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Sequential Data is Prevalent
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Sequence Learning

• Discover valuable knowledge from sequential data.

 E.g., forecasting

 Extracting the patterns

• Manual analysis is inefficient and error-prone.

• Sequence learning automatically finds statistically relevant patterns.
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Sequence Learning Tasks

• Sequence Prediction

• Sequence Generation

It’s a nice ?

It’s a nice day

Translate to French

C'est une belle journée

(Sentence Completion)

(Machine Translation)
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The core problem of sequence learning is 
dependency modeling.

[Agrawal et al., Mining Sequential Patterns, 1995]
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• Markov Models:

 Fail to capture long-term dependencies

Traditional Sequence Learning
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Neural Sequence Learning

• Recurrent Neural Networks (RNNs)

• Sequence-to-Sequence Learning

unroll

Encoder(input) Decoder (output)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Attention Mechanism

• Hidden state bottleneck of RNN:
 The source sequence is encoded in one fixed-size vector.

Attention adds shortcut connections to all source elements.

(encoder)

(decoder)
 Attention weights (connection strengths)

 Context vector (weighted summation)
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Self-Attention Mechanism

• RNN’s sequential nature hinders parallel computation.

• Self-Attention Networks (SANs):

 Discard recurrent architectures

 Rely solely on attention mechanisms

 Simultaneously capture dependencies among all elements

 Positional encoding to record order information

RNN RNN with Attention

Shallow

Attention

Deep

Attention

SAN
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Challenges for Attention Mechanisms

• Application domains other than text

 Source code data

 Highly structured, large vocabulary

• Model design deficiencies

 Deep self-attention involves multiple attention heads/layers.

 How to coordinate these components?
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Thesis Contributions

Attention for 

Sequence Learning

Shallow 

Attention

Deep 

Attention

Pre-trained 

Attention Models

Code Completion

Code Generation

Multi-Head Attention

Representation Composition

(Chapter 3)

(Chapter 4)

(Chapter 5)

(Chapter 6)

[IJCAI’18]

[EMNLP’18, NAACL’19]

[AAAI’20]

[*CIKM’20]

* In Submission
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Outline

• Topic 1: Neural Attention for Code Completion

• Topic 2: Multi-Head Self-Attention

• Topic 3: Pre-trained Attention for Code Generation

• Conclusion and Future Work



13 / 64LI, Jian Effective Attention Mechanisms for Sequence Learning

Outline

• Topic 1: Neural Attention for Code Completion

• Topic 2: Multi-Head Self-Attention

• Topic 3: Pre-trained Attention for Code Generation

• Conclusion and Future Work
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Code Completion

https://github.com/kootenpv/neural_complete

Code Suggestion

• Static programming language: C++, JAVA 

 compile-time type information

• Dynamic programming language: Python, JavaScript 
 learning-based language models
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Code Completion with Language Models

• Simplified problem: 
 given a sequence of code tokens, we predict the next one token.

• Method: adapt neural language models (e.g. RNNs) for code completion.

𝑝(𝑤𝑡|𝑤1, 𝑤2, . . . , 𝑤𝑡−1; 𝜃)
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1. Long-range dependencies.

Challenges

⋮
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Challenges

2. Out-of-Vocabulary (OoV) words.

• Rare words

• User-defined identifiers

words

fr
e

q
u

e
n

c
y

Vocabulary

OoVs OoVs cannot be 

correctly predicted!
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Methods

• Deal with long-range dependencies:

Abstract Syntax Tree (AST)

Problem: given a sequence of AST nodes, predict
the next one AST node, including type and value.
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Methods

• Deal with long-range dependencies:

Abstract Syntax Tree (AST)

Exploit the parent-children information on program’s AST.
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Attention Mechanisms

• Deal with long-range dependencies:

Parent attention

𝐴𝑡 = 𝑣𝑇tanh(𝑊𝑚𝑀𝑡 + 𝑊ℎℎ𝑡 1𝐿
𝑇)

𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴𝑡
𝑐𝑡 = 𝑀𝑡𝛼𝑡

𝑇

𝐺𝑡 = tanh 𝑊𝑔 ℎ𝑡; 𝑐𝑡; 𝑝𝑡
𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑣𝐺𝑡 + 𝑏𝑣)

𝑝𝑡 is the parent vector storing hidden state of the parent node on AST.
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Methods
• Deal with OoV words:

Locally repeated terms are prevalent.

Intuition: copy from local context to predict OoVs. (Pointer Network)
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𝑝𝑡 = 𝜎(𝑊𝑝 ℎ𝑡; 𝑐𝑡 + 𝑏𝑝)
𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑝𝑡𝑤𝑡; 1 − 𝑝𝑡 𝑙𝑡])

Learns when and where to copy.

Pointer Mixture Network

• Deal with OoV words:

 Global RNN component

 Local pointer component
 Reuse the attention scores as the pointer distribution

 Controller
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Experiments

• Datasets:

 JavaScript (JS) and Python (PY)

 Type prediction and value prediction.

JavaScript Python

Training Queries 10.7 * 107 6.2 * 107

Test Queries 5.3 * 107 3.0 * 107

Type Vocabulary 95 329

Value Vocabulary 2.6 * 106 3.4 * 106 OoV problem!
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Experiments

• Accuracies on next value prediction with different vocabulary sizes

 Vanilla LSTM: without attention nor pointer.

 Attentional LSTM: context attention and parent attention.

 Pointer Mixture Network: both attention and pointer. 

Vocab. Size JS (1 K) JS (10 K) JS (50 K) PY (1 K) PY (10 K) PY (50 K)

OoV Rate 20% 11% 7% 24% 16% 11%

Vanilla LSTM 69.9% 75.8% 78.6% 63.6% 66.3% 67.3%

Attentional LSTM (Ours) 71.7% 78.1% 80.6% 64.9% 68.4% 69.8%

Pointer Mixture Network (Ours) 73.2% 78.9% 81.0% 66.4% 68.9% 70.1%
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Experiments

• Is the learned pointer distribution meaningful?
• Pointer Random Network: randomize the pointer distribution

Pointer mixture network indeed learns when and where to copy OoVs.
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Summary

1. Propose a parent attention mechanism for AST-based code completion.

2. Propose a pointer mixture network which learns to either generate a new value or 
copy an OoV value from local context.

3. Demonstrate the effectiveness of our model via experiments.
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Outline

• Topic 1: Neural Attention for Code Completion

• Topic 2: Multi-Head Self-Attention

• Topic 3: Pre-trained Attention for Code Generation

• Conclusion and Future Work
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Self-Attention Mechanism

Linear Transformation

Bush held a talk with SharonH:

Q:

K:

V:

𝐐
𝐊
𝐕

= H 

𝐖𝑄

𝐖𝐾

𝐖𝑉

[Vaswani et al., Attention is All You Need, 2017]
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Self-Attention Mechanism

Linear Transformation

Attention Weights

𝐐
𝐊
𝐕

= H 

𝐖𝑄

𝐖𝐾

𝐖𝑉

Att(𝐐,𝐊) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐐𝐊𝑇

𝑑
)

Bush held a talk with SharonH:

Q:

K:

V:

e:

[Vaswani et al., Attention is All You Need, 2017]
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Self-Attention Mechanism

Linear Transformation

Attention Weights

Weighted Sum

𝐐
𝐊
𝐕

= H 

𝐖𝑄

𝐖𝐾

𝐖𝑉

Att(𝐐,𝐊) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐐𝐊𝑇

𝑑
)

𝐎 = Att(𝐐,𝐊) ∙ 𝐕
Bush held a talk with SharonH:

Q:

K:

V:

e:

O:

[Vaswani et al., Attention is All You Need, 2017]
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Multi-Head Self-Attention

Att(𝐐ℎ, 𝐊ℎ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐐ℎ𝐊ℎ𝑇

𝑑𝑘
)

𝐐ℎ

𝐊ℎ

𝐕ℎ

= H 

𝐖𝑄
ℎ

𝐖𝐾
ℎ

𝐖𝑉
ℎ

𝐎ℎ = Att(𝐐ℎ, 𝐊ℎ) ∙ 𝐕ℎ

Bush held a talk with SharonH:

Q:

K:

V:

e:

O:

[Vaswani et al., Attention is All You Need, 2017]
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Multi-Head Self-Attention

Att(𝐐ℎ, 𝐊ℎ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐐ℎ𝐊ℎ𝑇

𝑑𝑘
)

𝐐ℎ

𝐊ℎ

𝐕ℎ

= H 

𝐖𝑄
ℎ

𝐖𝐾
ℎ

𝐖𝑉
ℎ

𝐎ℎ = Att(𝐐ℎ, 𝐊ℎ) ∙ 𝐕ℎ

Bush held a talk with SharonH:

Q:

K:

V:

e:

O:

𝐎𝑓 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝐎1, … , 𝐎𝐻]𝐖𝑂

[Vaswani et al., Attention is All You Need, 2017]
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Deficiencies in Multi-Head Attention

• Diversity: jointly extract information from different representation 
subspaces at different positions.

1. There is no mechanism to guarantee that different attention 
heads indeed capture distinct information.

2. The “Concat+Linear” is not expressive enough to aggregate the 
diverse sub-representations.

-- Information Extraction

-- Information Aggregation
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Our Solutions

1. We introduce a disagreement regularization to explicitly 
encourage the diversity.

2. We replace the standard linear transformation with an advanced 
aggregation function.

-- Information Extraction

-- Information Aggregation
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Disagreement Regularization

• Revise the training objective for seq2seq learning (x -> y):

The auxiliary regularization term 𝐷 ∙ enlarges the distances among 
multiple attention heads.

Do not introduce any new parameters.
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Three Types of Disagreement
• Disagreement on Subspaces that maximizes the cosine distance 

among the projected values:

• Disagreement on Positions that disperses the attended positions
predicted by different heads:

• Disagreement on Outputs that maximizes the cosine distance among 
the outputs of multiple heads:

𝐴ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄ℎ𝐾ℎ𝑇

𝑑𝑘
)
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Advanced Aggregation Function

• Linear transformation is a suboptimal feature fusion approach 
in multi-modal research [1].

• We borrow the idea of routing-by-agreement from Capsule 
Networks [2,3].

 Iteratively update the proportion of how much a part should 
be assigned to a whole.

[1] Fukui et al., Multimodal Compact Bilinear Pooling, in EMNLP 2016.
[2] Sabour et al., Dynamic Routing Between Capsules, in NIPS 2017.
[3] Hinton et al., Matrix Capsules with EM Routing, in ICLR 2017.
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Routing-by-Agreement

• The information of H input capsules is dynamically 
routed to N output capsules.

• Concatenate N output capsules to form the final.

Input Capsules

Vote Vectors

Output Capsules
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Routing-by-Agreement

• Two representative routing algorithms for 𝑪𝒉→𝒏 :

Sabour et al., Dynamic Routing Between Capsules, in NIPS 2017.
Hinton et al., Matrix Capsules with EM Routing, in ICLR 2017.
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Two Complementary Work

Disagreement Regularization: [EMNLP’18]

• improve information extraction

• only adjust loss function

Advanced Aggregation Function: [NAACL’19]

• improve information aggregation

• modify the network architecture

They are complementary to each other and can be applied simultaneously.
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Experiments

[Vaswani et al., Attention is All You Need, 2017]

• Transformer for Seq2Seq
 Machine Translation
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Experiments

• Evaluation study on disagreement regularization:

Only employing output disagreement is most effective (Row 4).
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Experiments

• Evaluation study on advanced aggregation function:

Applying EM Routing at the encoder side best 

balances effectiveness and efficiency (Row 4).
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Experiments

• Combining together and main results:

27.31

24.13

28.2

24.85

28.26

24.68

28.41

24.9

23

25

27

29

En-De Zh-En

Transformer-Base

  + Disagreement

  + Aggregation

  + Both

BLEU

(%)
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Summary

1. Propose disagreement regularization to improve the information extraction in 
multi-head attention.

2. Propose routing-by-agreement aggregation function to adjust the information 
aggregation in multi-head attention.

3. The two approaches are complementary to each other.
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Outline

• Topic 1: Neural Attention for Code Completion

• Topic 2: Multi-Head Self-Attention

• Topic 3: Pre-trained Attention for Code Generation

• Conclusion and Future Work
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Semantic Parsing

• Map natural language utterances to logical forms or executable code.
 Natural language understanding

Player Country Points Winnings($)

S. Stricker United States 9000 1260000

K.J. Choi South Korea 5400 756000

R. Sabbatini South Africa 3400 4760000

M. Calca United States 2067 289333

E. Els South Africa 2067 289333

Question: What is the points of South Korea player?

SQL: SELECT Points WHERE Country = South Korea

Answer: 5400

[Zhong et al., Seq2SQL, 2017]
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Neural Semantic Parsing

• Neural Sequence-to-Sequence models:

 Encoder: encode the natural language semantics

 Decoder: generate the corresponding code

 Sequential: bad performance due to lack of data

 Syntax specific: external knowledge

[Yin et al., ACL 2017]
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Pre-trained Models

• Pre-trained on large-scale text corpus.

 Universal language representations

 Self-attentional Transformer nets

 BERT, GPT, XLNet, etc.

• Fine-tune on downstream tasks.
 Transfer pre-trained knowledge

 Limited data

Pre-trained Model

Task-Specific Model

Raw Sentence

Transformer Encoder

General Language

Representation
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Universal pre-trained attention models

Build semantic parsers that are both 
effective and generalizable?
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Method

• BERT-LSTM

Simplicity

Extensibility

Effectiveness

Pre-trained BERT

Attention

P
o
o
l

Embedding

LSTM

Feed Forward

𝛾

[CLS] find restaurants … [BOS] Restaurant( …

Pointer Distribution

Output Distribution

Natural Language Programming Code

Vocab 

Distribution

copy or generate

minimal additional 

parameters

sequential decoder
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Experiments

• Datasets:

 Almond (Restaurant and People): NL question -> ThingTalk code

 Django: NL description -> Python code

 WiKiSQL: Table, NL Query -> SQL code

• Metric: exact match accuracy
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Evaluation Study

• LSTM decoder vs. Transformer decoder

• Greedy decoding vs. Beam search

• Fine-tune BERT vs. Freeze BERT

74.01

69.5

71.62

55.7

60

50

55

60

65

70

75

Different Systems

A
cc

u
ra

cy
 (

%
)

Standard: LSTM+Greedy+Fine-tune

 - Change LSTM to Transformer

 - Change Greedy to Beam Search

 - Change Fine-tune to Freeze BERT

 - Change Fine-tune to Random BERT

*Experiments on Almond-Restaurant
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• Accuracies on Almond and Django:

Experiments
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Experiments

• Accuracies on WiKiSQL:
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Case Study

• Almond Virtual Assistant

https://almond.stanford.edu/

*Highlighted words: copying probability > 0.9

https://almond.stanford.edu/
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Summary

• Propose BERT-LSTM model for semantic parsing/code generation that is 
both effective and generalizable.

• Achieve state-of-the-art on three of the four experimental datasets.
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Outline

• Topic 1: Neural Attention for Code Completion

• Topic 2: Multi-Head Self-Attention

• Topic 3: Pre-trained Attention for Code Generation

• Conclusion and Future Work
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Conclusion

Attention for 

Sequence Learning

Shallow 

Attention

Deep 

Attention

Pre-trained 

Attention Models

Code Completion

Code Generation

Multi-Head Attention

Representation Composition

 Parent attention on AST

 Pointer mixture network

 Disagreement regularization

 Routing-by-agreement 
aggregation function

 BERT-LSTM model
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Future Work

• Multi-Modal Attention Models

 Textual and visual
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Future Work

• Interpretability and Reliability of Attention Models

 Adversarial attacks
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物有本末，事有終始。知所先後，則近道矣。

Things have their roots and branches, affairs have their end and beginning. 
When you know what comes first and what comes last, then you are near 
the Way.

-《大學》

The Great Learning
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Thanks!


