

Ph.D. Oral Defense

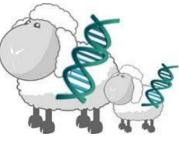
Software Obfuscation with Layered Security

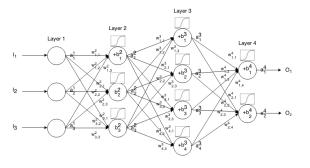
Ph.D. Candidate: Hui Xu Thesis Supervisor: Michael R. Lyu Thesis Committee: Qiang Xu, Patrick Lee, Jiannong Cao

The Problem of Software IP Protection

□ Software intellectual property:

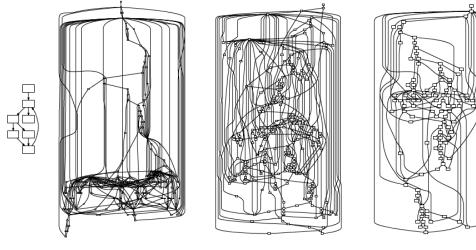
- Server side (secure)
- Client side (vulnerable)


MATE (Man-At-The-End) attack [Collberg'11]: reverse engineer

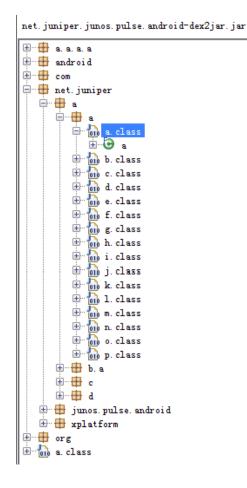

□ Examples of MATE attacks:

Disable License Checking

Clone Codes



Steal Algorithms


Software Obfuscation for IP Protection

□Transform codes to a new version:

- Difficult to read.
- Preserve the semantics.
- Incur little overhead.

Examples of control-flow obfuscation [Yadegari'15]

Example of lexical obfuscation

[Yadegari'15] B. Yadegari, et al. A generic approach to automatic deobfuscation of executable code. IEEE S&P, 2015.

Critical Challenges for Obfuscation

Problem: Obfuscation is not as secure as other security primitives.

Questions:

- What is the best security capability of software obfuscation?
- How to design reliable obfuscation solutions?

Survey Results: Theoretical Area

□[Barak'01]: Negative result for black-box obfuscation.

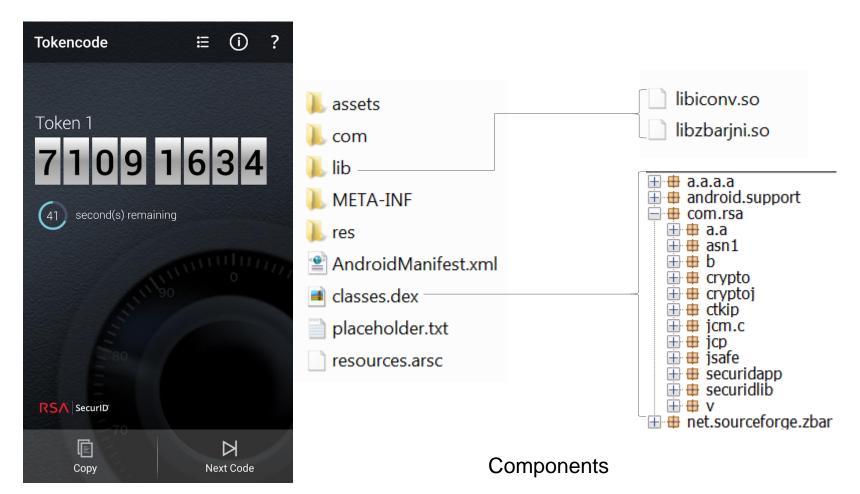
□[Garg'13]: Positive result for indistinguishability obfuscation based on graded encoding (noisy multi-linear maps).

□ Problems of graded encoding:

- Only applicable to circuits: pure arithmetic.
- Inefficient: polynomial overhead (several Gigabytes to obfuscate a 16-bit point function [Apon'14]).

Survey Results: Practical Area

□Most papers assume software written in particular languages, *e.g.,* Java/C/Assembly.

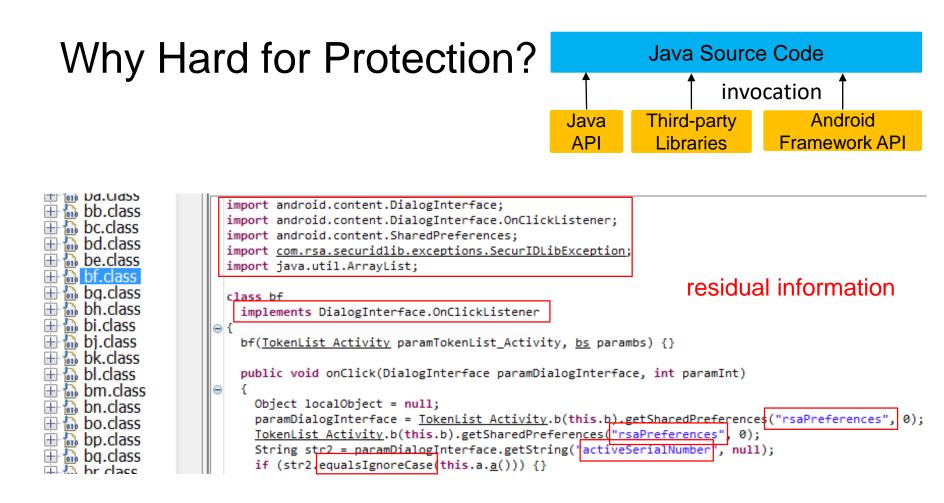

But real-world software is more complicated with heterogeneous components.

Two types of software applications:

- Client-server mode (e.g., Android applications).
- Browser-server mode, *i.e.*, web applications.

Example of Android Apps

RSA SecureID Software Token



Example of Web Applications

Performance RNN

Performance RNN

🛃 Http\	HttpWatch [performance_rnn - Chrome]				
🥚 Reco	rd	🔲 Stop	_星 Clea	ar 📴	View 🕶 😂 Summary 🔍 Find 💌 🏹 Filter 💌 🔚 Save 💌 🚔 💌 💼 Tools 💌 🏈 Help 💌
Started	1 P	Method	Result	Туре	URL
∃ 00	∃ 00 performance_rnn				
+ 0.047	!	GET	(Cac	{}	https://fonts.googleapis.com/css?family=Roboto:300,400,500,700
+ 0.000		GET	(Cac	P	https://magenta.tensorflow.org/demos/performance_rnn/index.html
+ 0.072		GET	(Cac	•	https://ssl.google-analytics.com/ga.js
+ 0.185	!	GET	200	Carl	$https://ssl.google-analytics.com/r/_utm.gif?utmwv=5.7.2 \\ \&utms=3 \\ \&utmn=376382845 \\ \&utmhn=magenta.tensorflow.org \\ \&utmcs=UTF-8 \\ \&utmsr=15 \\ \&utmsr$
+ 0.049	!	GET	200	•	https://storage.googleapis.com/download.magenta.tensorflow.org/demos/performance_rnn/bundle.js
+ 0.049	!	GET	200	ENG.	https://storage.googleapis.com/download.magenta.tensorflow.org/demos/performance_rnn/images/magenta-logo-bottom-text2.png
+ 3.754	!	GET	200	•	https://storage.googleapis.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/fully_connected_biases
+ 3.755	!	GET	200	•	https://storage.googleapis.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/fully_connected_weights
+ 3.564	!	GET	200		https://storage.googleapis.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/manifest.json
+ 3.755	!	GET	200	0	https://storage.googleapis.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/rnn_multi_rnn_cell_cell_0_basic_lstm_cell_bias
+ 3.756	!	GET	200	0	$https://storage.googleap is.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/rnn_multi_rnn_cell_cell_0_basic_lstm_cell_kernel_cell_vernel_cell_vernel_cell_vernel_cell_vernel_vernel_cell_vernel_ve$
+ 3.756	!	GET	200	0	https://storage.googleapis.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/rnn_multi_rnn_cell_cell_1_basic_lstm_cell_bias
+ 3.757	!	GET	200	0	$https://storage.googleap is.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/rnn_multi_rnn_cell_cell_1_basic_lstm_cell_kernel_cell_1_basic_lstm_cell_1_basic_1_basic_lstm_cell_1_basic_lstm_cell_1_basic_lstm_cell_1_basic_lstm_cell_1_basic_lstm_cell_1_basic_1_basic_1_basic_lstm_cell_1_basic_lstm_cell_1_basic_1_basic_1_basic_1_basic_1_basic_1_basic_1_basic_1_basic_1_basic_1_basic_1_basic_lstm_cell_1_basic_1_basibasic_1_basic_1_basic_1_basic_1_basic_1_ba$
+ 3.757	!	GET	200	•	https://storage.googleapis.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/rnn_multi_rnn_cell_cell_2_basic_lstm_cell_bias
+ 3.758	!	GET	200	0	https://storage.googleapis.com/download.magenta.tensorflow.org/models/performance_rnn/dljs/rnn_multi_rnn_cell_cell_2_basic_lstm_cell_kernel
+ 0.048		GET	(Cac	•	https://www.google.com/js/gweb/analytics/autotrack.js
+ 0.048		GET	(Cac	{}	https://www.gstatic.com/external_hosted/material_design_lite/mdl_css-indigo-blue-bundle.css

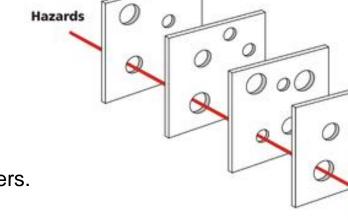
[Bichsel'16]: We can recover a large portion of lexical information based on the residual information, *e.g.*, names of invoked methods and strings.

[Bichsel'16] B. Bichsel, et al. Statistical deobfuscation of android applications, CCS, 2016.

Layered Security

□Principle: Swiss cheese model:

- Mitigate risks through different layers.
- Avoid single point of failure.


Employed in aviation safety, healthcare, etc.

- Safety-critical or security-critical.
- The risks cannot be fully avoided.

Each area has multiple

layers of protections

□Introduced in IATF3.1.

[IATF'02] Information Assurance Technical Framework Release 3.1, Department of Defense, 2002

Losses

Layered Security for Software Obfuscation

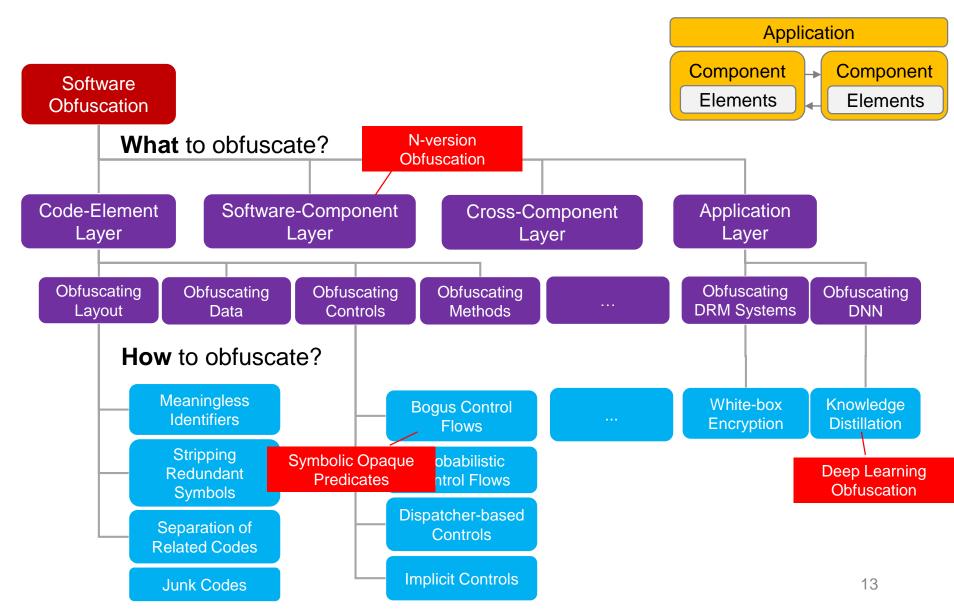
□Why?

- Software is very complicated.
- Secure-against-all obfuscation techniques do not exist.

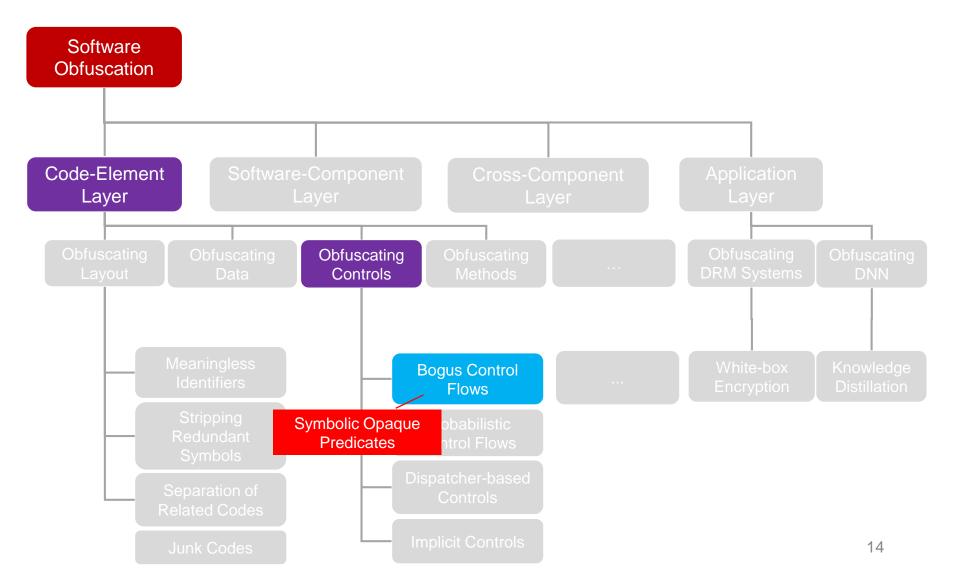
How?

- Based on risk management.
- Integrate multiple obfuscation techniques to mitigate risks.
- Each obfuscation technique only corresponds to particular threats.

Thesis Contributions


Develop a taxonomy of obfuscation for layered security.

Assist developers in designing layered obfuscation solutions.


Enrich the taxonomy with three novel obfuscation techniques.

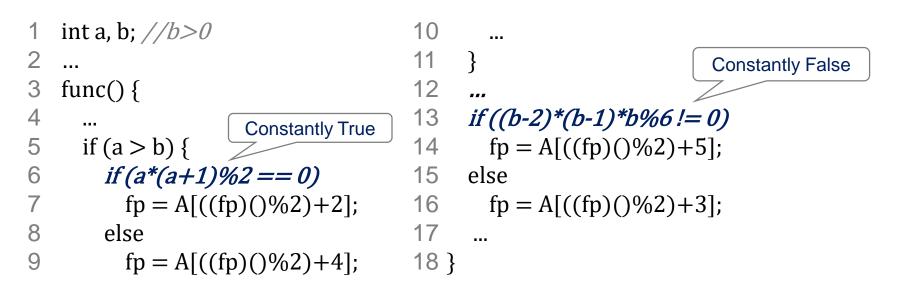
- Symbolic Opaque Predicates
 - Enhance the security of control-flow obfuscation.
- N-version Obfuscation
 - Enable the software with resilience to large-scale tampering attacks.
- Deep Learning Obfuscation
 - Application-level obfuscation technique for deep learning software.

Taxonomy for Layered Obfuscation


Symbolic Opaque Predicates

Opaque Predicate

Definition [Collberg'97] :


- The value is known before compilation time.
- Reverse analysis is difficult.
- □ **Application**: Control-flow obfuscation.

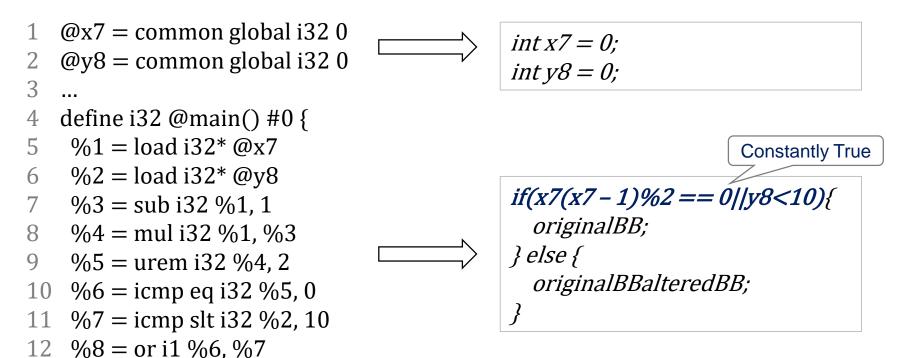
[Collberg'97] Collberg, et al. "A taxonomy of obfuscating transformations." Department of Computer Science, 1997.

Vulnerable Example 1

Problem: Real-world opaque predicates are vulnerable.

Example in [Ogiso'03]

Vulnerable to automated program analysis tools.

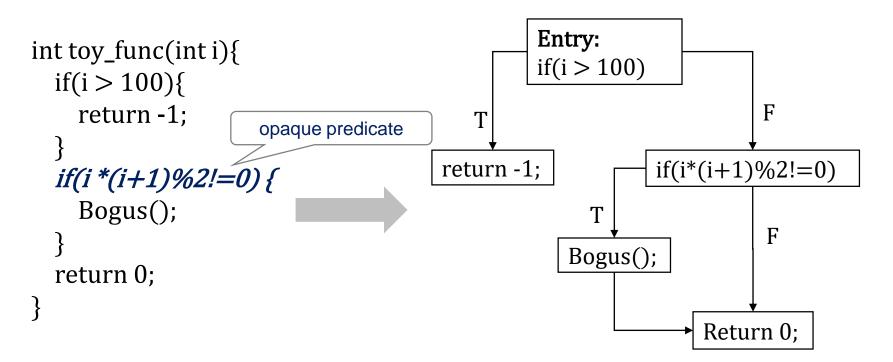

[Ogiso'03] Ogiso, et al. "Software obfuscation on a theoretical basis and its implementation." 2003

Vulnerable Example 2

Default opaque predicate generated by Obfuscator-LLVM [Junod'15]

LLVM IR Code:

Source Code:

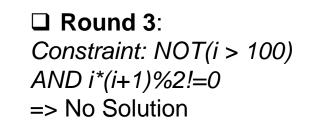


13 br i1 %8, label %originalBB, label %originalBBalteredBB

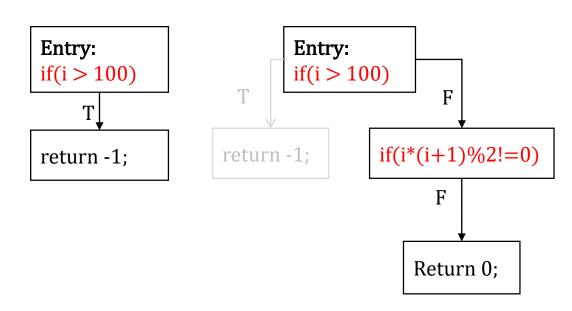
[ollvm'15] Junod, et al. "Obfuscator-LLVM--software protection for the masses." 2015

Adversarial Symbolic Execution

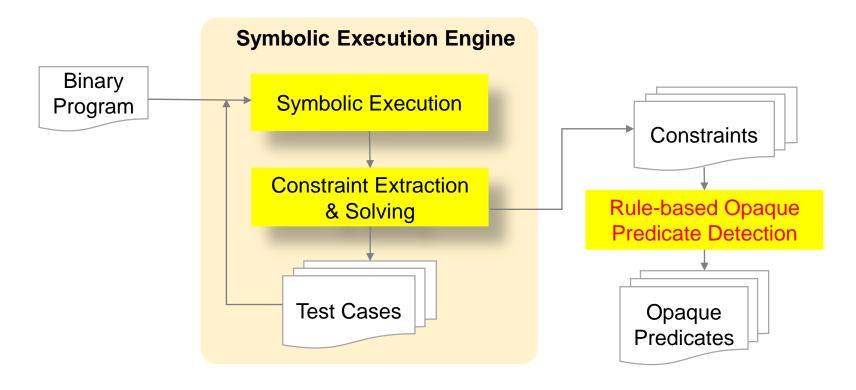
Symbolic execution can detect opaque predicates by traversing the control-flow graph.



Control-flow Graph


Symbolic Execution Steps

Round1: Random Input: i = 1000


Round 2: Constraint: *NOT (i > 100)* => i = 0

It implies opaque predicates and bogus codes.

Adversary Model

The constraints are in the form of CNF: $\psi_1 \wedge \psi_2 \wedge ... \wedge \psi_n$

[Ming'15] Ming, *et al.* "Loop: Logic-oriented opaque predicate detection in obfuscated binary code." CCS'15. [Yadegari'15] Yadegari, *et al.* "Symbolic execution of obfuscated code." CCS'15. [Yadegari'15] Yadegari, *et al.* "A generic approach to automatic deobfuscation of executable code." S&P'15. [Xu'17] Xu, *et al.* "Cryptographic function detection in obfuscated binaries via bit-precise symbolic loop mapping." S&P'17.

Our Objective and Approach

Objective of Symbolic Opaque Predicates:

- Enhance the security of opaque predicates.
- Combat symbolic execution-based attackers.

DApproach:

- Step 1: Investigate the limitations of symbolic execution tools.
- Step 2: Employ these limitations to obfuscate software.

Challenges of Symbolic Execution

	Challenge	Description		
	Symbolic Variable Declaration	Contextual variables other than arguments		
	Covert Propagations	Propagating symbolic values in covert ways		
	Buffer Overflows	Without proper boundary check		
Symbolic-	Parallel Executions	Processing symbolic values in parallel codes		
Reasoning	Symbolic Memories	Symbolic values as the offset of memories		
Challenges	Contextual Symbolic Values	Retrieving contextual values with symbolic values		
	Symbolic Jumps	Symbolic values as the address of jump		
	Floating-Point Numbers	Symbolic values in float/double		
	Arithmetic Overflows	Beyond the scope of an integer type		
	Loops	Change symbolic values within loops		
Path-Explosion Challenges	Crypto Functions	Processing symbolic values with crypto functions		
5	External Function Calls	Processing symbolic values with external functions		

[Hui'18] Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael R. Lyu, "Benchmarking the Capability of Symbolic Execution Tools," TDSC, 2018:22

Example of Symbolic Memories

□ Use symbolic values as the offsets to access memory.

□ Theoretical challenge: some pointer analysis problems are NP-hard.

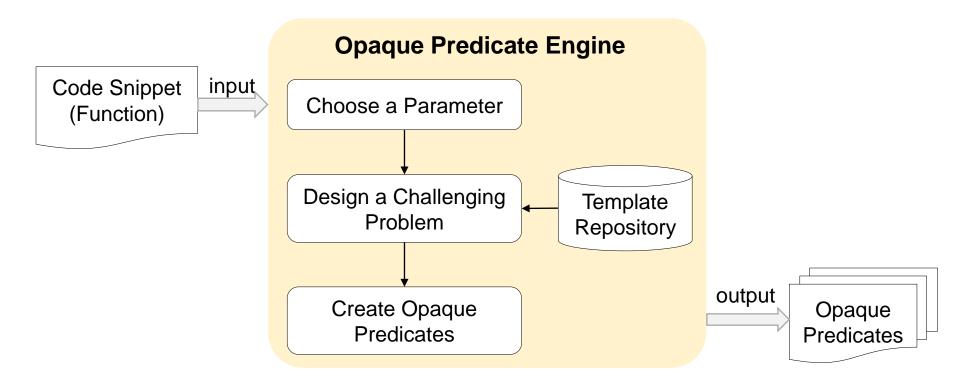
1	<pre>void func(int symvar){</pre>	symbolic variable
2	int $l1_ary[] = \{1, 2, 3, 4, 5, 6, 7\};$	a challenging problem:
3	int l2_ary[] = {symvar,1,2,3,4,5,6,7};	2-leveled array
4	int i = $l2_ary[l1_ary[symvar\%7]];$	
5	if(i == 1)	condition
6	foobar();	
7	}	

Can symbolic execution tools find a test case for triggering foobar()?

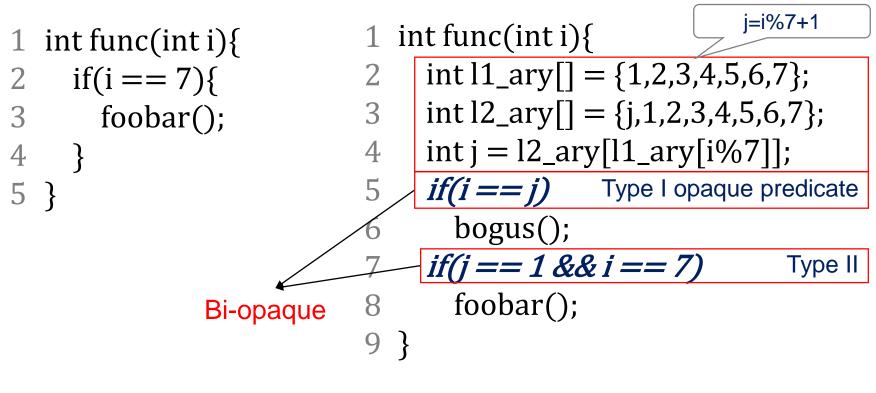
Example of Floating-point Numbers

- □ Floating-point numbers are approximations of real numbers.
- Defined in IEEE-754: Interval for 32-bit float: [1.401298464324817e-45, 32767.9990234].

Examining the Prevalence of Challenges


Lagic_bombs	O Unwatch → 3 ★ Unstar 34 % Fork 3			
♦ Code ① Issues 0 ⑦ Pull requests 0	🏴 Projects 0 🔳 Wiki 🔟 Insights	Settings		
Branch: stable Iogic_bombs / src /		Create new file Upload files Find file History		
Tree source dir, fix heap overflow		Latest commit b977274 on Jun 10		
buffer_overflow				
contextual_symbolic_value				
covert_propogation		Developed at Stanford (2008) https://klee.github.io/		
crypto_functions				
<pre>external_functions</pre>		Developed at UCSB (2016) http://angr.io/		
floating_point	angr			
integer_overflow				
🖿 loop		Developed at Quarkslab (2015) https:// triton.quarkslab.com		
parallel_program				
symbolic_jump	Dynamic Binary Analysis			
symbolic_memory				

Benchmarking Results


These tools failed most of the test cases.

Challenge		Result (pass #/ total #)		
		KLEE	Triton	Angr
	Symbolic Variable Declaration	0/7	0/7	0/7
	Covert Propagations	1/5	1/9	4/9
	Buffer Overflows	0/4	0/4	2/4
Symbolic-	Parallel Executions	0/5	0/5	0/5
Reasoning	Symbolic Memories	5/6	0/8	7/8
Challenges	Contextual Symbolic Values	0/7	0/7	0/7
	Symbolic Jumps	1/1	0/4	2/4
	Floating-Point Numbers	0/5	0/5	2/5
	Arithmetic Overflows	2/2	1/2	2/2
Path-	Loops	0/5	0/5	0/5
Explosion	Crypto Functions	0/2	0/2	0/2
Challenges	External Function Calls	0/8	1/8	3/8
	Total	9/54	3/63	22/63 ₂₆

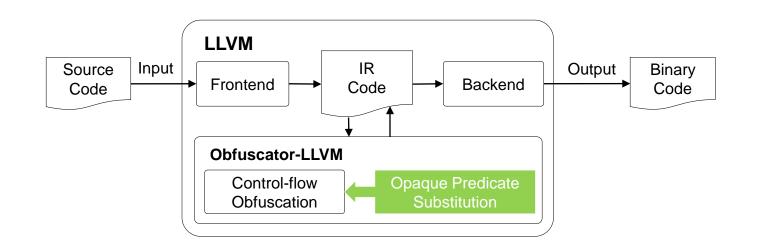
Design Symbolic Opaque Predicates

Template of Symbolic Memories

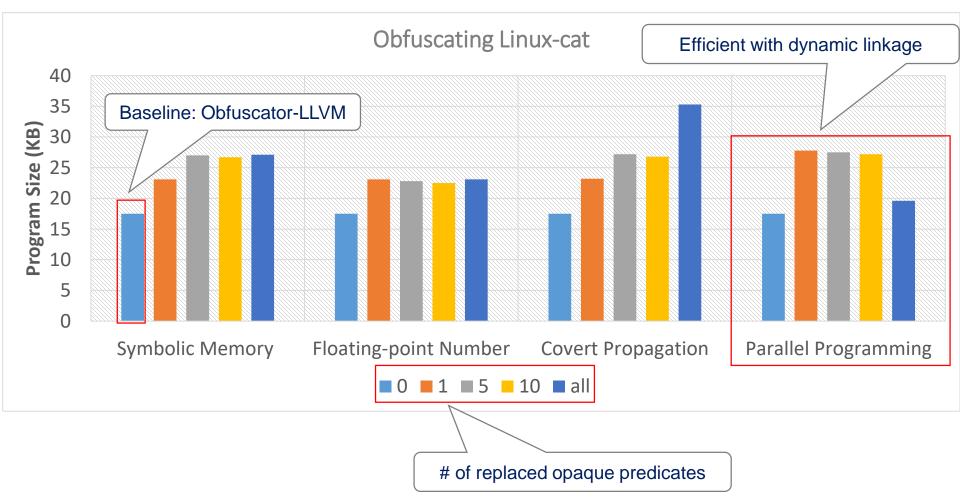
Source Code

Obfuscated Code

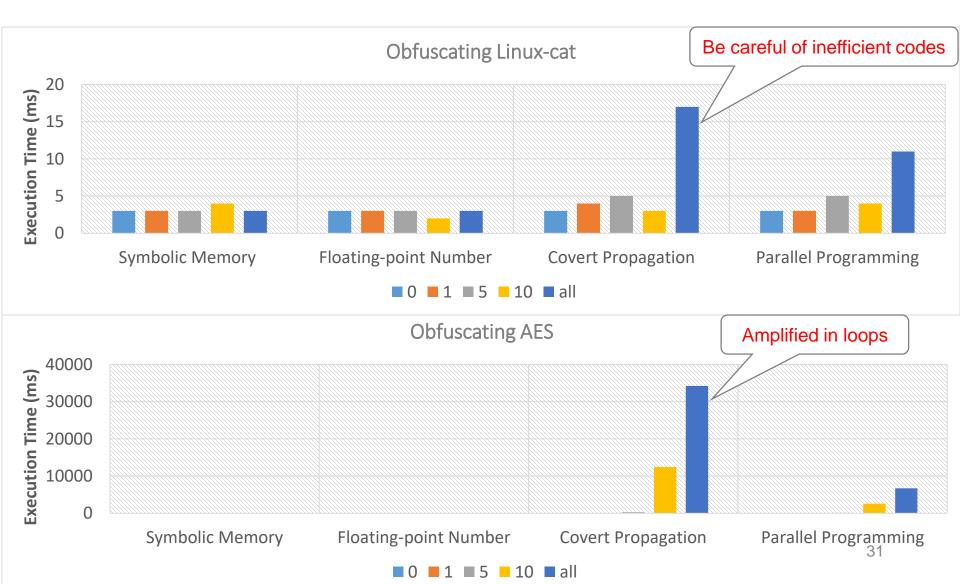
Evaluation


□ Performance Metrics:

- Space overhead
- Execution overhead


□ Target Programs:

- Linux Busybox (*e.g.*, cat)
- Encryption programs (*e.g.*, AES)


□ **Prototype** based on Obfuscator-LLVM.

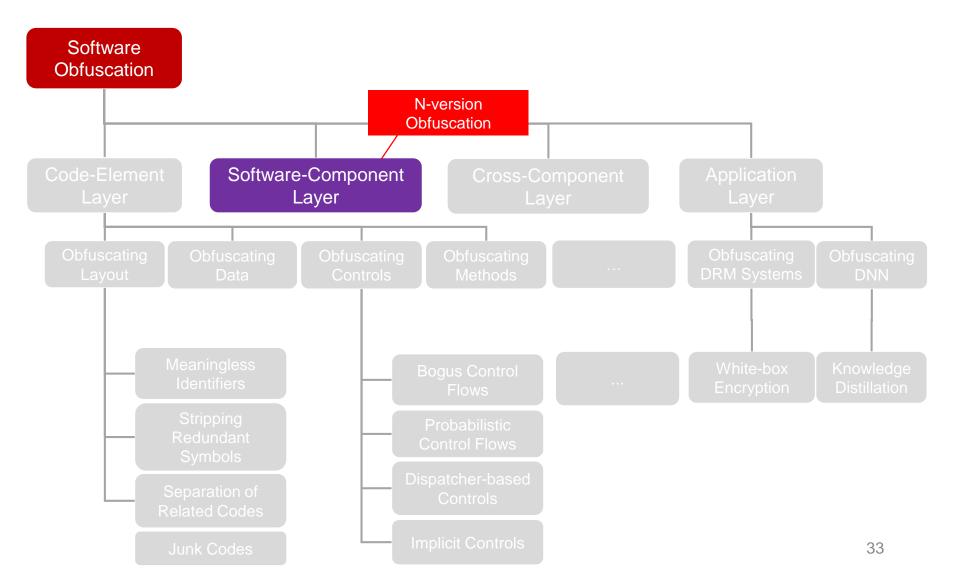
Space Overhead

Execution Overhead

Summary of Symbolic Opaque Predicates

Objective:

• To secure control-flow obfuscation against symbolic execution.


Our Contribution:

- We investigated the vulnerabilities of symbolic execution and developed a dataset to benchmark symbolic execution tools.
- We proposed a framework to compose opaque predicates leveraging these vulnerabilities.

Current Work:

- Enrich the template repository with more diversified samples.
- Develop a systematic strategy of opaque predicate insertion with small overhead.

N-version Obfuscation

Motivation

Software tampering attack is popular for smartphones, especially Android.

Static App Repack:

Dynamic Injection: 7/10 Android security apps in China inject payloads into their "protected" apps.

	root@android:/ # cat /proc/3789/maps 2a8cd000-2a8e0000p 00000000 00:00 0 2a8e0000-2a8f0000 rw-p 00000000 00:00 0 2a8f00000-2b300000p 00000000 00:00 0 2b300000-2b400000 rw-p 00000000 00:00 0 2b400000-2b800000p 00000000 00:00 0 2b400000-2b800000p 00000000 00:00 0 2e800000-2e821000 rw-p 00000000 00:00 0 3af00000-3af49000 rw-p 00000000 00:00 0 3c900000-3c929000 rw-p 00000000 00:00 0	
	40000000-4000c000 гw-р 00000000 00:00 0	
	4000c000-4000d000 Γs 00019000 103:0d 32635	/data/data/com.lbe.security/app_hips/client.jar
	4000d000-4000e000 rs 00000000 00:04 5228	/dev/ashmem/SurfaceFlinger read-only heap (delet
e -	4000e000-4000f000 rs 0029f000 103:0d 99723	/data/data/com.sankuai.meituan/code_cache/second

[Zhou'14] Rongyu Zhou, Leave The App Alone! - Attack and Defense of Android App, RSA2014

The Protection Challenge

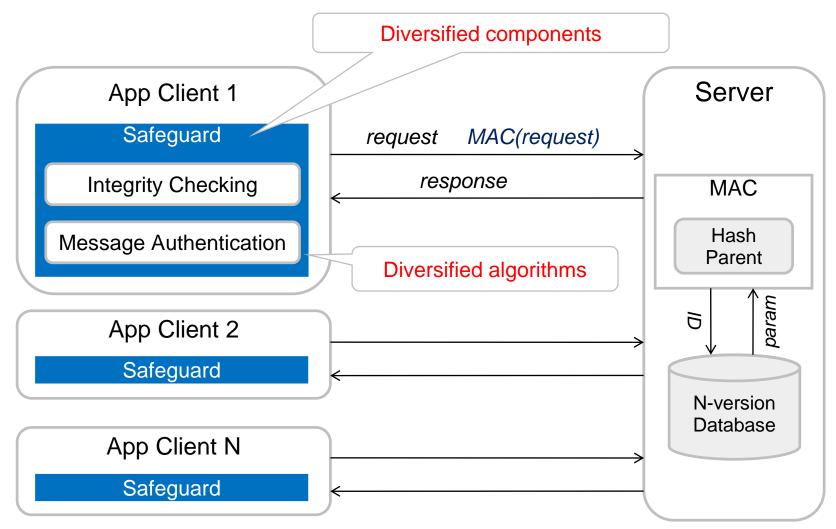
□We can have a bunch of solutions, but none is overwhelming.

"Given enough time, effort and determination, a competent programmer will always be able to reverse engineer any application."

--Christian Collberg

Our Objective and Approach

Objective of N-version obfuscation:


- Defend apps against software tampering attack.
- We focus on impeding large-scale attacks only.

DApproach:

- Create diversified apps for different clients.
- Impede the replication of an attack on multiple hosts.

A Candidate Solution for Networked Apps

Diversified MAC Algorithms based on SHA1

```
Data: w[80]
// blocks of plaintext
for i = 0; i < 80; i + 4 do
     if 0 < i < 19 then
          f \leftarrow (b \text{ AND } c) \text{ OR } ((\text{NOT } b) \text{ AND } d);
          k \leftarrow 0X5A827999;
     end
     if 20 \le i \le 39 then
          f \leftarrow b \text{ XOR } c \text{ XOR } d;
          k \leftarrow 0X6ED9EBA1;
     end
     if 40 < i < 59 then
          f \leftarrow (b \text{ AND } c) \text{ OR } (b \text{ AND } d) \text{ OR } (c \text{ AND } d);
          k \leftarrow 0X8F1BBCDC;
     end
     if 60 < i < 79 then
          f \leftarrow b \text{ XOR } c \text{ XOR } d;
          k \leftarrow 0XCA62C1D6;
     end
     temp \leftarrow (a \text{ LEFTROTATE 5}) + f + e + k + w[i];
     e \leftarrow d; Each client employs a random combination
     d \leftarrow c;
     c \leftarrow b LEFTROTATE 30;
     b \leftarrow a;
     a \leftarrow temp:
end
                        SHA1
```

```
Data: f_{genes}[80], k_{genes}[80], w[80]
for i = 0; i < 80; i + 40
     Call f\_genes[i];
                                                 2^160
     // Pointer to F0, F1, F2 or F0
     F_TAIL(k_genes[i], w[i]);
end
Function F\theta()
     f \leftarrow (b \text{ AND } c) \text{ OR } ((\text{NOT } b) \text{ AND } d);
Function F1()
     f \leftarrow b \text{ XOR } c \text{ XOR } d;
Function F2()
     f \leftarrow (b \text{ AND } c) \text{ OR } (b \text{ AND } d) \text{ OR } (c \text{ AND } d);
Function F3()
     f \leftarrow b \text{ XOR } c \text{ XOR } d;
Function F_TAIL(k, w)
     temp \leftarrow (a \text{ LEFTROTATE 5}) + f + e + k + w;
     e \leftarrow d;
     d \leftarrow c;
     c \leftarrow b LEFTROTATE 30;
     b \leftarrow a:
     a \leftarrow temp;
```

38

Feasibility of Automation

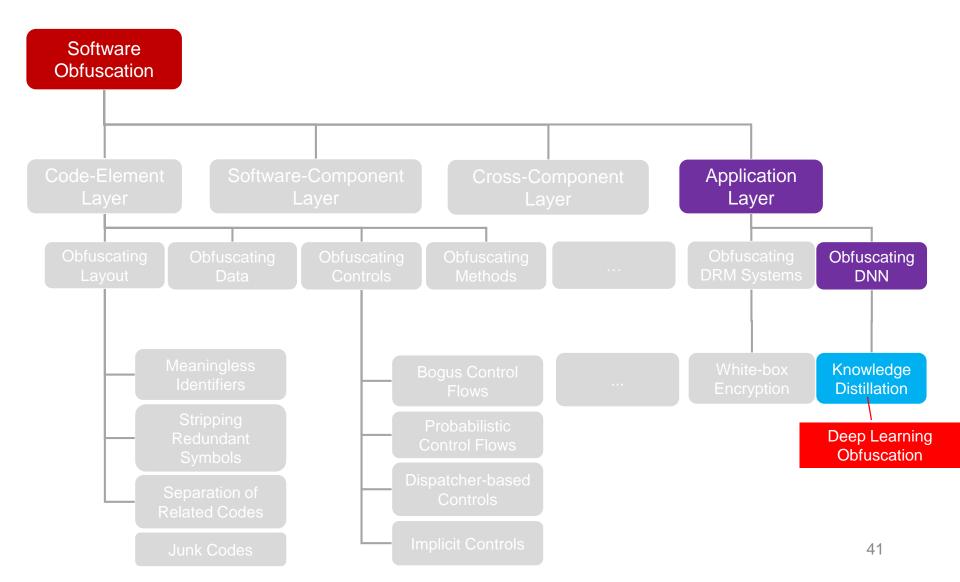
□Automation of N-version Generation:

Can be implemented as a compiler pass.

□Automation of N-version Delivery:

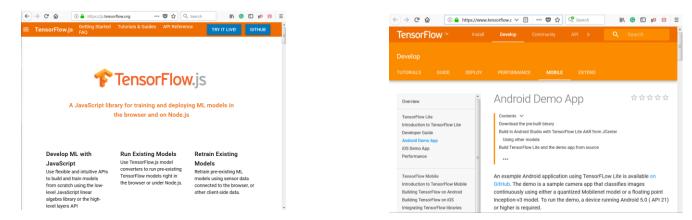
- Server delivers the safeguard as a dynamic library to each client at the first time of launch.
- Clients register their versions on the server.

Summary of N-version Obfuscation

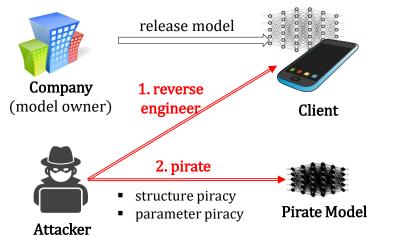

Objective:

- To defend software against tampering attacks.
- We focus on impeding large-scale attacks.

Our Contribution:


- We proposed an N-version obfuscation solution for networked apps.
- It is efficient to automatically generate and deliver N software versions.

Our Proposed Approaches in the Taxonomy



Motivation

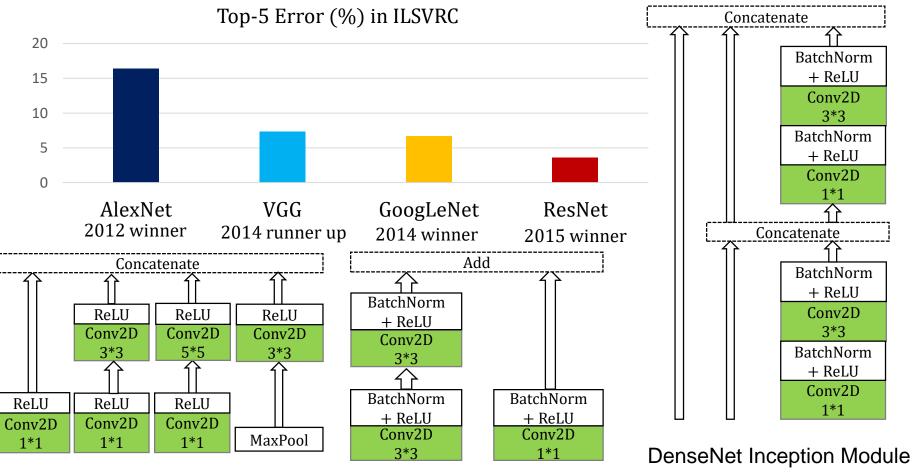
□ Running deep learning models on client sides is a trend.

Deep learning models are vulnerable to piracy.

	Attps://datascience.stackexchange.com/questions/13175/neural-network-o	۲	200%	***
Nei	ural network obfuscation			
1101				
	Neural networks are trained to minimize	SO	me	

error function over the weights of the neural connections. In some applications, these weights
 could be considered intellectual property. Is there
 a way to encrypt these weights and still have an operational neural network?

Some context: I'm trying to scale a neural network algorithm, but right now we're doing all the computations on a centralized server and it's getting bogged down. We can shift the computation to the client side, but we don't want someone to unpack the executable and obtain the weights of the network. Is there some way to distribute an "encrypted neural network" such that our IP is protected?

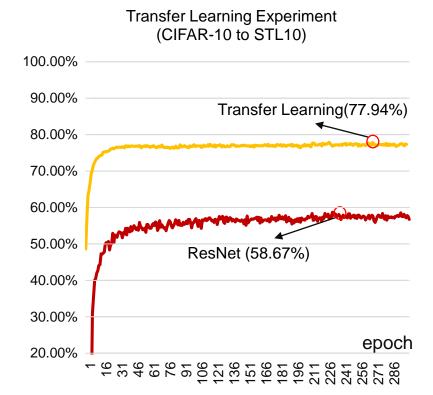

https://datascience.stackexchange.com/questions/13175/neural-network-obfuscation

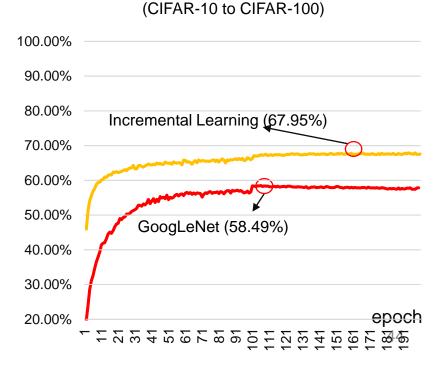
(2017)

43

Structure Piracy

□ Structure is the key factor for improving accuracy.


GoogLeNet Inception Module


ResNet Inception Module

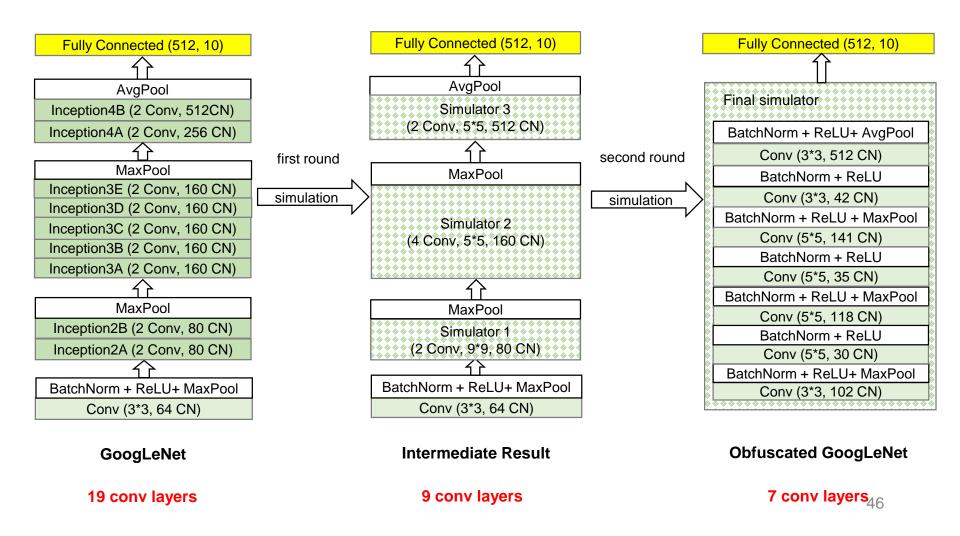
Parameter Piracy

□ Employ a well-trained model as the initial state to create new models.

- Transfer learning.
- Incremental learning.

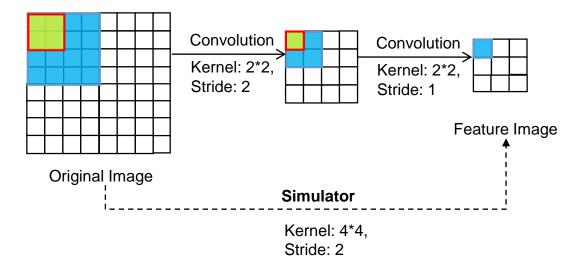
Incremental Learning Experiment

Our Objective and Approach


Objective: defend deep learning models against piracy attacks.

- Structure piracy.
- Parameter piracy.

Approach: simulate the model with a shallow network.

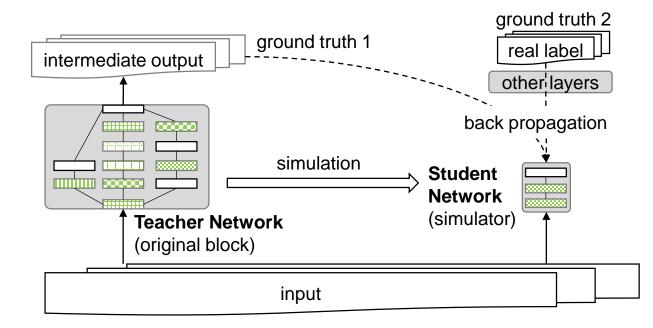

- Combat structure piracy by hiding the critical structures.
- Combat parameter piracy by degrading the learning ability.
- We should obtain a simulation network with zero accuracy loss.
 - Recursive simulation.
 - Joint training.

Recursive Simulation of GoogLeNet

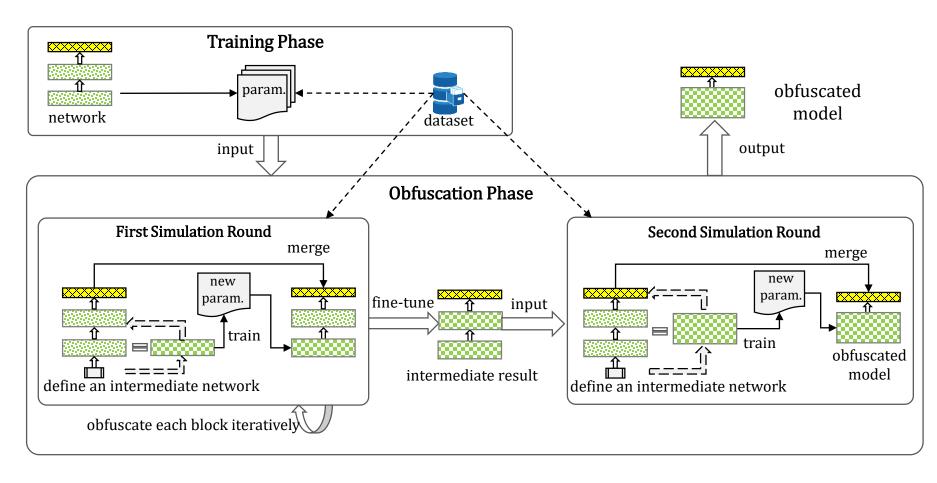
Principle of Simulator Design

Features should be computed from the same (or super) set of pixels.

Kernel size of the simulation network:


Compress 2 layers to 1 layer: $h = h_1 + (h_2 - 1) \times s_1$

Compress n layers to 1 layer: $h = h_1 + (h_n - 1) \times \cdots \times (h_2 - 1) \times s_{n-1} \times \cdots \times s_1$


Joint Training

□ An improvement based on the teacher-student network.

- The loss of student network cannot be zero.
- The teacher network itself has errors.

Overall Framework of Obfuscation

simulation network (obfuscated)

Evaluation Experiments

□Evaluation Purposes:

- Accuracy: can we obfuscate the model with zero accuracy loss?
- Overhead: size and execution cost.
- Security: resilience to parameter piracy.

□Models for Obfuscation:

- GoogLeNet, ResNet, and DenseNet trained with CIFAR-10.
- ResNet and DenseNet trained with ImageNet (five classes).

Results of Obfuscated Models

Model (CIFAR-10)		Performance			Overhead	
		Accuracy	Size (MB)	Time (us)	Size	Time
GoogLeN et	Original	90.83%	2.51	17.85	-	-
	Obfuscated	90.92%	2.49	7.01	-1%	-63%
ResNet	Original	90.94%	43.36	10.50	-	-
	Obfuscated	91.04%	11.38	5.17	-74%	-51%
DenseNet	Original	90.14%	4.24	35.53	-	-
	Obfuscated	90.31%	4.21	5.52	-1%	-84%

□ No accuracy loss.

□ More efficient.

Model (ImageNet)		Performance			Overhead		
		Accuracy	Size (MB)	Time (us)	Size	Time	
ResNet	Original	92.4%	43.37	89	-	-	
	Obfuscated	92.4%	36.72	59	-15%	-34%	
DenseNet	Original	91.6%	4.27	154	-	-	
	Obfuscated	92.8%	2.94	56	-31%	-64%	

Resilience to Parameter Piracy

The accuracy of pirated models based on the obfuscated models declines obviously than based on the original ones.

Model			al Learning o CIFAR-100)	Transfer Learning (CIFAR-10 to STL10)		
		Accuracy	Degradation	Accuracy	Degradation	
GoogLeNet	Original	66.5%	-	79.15%	-	
	Obfuscated	63.59%	-4.4%	77.95%	-1.5%	
ResNet	Original	66.92%	-	78.86%	-	
	Obfuscated	64.77%	-3.2%	75.97%	-3.7%	
DenseNet	Original	67.16%	-	78.45%	-	
	Obfuscated	62.91%	-6.3%	76.90%	-2.0%	

Summary of Deep Learning Obfuscation

Objective: to secure deep learning models against piracy.

Our Contribution:

- We proposed a simulation-based obfuscation approach.
- We conducted real-world experiments and achieved promising results.
 - No accuracy loss.
 - No overhead.
 - Resilient to parameter piracy.

Conclusion

□We proposed layered obfuscation as a promising way for software obfuscation.

□We presented a taxonomy of obfuscation techniques for layered obfuscation.

□We discussed three novel obfuscation techniques.

- Symbolic opaque predicates.
- N-version obfuscation.
- Deep learning obfuscation.

Future Work

□Practice layered obfuscation with more real-world software.

Develop a methodology for implementing layered obfuscation.

□Propose new obfuscation techniques for new security issues.

Develop a practical obfuscation tool integrating multiple techniques.

Publications Related to the Thesis

Motivation and Taxonomy (Chapter 2):

[1] "Assessing the Security Properties of Software Obfuscation," **Hui Xu**, and Michael R. Lyu, in *IEEE Security & Privacy Magazine*, Oct, 2016.

[2] "Layered Obfuscation: A Taxonomy of Software Obfuscation Techniques for Layered Security," **Hui Xu**, Jiang Ming, Yangfan Zhou, and Michael R. Lyu, *under review by Elsevier Computers & Security*.

□ Newly Proposed Approaches (Chapter 3,4, 5):

[3] "Manufacturing Resilient Bi-Opaque Predicates against Symbolic Execution," **Hui Xu**, Yangfan Zhou, Yu Kang, Fengzhi Tu, and Michael R. Lyu, in *Proc. of the 48th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)*, 2018.

[4] "Concolic Execution on Small-Size Binary Codes: Challenges and Empirical Study," **Hui Xu**, Yangfan Zhou, Yu Kang, and Michael R. Lyu, in *Proc. of the 47th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)*, 2017.

[5] "Benchmarking the Capability of Symbolic Execution Tools," **Hui Xu**, Zirui Zhao, Yangfan Zhou, and Michael R. Lyu, under review (minor revision) in *IEEE Transactions on Dependable and Secure Computing (TDSC)*, 2018.

[6] "N-version Obfuscation," **Hui Xu**, Yangfan Zhou, and Michael R. Lyu, in *Proc. of the 2nd Cyber-Phsical System Security Workshop (in conjunction with AsiaCCS)*, 2016.

[7] "DeepObfuscation: Securing the Structure of Convolutional Neural Networks via Obfuscation," **Hui Xu**, Yuxin Su, Zirui Zhao, Yangfan Zhou, Michael R. Lyu, and Irwin King, *under review by NDSS*, 2019.

Other Publications Related to Software Engineering and Cybersecurity

[1] "IntelliAd: Assisting Mobile App Developers in Measuring Ad Costs Automatically [Poster]," Cuiyun Gao, Yichuan Man, **Hui Xu**, Jieming Zhu, Yangfan Zhou and Michael R. Lyu, in *the 39th International Conference on Software Engineering* (*ICSE-C*), 2017.

[2] "DiagDroid: Android Performance Diagnosis via Anatomizing Asynchronous Executions," Yu Kang, Yangfan Zhou, **Hui Xu**, and Michael R. Lyu, in *Proc. of the 24th ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE)*, 2016.

[3] "SpyAware: Investigating the Privacy Leakage Signatures in App Execution Traces," **Hui Xu**, Yangfan Zhou, Cuiyun Gao, Yu Kang, Michael R. Lyu, in *Proc. of the 26th IEEE International Symposium on Software Reliability Engineering (ISSRE)*, 2015.

[4] "AR-Tracker: Track the Dynamics of Mobile Apps via User Review Mining," Cuiyun Gao, **Hui Xu**, Junjie Hu, and Yangfan Zhou, in Proc. of the *International Workshop on Internet-based Virtual Computing Environment (IVCE)*, 2015.

[5] "Towards Continuous and Passive Authentication via Touch Biometrics: An Experimental Study on Smartphones," **Hui Xu**, Yangfan Zhou, and Michael R. Lyu, in *Proc. of the USENIX Symposium on Usable Privacy and Security (SOUPS)*, 2014.

[6] "Towards Designing Fault-Tolerant Deep Learning Systems via N-version Programming," **Hui Xu**, Zhuangbin Chen, Weibin Wu, Irwin King, Michael Lyu, under review.

[7] "Toward Detecting Real-world Adversarial Corner Cases in Deep Neural Networks," Weibin Wu, **Hui Xu**, Sanqiang Zhong, Michael, R. Lyu, Irwin King, under review.

