268903038	(Task_ID)

		. Γ
E1	Name=Request (*)	
E2	Leaving Monitored Scope (*) Execution Time = *	\sim
E3	HTTP Request method: *	
E4	HTTP request URL: *	
E5	Overridden HTTP request method: *	

g Parsing

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Interpretability-driven Intelligent Software Reliability Engineering

Feature Vectorization

• Each feature denotes a log event in the log sequence.

For example
E1 E2 E3 E4 E5 E6
[1, 0, 2, 3, 1, 0]
E1 occurs once
E4 occurs three times.

Anomaly Detection

Normal cases

\circ Problem Identification

Anomalies

Different problem types

Interpretability-driven Intelligent Software Reliability Engineering

Outline

- Topic 1: Log-based Anomaly Detection
- Topic 2: Log-based Problem Identification
- Topic 3: Gradient-based Attribution Estimation
- Conclusion and Future Work

Outline

• Topic 1: Log-based Anomaly Detection

Log-based Anomaly Detection

- Motivation:
 - Lack of comparison among existing anomaly detection methods.
 - The state-of-the-art anomaly detection methods are unknown.
 - No open-source tools are currently available.

• Contribution:

provide the first empirical study on log-based anomaly detection methods.
 release the toolset for public reuse.

Anomaly Detection Methods

- State-of-the-art research studies (Before 2016)
 - Failure diagnosis using decision trees [ICAC'04]
 - Failure prediction in IBM bluegene/l event logs [ICDM'07]
 - Detecting largescale system problems by mining console logs [SOSP'09]
 - Mining invariants from console logs for system problem detection. [USENIX ATC'10]
 - \circ Log clustering based problem identification for online service systems [ICSE'16]

0...

Anomaly Detection Methods

• Taxonomy

Anomaly Detection Methods

• PCA

- **Sn: Normal Space** principal components
- Sa: Anomaly Space remaining components

• Check whether the projected vector is far from the normal space

• Datasets

System	#Time span	#Data size	#Log messages	#Anomalies		
BGL	7 months	708 M	4,747,963	348,460	\longrightarrow	Time-stamp
HDFS	38.7 hours	1.55 G	11,175,629	16,838		Task-identifier

• Evaluation metric:

Precision / Recall / F1-Score

• Accuracy of supervised methods

Interpretability-driven Intelligent Software Reliability Engineering

Accuracy of unsupervised methods

• Various hyper-parameters settings

Supervised Methods

Unsupervised Methods

Interpretability-driven Intelligent Software Reliability Engineering

• Efficiency

Summary

- Provide an empirical study of **six** SOTA anomaly detection methods.
- Compare their accuracy and efficiency on two representative log datasets.
- Release an open-source toolkit for easy reuse and further study.

To teach students on Unsupervised Machine learning based Log Analysis #38

() Closed hraokr opened this issue on Apr 21 · 1 comment

Outline

• Topic 2: Log-based Problem Identification

Background

- Problem type matters
- Some types of problem are more impactful, should be fixed with a higher priority.

IMPACT	Widespread (Extensive)	Large (Significant)	Limited (Moderate)	Localized (Minor)
CRITICAL	CRITICAL	CRITICAL	HIGH	MEDIUM
HIGH	CRITICAL	HIGH	MEDIUM	LOW
MEDIUM	HIGH	MEDIUM	LOW	LOW
LOW	MEDIUM	LOW	LOW	LOW

1. Lack of labels

Unsupervised Methods

2. Huge log size

3. Highly imbalanced log distribution
O High service availability in cloud-based online service systems

99.999%

3. Highly imbalanced log distribution

problems occasionally happen, demonstrating a long-tail distribution.

4. Problem impact

o difficult to quantitatively identify the impact of a problem.

KPI

• System KPIs (Key Performance Indicators)

 ${\rm \circ}$ measure the system's health status in a certain time period

- Failure Rate
- Service Availability
- Average Request Latency
- periodically collected

Log₃C: **C**ascading **C**lustering and **C**orrelation Analysis

Input: Raw logs, KPIs

Output: Clusters of impactful problems

Framework of Log₃C

Parsing and Vectorization

- Logs are parsed into log events with log parsing.
- Different log events play different roles in problem identification.
 - IDF weighting
 - Importance weighting

Interpretability-driven Intelligent Software Reliability Engineering

Cascading Clustering

Traditional clustering methods are infeasible.

Cascading Clustering

• Group log sequences with cascading clustering in each time interval

Correlation Analysis

- Impactful problems: Can lead to the degradation of KPI.
- Goal: Identify clusters that are highly correlated with KPI's changes.

- 1. correlate cluster sizes—KPI values with the Multivariate Linear Regression (MLR)
- 2. t-statistic hypothesis test

• Datasets: Real-world data from the service system X

Data	Snapshot starts	#Log Seq (Size)	#Events	#Types
Data 1	Sept 5th $10:50$	$359,843 \ (722 \text{MB})$	365	16
Data 2	Oct 5th 04:30	472,399 (996MB)	526	21
Data 3	Nov 5th 18:50	$184,751 \ (407 \mathrm{MB})$	409	14

- Manual labelling
 - 1. Problem or not?
 - 2. Problem type?

• Effectiveness Evaluation:

Problem Detection (Binary Classification)
Precision / Recall / F1-Measure

 $Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$

Problem Identification (Clustering)

Normalized Mutual Information (NMI) ~ between [0, 1]

 $NMI(Y,C) = \frac{2 \times I(Y;C)}{[H(Y) + H(C)]}$ Y = class labels H(.) = Entropy C = cluster labels I(Y;C) = Mutual Information b/w Y and C

• Efficiency Evaluation: • Clustering Time (in seconds)

• Accuracy of Problem <u>Detection</u>:

Data 1	Precision	Recall	F1-measure
PCA	0.465	0.946	0.623
Invariants Mining	0.604	1	0.753
Log3C	0.900	0.920	0.910
Data 2	Precision	Recall	F1-measure
PCA	0.142	0.834	0.242
Invariants Mining	0.160	0.847	0.269
m Log3C	0.897	0.826	0.860
Data 3	Precision	Recall	F1-measure
PCA	0.207	0.922	0.338
Invariants Mining	0.168	0.704	0.271
m Log3C	0.834	0.903	0.868

• Accuracy of Problem Identification (NMI):

	Size	10k	50k	100k	200k
Data 1	Log3C-SC	0.659	0.706	0.781	0.822
	m Log3C	0.720	0.740	0.798	0.834
	Size	10k	50k	100k	200k
Data 2	Log3C-SC	0.610	0.549	0.600	0.650
	m Log3C	0.624	0.514	0.663	0.715
	Size	10k	50k	100k	180k
Data 3	Log3C-SC	0.601	0.404	0.792	0.828
	m Log3C	0.680	0.453	0.837	0.910

Log₃C-SC is the comparison method, which replaces the *Cascading Clustering* with the *standard clustering* (HAC)

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

• Efficiency of Cascading Clustering (seconds):

Data 1	Size	10k	50k	100k	200k
	SC	127.6	2319.2	9662.3	38415.5
	\mathbf{CC}	1.0	4.3	9.2	20.7
Data 2	Size	10k	50k	100k	200k
	SC	80.6	2469.1	8641.2	38614.0
	\mathbf{CC}	0.7	3.8	9.5	18.9
Data 3	Size	10k	50k	100k	180k
	\mathbf{SC}	81.5	2417.2	8761.2	33728.3
	\mathbf{CC}	0.8	4.0	8.8	18.3

• Cascading clustering under various configurations

Summary

- Propose Cascading Clustering, an efficient clustering method.
- Propose the Log₃C framework, leverage the KPI information as the supervision.
- Experiments on real-world datasets confirm its effectiveness and efficiency.
- Deployed to the actual maintenance of Microsoft products.

Outline

• Topic 3: Gradient-based Attribution Estimation

Background

• What is the "Log" in intelligent software?

• Parameters? Millions, Billions

• Architecture? CNN, RNN

 \circ Gradient Information

Background

• Neural Machine Translation (NMT) as the intelligent software

Facebook translates 'good morning' into 'attack them', leading to arrest

Palestinian man questioned by Israeli police after embarrassing mistranslation of caption under photo of him leaning against bulldozer

▲ Facebook's machine translation mix-up sees man questioned over innocuous post confused with attack threat. Photograph: Thibault Camus/AP

Facebook has apologised after an error in its machine-translation service saw Israeli police arrest a Palestinian man for posting "good morning" on his social media profile.

Interpretability-driven Intelligent Software Reliability Engineering

Background

• How to "interpret" the intelligent software? Input-output correspondence

- Word Importance: the importance of each <u>input word</u> to the <u>output</u> <u>sentence</u>.
 - Also applicable in the adversarial attack and defense.

- 1. Traditional methods on interpreting NMT:
 - Attention: attention is not explanation [Jain et al. 2019]

• Erasure: it requires the reference [Li et al. 2016]

• Causality: it requires a Variational Auto Encoder model and ensembles the attention. [Alvarez-Melis et al. 2017]

2. The basic gradient information does not apply to deep neural networks

f(x) = 1 - ReLU(1-x) Gradient Saturation

gradient is 0 since f is flat when x = 1

Integrated Gradients

• Intuition: find a baseline input **x'** to calculate the *relative* feature importance in **x**

$$IG_m^n(\mathbf{x}) = (\mathbf{x}_m - \mathbf{x}'_m) \int_{\alpha=0}^1 \frac{\partial F(\mathbf{x}' + \alpha(\mathbf{x} - \mathbf{x}'))_n}{\partial \mathbf{x}_m} d\alpha$$

- F : the model, e.g., Transformer, RNNSearch
- m: the m-th word in the input sentence
- n: the n-th word in the output sentence
- alpha: interpolation ratio

Χ'

Х

• Integrated Gradients with approximation

$$IG_m^n(\mathbf{x}) = \frac{(\mathbf{x}_m - \mathbf{x}'_m)}{S} \sum_{k=0}^{S} \frac{\partial F(\mathbf{x}' + \frac{k}{S}(\mathbf{x} - \mathbf{x}'))_n}{\partial \mathbf{x}_m}$$

- S: Total interpolation steps
- k: the k-th interpolation step

- Word Importance:
 - Step 1: Estimate the integrated gradient of each word pair;
 - Step 2: Sum the contribution of an input word to all output words;
 - Step 3: Normalize with the Softmax function.

Interpretability-driven Intelligent Software Reliability Engineering

Evaluation Metric

• Translation performance when perturbing the most important words

- Perturbation Types:
 - Deletion
 - Mask
 - Grammatical Replacement

• Effectiveness of different word importance estimation methods.

Finding 1: Important words are more influential on translation performance than the others. Finding 2: The gradient-based method is superior to comparative methods (e.g., Attention) in estimating word importance.

HE, Shilin

• Further experiments on model structures, language pairs, and directions.

Finding 3: The proposed method is consistently effective against model structures, language pairs and translation directions

- Comparison with the supervised erasure method.
- Erasure:
 - Estimate the word importance by perturbing each word one by one and calculate the performance drop

5

4

• Machine translation problems

- Detecting under-translation errors without reference
 - a straightforward method: words with the least word importance (top N%)

Original Input:

Method	Top 5%	Top 10%	Top 15%
Attention	0.058	0.077	0.119
Erasure	0.154	0.170	0.192
Attribution	0.248	0.316	0.342

F1-measure

Summary

- We approach understanding NMT by investigating the word importance via a gradient-based method.
- Empirical results show that the proposed method is superior to baseline methods.
- Our study suggests the possibility of detecting the under-translation error via a gradient-based method.

Outline

• Topic 1: Log-based Anomaly Detection

- Topic 2: Log-based Problem Identification
- Topic 3: Gradient-based Attribution Estimation
- Conclusion and Future Work

Conclusion

Future Work

• Interpretable automated log analysis

Future Work

• Robustness of Intelligent Software

Publications

[1] **Shilin He**, Xing Wang, Shuming Shi, Michael R. Lyu, Zhaopeng Tu. Assessing the Bilingual Knowledge Learned by Neural Machine Translation Models. (EMNLP 2020) *

[2] **Shilin He**, Yongchang Hao, Xing Wang, Shuming Shi, Michael R. Lyu, Zhaopeng Tu. Multi-Task Learning with Auxiliary Autoregressive Decoder for Non-Autoregressive Machine Translation. (EMNLP 2020) *

[3] **Shilin He**, Jieming Zhu, Pinjia He, Michael R. Lyu. Loghub: A Large Collection of System Log Datasets towards Automated Log Analytics (Arxiv 2020)

[4] **Shilin He**, Zhaopeng Tu, Xing Wang, Longyue Wang, Michael R. Lyu, Shuming Shi. Towards Understanding Neural Machine Translation with Word Importance. (EMNLP 2019)

[5] **Shilin He**, Qingwei Lin, Jianguang Lou, Hongyu Zhang, Michael R. Lyu, Dongmei Zhang. *Identifying Impactful Service System Problems via Log Analysis*. (ESEC/FSE 2018)

[6] **Shilin He**, Jieming Zhu, Pinjia He, Michael R. Lyu. *Experience Report: System Log Analysis for Anomaly Detection*. (ISSRE2016)

* denotes in submission

Publications

[7] Jinyang Liu, Jieming Zhu, **Shilin He**, Pinjia He, Zibin Zheng, Michael R. Lyu. Logzip: Extracting Hidden Structures via Iterative Clustering for Execution Log Compression. (ASE 2019)

[8] Jieming Zhu, **Shilin He**, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, Michael R. Lyu. *Tools and Benchmarks for Automated Log Parsing*. (ICSE 2019)

[9] Pinjia He, Zhuangbin Chen, **Shilin He**, Michael R. Lyu. Characterizing the Natural Language Descriptions in Software Logging Statements. (ASE 2018)

[10] Pinjia He, Jieming Zhu, **Shilin He**, Jian Li, Michael R. Lyu. *Towards Automated Log Parsing for Large-Scale Log Data Analysis*. IEEE Transactions on Dependable and Secure Computing (TDSC 2017)

[11] Pinjia He, Jieming Zhu, **Shilin He**, Jian Li, Michael R. Lyu. An Evaluation Study on Log Parsing and Its Use in Log Mining. (DSN 2016)

Intelligent Log Analysis

LogPAI (Log analytics power by AI)

Open-Source Projects

• LogPAI on GitHub

Log Analytics Powered by AI

- 2000+ stars
- **800+** forks
- Release a large dataset (77GB log) Downloads:

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

Thanks!

Back up slides

Software Reliability is Challenging

- Intelligent Software Complexity
 - BERT (Google):

base: 110 million parameters with 12 layers and 12 attention heads large: 340 million parameters with 24 layers and 16 attention heads

- **T5** (Google): 11 billion parameters
- GPT-3 (OpenAI): 175 billion parameters

An Overview

Intelligent Log Analysis

Log Generation

Source Code Snippet

/* hadoop/hdfs../ LeaseRenewer.java * (Simplified for easy presentation) */

Try

```
renew();
lastRenewed =
Time.monotonicNow();
} catch (IOException ie)
```

LOG.warn("Failed to renew lease for " + clientsString() + " for " + (elapsed/1000) + " seconds. Will retry shortly ...", ie);

Log Messages

[1] 2015-10-18 18:05:48,680 WARN [LeaseRenewer:service@clusters:9000] org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease for [DFSClient_NONMAPREDUCE_1537864556_1] for 51 seconds. Will retry shortly ...

[2] 2015-10-18 18:05:51,180 WARN [LeaseRenewer:service@clusters:9000] org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease for [DFSClient_NONMAPREDUCE_-274751412_1] for 79 seconds.

[3] 2015-10-18 21:51:51,181 WARN [LeaseRenewer:service@clusters:9000] org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease for [DFSClient_NONMAPREDUCE_-1547462655_1] for 785 seconds. Will retry shortly ...

Interpretability

- Interpretability is the degree to which *a human* can understand the cause of a decision
- Human-understandable insights
 - visual explanations
 - natural language explanations
 - domain specific explanations

 sometimes referred as "Program Analysis", "Program Comprehension", "Program Understanding"

Background

- Interpretability is approached from the following aspects:
 - Input-Output Attribution
 - Internal Representations
 - Data Point Attribution

• Why PCA does not perform well on BGL?

The BGL data distribution after PCA projection, normal cases and anomalies are not separable

Background

• NMT model structures

HE, Shilin

Interpretability-driven Intelligent Software Reliability Engineering

- Linguistic Analysis on important words
 - POS Tag

Туре		Chinese⇒English		English ⇒ French			English⇒Japanese			
		Count	Attri.	\triangle	Count	Attri.	\triangle	Count	Attri.	\triangle
t	Noun	0.383	0.407	+6.27%	0.341	0.355	+4.11%	0.365	0.336	-7.95%
ten	Verb	0.165	0.160	-3.03%	0.146	0.131	-10.27%	0.127	0.123	-3.15%
OU	Adj.	0.032	0.029	-9.38%	0.076	0.072	-5.26%	0.094	0.088	-6.38%
\circ	Total	0.579	0.595	[+2.76%]	0.563	$0.5\overline{58}$	-0.89%	0.587	$\bar{0}.\bar{5}4\bar{7}$	6.81%
ee	Prep.	0.056	0.051	-8.93%	0.120	0.132	+10.00%	0.129	0.151	+17.05%
-Fr	Dete.	0.043	0.043	0.00%	0.102	0.101	-0.98%	0.112	0.103	-8.04%
ent	Punc.	0.137	0.131	-4.38%	0.100	0.091	-9.00%	0.096	0.120	+25.47%
nte	Others	0.186	0.179	-3.76%	0.115	0.118	+2.61%	0.076	0.079	+3.95%
C C	Total	0.421	0.405	-3.80%	0.437	$\bar{0.442}$	$ \bar{+}\bar{1}.\bar{1}4\% $	0.413	$\bar{0}.\bar{4}5\bar{3}$	+9.69%

Finding 4: Certain syntactic categories have higher importance while the categories vary across language pairs.

- Linguistic Analysis on important words
 - Fertility: word alignment

Fortility	Chinese⇒English			English ⇒ French			English⇒Japanese		
rentinty	Count	Attri.	\triangle	Count	Attri.	\triangle	Count	Attri.	\triangle
≥ 2	0.087	0.146	+67.82%	0.126	0.138	+9.52%	0.117	0.143	+22.22%
1	0.621	0.622	+0.16%	0.672	0.670	-0.30%	0.570	0.565	-0.88%
(0,1)	0.115	0.081	-29.57%	0.116	0.113	-2.59%	0.059	0.055	-6.78%
0	0.176	0.150	-14.77%	0.086	0.079	-8.14%	0.254	0.237	-6.69%

Outline

• Topic 1: Log-based Anomaly Detection

- Topic 2: Log-based Problem Identification
- Topic 3: Gradient-based Attribution Estimation
- Topic 4: Phrase-table-based Knowledge Assessment
- Conclusion and Future Work

Motivations

• NMT evolution path

- Essential translation knowledge should be the same
 - bilingual lexicons (translation model)
 - grammar (reordering and language models)

Motivations

1. The input-output attribution provides local explanations **only**

2. There is no previous work on the knowledge assessment in NMT
o How to represent the knowledge?
o How to quantitatively assess the knowledge?

Method

• Bilingual knowledge:

- Bilingual knowledge is at the core of adequacy modelling, a major weakness of NMT models
- We propose to assess the *bilingual knowledge* with the statistical translation model, also known as the *phrase table*.

An Example

• Phrase table extracted from the NMT model

(a) Output of an English \Rightarrow German NMT model

Source	Target
I do	Ich
I do hope that	hoffe ich , dass
hope that we finally	hoffe, dass wir endlich
winning again	wieder gewinnen
winning again	gewinnen einer
	••

(b) Phrase table extracted from the NMT model

Method

• Phrase table extraction

Algorithm 1 Constructing Phrase Table

Input: training example (x, y), alignment a, mask m **Output**: phrase set \mathcal{R}

- 1: procedure PHRASETABLE
- 2: EXTRACTION
- 3: ESTIMATION
- 4: procedure EXTRACTION
- 5: $\widehat{\mathcal{R}} \leftarrow \text{extract candidates from } \{(\mathbf{x}, \mathbf{y}), \mathbf{a}\}$
- 6: for each $r \in \widehat{\mathcal{R}}$ do \triangleright priors of NMT predictions
- 7: **if** r is consistent with **m then**
- 8: $\mathcal{R}.append(r)$
- 9: procedure ESTIMATION
- 10: standard procedure

Method

Implementation

1. Force-decode the training examples

$$m_j = \begin{cases} 1, & \text{if } y_j = \operatorname*{argmax}_{y_j' \in V} P(y_j' | \mathbf{y}_{< j}, \mathbf{x}) \\ & y_{j'}' \in V \\ 0, & \text{otherwise} \end{cases}$$

- 2. Build masked training data, \$MASK\$
- 3. Extract the phrase table
- 4. Remove phrase pairs that contain the \$MASK\$

- RQ1: Is phrase table a reasonable bilingual knowledge representation?
- Evaluation metric for phrase table

The extracted phrase table correlates well with the NMT performance, consistent across language pairs, random seeds and model structures.

- RQ2: How do NMT models learn the bilingual knowledge during training?
- Different types of phrase pairs with increasing complexity

 OPhrase Length
 O

• RQ3: Are the phrase pairs never forgotten once learnt?

• RQ4: Does the trained NMT model sufficiently exploit the bilingual knowledge embedded in the training examples?

Phrasa Tahla	Shared		Non-Shared		All	
	Size	BLEU	Size	BLEU	Size	BLEU
Full	9.0M	17.32	8.5M	4.50	17.5M	17.91
NMT	9.0M	17.90	0M	0	9.0M	17.90

NMT models distill the bilingual knowledge by discarding those low-quality phrase pairs.

- Revisit recent advances
 - Model capacity

Increasing the model capacity does not increase the bilingual knowledge

Data Augmentation

Data Augmentation induces new knowledge and enhance existing knowledge over the baseline

• Domain Adaptation

Domain Adaptation learns more and better bilingual knowledge from the indomain data while forgetting partial out-of-domain knowledge

- Revisit recent advances
 - Model capacity

	Model	N	MT	Phras	Phrase Table		
	WIUUCI	#Para	BLEU	Size	BLEU		
	SMALL	38M	25.45	7.7M	17.35		
	BASE	98M	27.11	9.0M	17.90		
	BIG	284M	28.40	9.2M	17.89		
	Model	Sha	ared	Non-S	hared		
	Model	Sha Size	ared BLEU	Non-S Size	bhared BLEU		
:	Model Small	Sha Size 7.0M	ared BLEU 17.53	Non-S Size 0.7M	Shared BLEU 2.37		
:	Model Small Base	Sha Size 7.0M 7.0M	ared BLEU 17.53 17.49	Non-S Size 0.7M 2.0M	Shared BLEU 2.37 3.57		

Increasing the model capacity does not increase the bilingual knowledge

- Revisit recent advances
 - Data augmentation

Model	NN	MT	Phrase Table		
WIUUEI	#Para	BLEU	Size	BLEU	
BASE	98M	27.11	9.0M	17.90	
+ BT	98M	29.75	20.9M	19.26	
+ FT	98M	28.43	28.0M	19.33	

Model	Sh	ared	Non-Shared		
	Size	BLEU	Size	BLEU	
BASE	8.3M	17.67	0.7M	1.78	
+ BT	8.3M	18.61	12.6M	10.45	
BASE	8.4M	17.83	0.5M	1.21	
+ FT	8.4M	18.30	19.6M	11.25	

- Revisit recent advances
 - Domain Adaptation

Fine	NM	IT	Phrase Table		
Tune	# Para.	BLEU	Size	BLEU	
×	98M	15.78	168K	16.08	
\checkmark	98M	31.26	316K	18.50	

Fine	Sha	red	Non-Shared		
Tune	Size	BLEU	Size	BLEU	
×	0.16M	15.95	0.01M	1.65	
\checkmark	0.16M	16.92	0.16M	6.95	

Discussion

- Potential applications:
 - Error diagnosis: debugs mistaken predictions by tracing associated phrase pairs

• Curriculum learning: dynamically assigns more weights to unlearned instances

 Phrase memory: stores unlearned phrases in NMT to query when generating translations

 $C'est \longrightarrow une \longrightarrow belle \longrightarrow Phrase Table$

Summary

- We interpret NMT models by assessing the bilingual knowledge with the phrase table.
- Extensive experiments show that the phrase table is reasonable and consistent.
- Equipped with the interpretable phrase table, we obtain several interesting findings.

Conclusion

> Experience report

Release toolkit for reuse

- Highly imbalanced data w/o labels
- Cascading clustering and Correlation with KPI
- Gradient information for word importance
- Detect translation errors
- Phrase-table to globally explain model behaviors
- Explain recent model improvements

Thesis Contributions

