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The Problem of Software IP Protection

❑ Examples of MATE attacks:

Disable License Checking Steal AlgorithmsClone Codes

if (verifyLicense (key))

startProgram();

else{

printf (“invalid key”);

exit(-1);

}

❑ Software intellectual property:

▪ Server side (secure)

▪ Client side (vulnerable)

❑ MATE (Man-At-The-End) attack 

[Collberg’11]: reverse engineer

[Collberg’11] C. Collberg, et al. Toward digital asset protection. IEEE Intelligent Systems, 2011.
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Software Obfuscation for IP Protection

❑Transform codes to a new version:

▪ Difficult to read.

▪ Preserve the semantics.

▪ Incur little overhead.

Examples of control-flow obfuscation [Yadegari’15] Example of lexical obfuscation

[Yadegari’15] B. Yadegari, et al. A generic approach to automatic deobfuscation of executable code. IEEE S&P, 2015.
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Critical Challenges for Obfuscation

❑Problem: Obfuscation is not as secure as other security primitives.

❑Questions:

▪ What is the best security capability of software obfuscation?

▪ How to design reliable obfuscation solutions?

Public-key encryption Physical unclonable functions

4

Fingerprint



Survey Results: Theoretical Area

❑[Barak’01]: Negative result for black-box obfuscation.

❑[Garg’13 ]: Positive result for indistinguishability obfuscation based on 

graded encoding (noisy multi-linear maps).

❑Problems of graded encoding:

▪ Only applicable to circuits: pure arithmetic.

▪ Inefficient: polynomial overhead (several Gigabytes to obfuscate a 16-bit 

point function [Apon’14]).

[Barak’01] B. Barak, et al. On the (im) possibility of obfuscating programs. CRYPTO. 2001.

[Garg’13] S. Garg, et al. Candidate indistinguishability obfuscation and functional encryption for all circuits. FOCS. 2013.

[Apon’14] D. Apon, et al. Implementing cryptographic program obfuscation. IACR Cryptology ePrint Archive, 2014. 5



Survey Results: Practical Area

❑Most papers assume software written in particular languages, e.g.,

Java/C/Assembly.

❑But real-world software is more complicated with heterogeneous 

components.

❑Two types of software applications:

▪ Client-server mode (e.g., Android applications).

▪ Browser-server mode, i.e., web applications.
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Example of Android Apps

Components

7

RSA SecureID Software Token



Example of Web Applications

8https://magenta.tensorflow.org/demos/performance_rnn/index.html



Why Hard for Protection?
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Java Source Code

Java 

API

Third-party 

Libraries

Android 

Framework API

invocation

[Bichsel’16]: We can recover a large portion of lexical information based on the residual 

information, e.g., names of invoked methods and strings.

[Bichsel’16] B. Bichsel, et al. Statistical deobfuscation of android applications, CCS, 2016.

residual information



Layered Security

❑Principle: Swiss cheese model:

▪ Mitigate risks through different layers. 

▪ Avoid single point of failure.

❑Employed in aviation safety, healthcare, etc.

▪ Safety-critical or security-critical.

▪ The risks cannot be fully avoided.

❑Introduced in IATF3.1.

[IATF’02] Information Assurance Technical Framework Release 3.1, Department of Defense, 2002

Each area has multiple 

layers of protections
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Layered Security for Software Obfuscation

❑Why?

▪ Software is very complicated.

▪ Secure-against-all obfuscation techniques do not exist.

❑How?

▪ Based on risk management.

▪ Integrate multiple obfuscation techniques to mitigate risks.

▪ Each obfuscation technique only corresponds to particular threats.
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Thesis Contributions

❑Develop a taxonomy of obfuscation for layered security.

▪ Assist developers in designing layered obfuscation solutions.

❑Enrich the taxonomy with three novel obfuscation techniques.

▪ Symbolic Opaque Predicates

• Enhance the security of control-flow obfuscation.

▪ N-version Obfuscation

• Enable the software with resilience to large-scale tampering attacks.

▪ Deep Learning Obfuscation

• Application-level obfuscation technique for deep learning software.
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Opaque Predicate

15
[Collberg’97] Collberg, et al. “A taxonomy of obfuscating transformations.” Department of Computer Science, 1997.

❑ Definition [Collberg’97] : 

▪ The value is known before compilation time.

▪ Reverse analysis is difficult.

❑ Application: Control-flow obfuscation.

Motivation

Predicate

True False

Bogus Code

Predicate

True False

Bogus Code



Vulnerable Example 1
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[Ogiso’03] Ogiso, et al. “Software obfuscation on a theoretical basis and its implementation.” 2003

❑ Problem: Real-world opaque predicates are vulnerable.

Motivation

int a, b; //b>0
…
func() {

...
if (a > b) {

if (a*(a+1)%2 == 0)
fp = A[((fp)()%2)+2];

else
fp = A[((fp)()%2)+4];

1

2

3

4

5

6

7

8

9

...
}
…
if ((b-2)*(b-1)*b%6 != 0)

fp = A[((fp)()%2)+5];
else

fp = A[((fp)()%2)+3];
...

}

10

11

12

13

14

15

16

17

18

Example in [Ogiso’03]

Vulnerable to automated program analysis tools.

Constantly True

Constantly False



Vulnerable Example 2
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@x7 = common global i32 0
@y8 = common global i32 0
…
define i32 @main() #0 {

%1 = load i32* @x7
%2 = load i32* @y8
%3 = sub i32 %1, 1
%4 = mul i32 %1, %3
%5 = urem i32 %4, 2
%6 = icmp eq i32 %5, 0
%7 = icmp slt i32 %2, 10
%8 = or i1 %6, %7
br i1 %8, label %originalBB, label %originalBBalteredBB

if(x7(x7 – 1)%2 == 0||y8<10){
originalBB;

} else {
originalBBalteredBB;

}

1
2
3
4
5
6
7
8
9
10
11
12
13

LLVM IR Code: Source Code:

[ollvm’15] Junod, et al. “Obfuscator-LLVM--software protection for the masses.” 2015

int x7 = 0;
int y8 = 0;

Constantly True

Motivation

Default opaque predicate generated by Obfuscator-LLVM [Junod’15] 



Adversarial Symbolic Execution

Entry:
if(i > 100)

F

return -1;

T

if(i*(i+1)%2!=0) 

Bogus();

T

Return 0;

F

Control-flow Graph
18

int toy_func(int i){
if(i > 100){

return -1;
}
if(i *(i+1)%2!=0) {

Bogus();
}
return 0;

} 

Source Code

opaque predicate

Motivation

❑ Symbolic execution can detect opaque predicates by traversing the 

control-flow graph.



Symbolic Execution Steps

❑ Round1:

Random Input:

i = 1000

❑ Round 2:  

Constraint: NOT (i > 100) 

=> i = 0

Entry:
if(i > 100)

return -1;

T

❑ Round 3: 

Constraint: NOT(i > 100) 

AND i*(i+1)%2!=0 

=> No Solution

Entry:
if(i > 100)

F

return -1;

T

if(i*(i+1)%2!=0) 

F

Return 0;

19

It implies opaque predicates 

and bogus codes.

Motivation



Adversary Model

Symbolic Execution

Constraint Extraction 

& Solving

Binary 

Program

Symbolic Execution Engine

Test Cases

The constraints are in the form of CNF:

[Ming’15] Ming, et al. "Loop: Logic-oriented opaque predicate detection in obfuscated binary code." CCS’15.

[Yadegari’15] Yadegari, et al. "Symbolic execution of obfuscated code." CCS’15.

[Yadegari’15] Yadegari, et al. "A generic approach to automatic deobfuscation of executable code." S&P’ 15.

[Xu’17] Xu, et al. “Cryptographic function detection in obfuscated binaries via bit-precise symbolic loop mapping.” S&P’17.
20

Constraints

Opaque 

Predicates

Rule-based Opaque 

Predicate Detection

Motivation



Our Objective and Approach

❑Objective of Symbolic Opaque Predicates:

▪ Enhance the security of opaque predicates.

▪ Combat symbolic execution-based attackers.

❑Approach:

▪ Step 1: Investigate the limitations of symbolic execution tools.

▪ Step 2: Employ these limitations to obfuscate software.

21

Motivation

Approach



Challenges of Symbolic Execution

Motivation

Approach

Challenge Description

Symbolic-

Reasoning 

Challenges

Symbolic Variable Declaration Contextual variables other than arguments

Covert Propagations Propagating symbolic values in covert ways

Buffer Overflows Without proper boundary check

Parallel Executions Processing symbolic values in parallel codes

Symbolic Memories Symbolic values as the offset of memories

Contextual Symbolic Values Retrieving contextual values with symbolic values

Symbolic Jumps Symbolic values as the address of jump

Floating-Point Numbers Symbolic values in float/double

Arithmetic Overflows Beyond the scope of an integer type 

Path-Explosion 

Challenges

Loops Change symbolic values within loops

Crypto Functions Processing symbolic values with crypto functions

External Function Calls Processing symbolic values with external functions

22[Hui’18] Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael R. Lyu, “Benchmarking the Capability of Symbolic Execution Tools,” TDSC, 2018.



a challenging problem:

2-leveled array

Example of Symbolic Memories

23

❑ Use symbolic values as the offsets to access memory.

❑ Theoretical challenge: some pointer analysis problems are NP-hard.

void func(int symvar){
int l1_ary[] = {1,2,3,4,5,6,7};
int l2_ary[] = {symvar,1,2,3,4,5,6,7};
int i = l2_ary[l1_ary[symvar%7]];
if(i == 1)

foobar();
}

1
2
3
4
5
6
7

symbolic variable

condition

Can symbolic execution tools find a test case for triggering foobar()?

Motivation

Approach



no solution

Example of Floating-point Numbers

24

Motivation

Approach

1
2
3
4
5
6
7
8
9

❑ Floating-point numbers are approximations of real numbers.

❑ Defined in IEEE-754: Interval for 32-bit float: [1.401298464324817e-

45, 32767.9990234].

void func(int symvar){
float f = symvar/1000000.0;
if(f==0.1){

bogus();
}
if(1024+f == 1024 && f>0){

foobar();
}

}

solution: f=0.00001



Examining the Prevalence of Challenges

25

Motivation

Approach

Developed at Stanford (2008)

https://klee.github.io/

Developed at UCSB (2016)

http://angr.io/

Developed at Quarkslab (2015)

https:// triton.quarkslab.com

angr



Benchmarking Results
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Motivation

Approach

Challenge
Result (pass #/ total #)

KLEE Triton Angr

Symbolic-

Reasoning 

Challenges

Symbolic Variable Declaration 0/7 0/7 0/7

Covert Propagations 1/5 1/9 4/9

Buffer Overflows 0/4 0/4 2/4

Parallel Executions 0/5 0/5 0/5

Symbolic Memories 5/6 0/8 7/8

Contextual Symbolic Values 0/7 0/7 0/7

Symbolic Jumps 1/1 0/4 2/4

Floating-Point Numbers 0/5 0/5 2/5

Arithmetic Overflows 2/2 1/2 2/2

Path-

Explosion 

Challenges

Loops 0/5 0/5 0/5

Crypto Functions 0/2 0/2 0/2

External Function Calls 0/8 1/8 3/8

Total 9/54 3/63 22/63

These tools failed most of the test cases.



Design Symbolic Opaque Predicates
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Code Snippet

(Function)

input

Opaque

Predicates

output

Opaque Predicate Engine

Choose a Parameter

Design a Challenging

Problem

Create Opaque 

Predicates

Template

Repository

Motivation

Approach



Template of Symbolic Memories
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Source Code

1
2
3
4
5

int func(int i){
if(i == 7){

foobar(); 
}

}

int func(int i){
int l1_ary[] = {1,2,3,4,5,6,7};
int l2_ary[] = {j,1,2,3,4,5,6,7};
int j = l2_ary[l1_ary[i%7]];
if(i == j)

bogus();
if(j == 1 && i == 7)

foobar();
}

1
2
3
4
5
6
7
8
9

Obfuscated Code

Bi-opaque

Type I opaque predicate

Type II

Motivation

Approach

j=i%7+1



Evaluation

LLVM

Frontend
Source 

Code

Input
Backend

IR

Code

Obfuscator-LLVM

Control-flow 

Obfuscation

Opaque Predicate 

Substitution

Binary

Code

Output

29

Motivation

Approach

Evaluation

❑ Performance Metrics:

▪ Space overhead

▪ Execution overhead

❑ Prototype based on Obfuscator-LLVM.

❑ Target Programs:

▪ Linux Busybox (e.g., cat)

▪ Encryption programs (e.g., AES)
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Motivation

Approach

Evaluation

Baseline: Obfuscator-LLVM

# of replaced opaque predicates

Efficient with dynamic linkage
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Motivation

Approach

Evaluation

Be careful of inefficient codes

Amplified in loops



Summary of Symbolic Opaque Predicates

❑Objective: 

▪ To secure control-flow obfuscation against symbolic execution.

❑Our Contribution:

▪ We investigated the vulnerabilities of symbolic execution and 

developed a dataset to benchmark symbolic execution tools.

▪ We proposed a framework to compose opaque predicates leveraging 

these vulnerabilities.

❑Current Work:

▪ Enrich the template repository with more diversified samples.

▪ Develop a systematic strategy of opaque predicate insertion with 

small overhead.

32

Motivation

Approach

Evaluation

Conclusion



N-version Obfuscation

Software 

Obfuscation

Code-Element 

Layer

Software-Component 

Layer
Cross-Component 

Layer

Application 

Layer

Obfuscating 

Layout
Obfuscating 

Methods

Obfuscating 

Data
…

Obfuscating 

Controls

Meaningless 

Identifiers

Stripping 

Redundant 

Symbols

Separation of 

Related Codes

Junk Codes

Bogus Control 

Flows

Probabilistic 

Control Flows

Dispatcher-based 

Controls

Implicit Controls

Obfuscating 

DRM Systems
Obfuscating 

DNN

White-box 

Encryption

Knowledge 

Distillation
...
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N-version 

Obfuscation



Motivation

❑ Software tampering attack is popular for smartphones, especially Android.

Static App Repack:

[Zhou’14] Rongyu Zhou, Leave The App Alone! - Attack and Defense of Android App, RSA2014

Dynamic Injection: 7/10 Android security apps in China inject payloads into their 

“protected” apps.

34

apk file

Smali code

tampered 

apk

apktool

unpack

apktool

repack

Motivation



The Protection Challenge

35

“Given enough time, effort and determination, a competent 

programmer will always be able to reverse engineer any 

application.”

--Christian Collberg

[Collberg’97] Christian Collberg, et al. A taxonomy of obfuscating transformations, 1997.

❑We can have a bunch of solutions, but none is overwhelming.

Motivation



Our Objective and Approach

36

❑Objective of N-version obfuscation:

▪ Defend apps against software tampering attack.

▪ We focus on impeding large-scale attacks only.

❑Approach:

▪ Create diversified apps for different clients.

▪ Impede the replication of an attack on multiple hosts.

Motivation

Approach



A Candidate Solution for Networked Apps

37

App Client 1

App Client 2

Safeguard

App Client N

Server

request

response

Safeguard

Safeguard

Integrity Checking

Diversified components

Diversified algorithms

MAC(request)

MAC

Hash
Parent

N-version
Database

ID

p
a

ra
m

Message Authentication

Motivation

Approach



Diversified MAC Algorithms based on SHA1

38SHA1 Parent of SHA1

Each client employs a random combination

2^160

Motivation

Approach



Feasibility of Automation

❑Automation of N-version Generation:

▪ Can be implemented as a compiler pass.

❑Automation of N-version Delivery:

▪ Server delivers the safeguard as a dynamic library to each client at 

the first time of launch.

▪ Clients register their versions on the server.

39

Motivation

Approach



❑Objective: 

▪ To defend software against tampering attacks.

▪ We focus on impeding large-scale attacks.

❑Our Contribution:

▪ We proposed an N-version obfuscation solution for networked apps.

▪ It is efficient to automatically generate and deliver N software versions.

40

Motivation

Approach

Conclusion

Summary of N-version Obfuscation



Our Proposed Approaches in the Taxonomy
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Deep Learning 

Obfuscation



Motivation

42

https://datascience.stackexchange.com/questions/13175/neural-network-obfuscation

Motivation

Client

1. reverse 
engineer

Attacker

Company
(model owner)

Pirate Model

release model

2. pirate

▪ structure piracy
▪ parameter piracy

❑ Running deep learning models on client sides is a trend.

❑ Deep learning models are vulnerable to piracy.



Structure Piracy

Motivation
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❑ Structure is the key factor for improving accuracy.
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Parameter Piracy
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Motivation
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❑ Employ a well-trained model as the initial state to create new models.

▪ Transfer learning.

▪ Incremental learning.

Transfer Learning(77.94%)

Incremental Learning (67.95%)



Our Objective and Approach

❑Objective: defend deep learning models against piracy attacks.

▪ Structure piracy.

▪ Parameter piracy.

❑Approach: simulate the model with a shallow network.

▪ Combat structure piracy by hiding the critical structures.

▪ Combat parameter piracy by degrading the learning ability.

▪ We should obtain a simulation network with zero accuracy loss.

• Recursive simulation.

• Joint training.

45

Motivation

Approach



Recursive Simulation of GoogLeNet

46

Motivation

Approach

GoogLeNet

Conv (3*3, 64 CN)

BatchNorm + ReLU+ MaxPool

Inception2A (2 Conv, 80 CN)

Inception3A (2 Conv, 160 CN)

Inception3B (2 Conv, 160 CN)

Inception4A (2 Conv, 256 CN)

AvgPool

Fully Connected (512, 10)

Inception4B (2 Conv, 512CN)

Inception3C (2 Conv, 160 CN)

Inception3D (2 Conv, 160 CN)

Inception3E (2 Conv, 160 CN)

Inception2B (2 Conv, 80 CN)

MaxPool

MaxPool

Fully Connected (512, 10)

AvgPool

Simulator 3

(2 Conv, 5*5, 512 CN)

Simulator 2

(4 Conv, 5*5, 160 CN)

MaxPool

Intermediate Result

Conv (3*3, 64 CN)

BatchNorm + ReLU+ MaxPool

Simulator 1

(2 Conv, 9*9, 80 CN)

MaxPool

Obfuscated GoogLeNet

Conv (3*3, 102 CN)

BatchNorm + ReLU+ MaxPool

Fully Connected (512, 10)

BatchNorm + ReLU + MaxPool

Conv (5*5, 118 CN)

Conv (5*5, 35 CN)

BatchNorm + ReLU

BatchNorm + ReLU + MaxPool

Conv (5*5, 141 CN)

Conv (3*3, 42 CN)

BatchNorm + ReLU+ AvgPool

Conv (5*5, 30 CN)

BatchNorm + ReLU

BatchNorm + ReLU

Conv (3*3, 512 CN)

Final simulator

first round

simulation

second round

simulation

19 conv layers 9 conv layers 7 conv layers



Principle of Simulator Design
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Motivation

Approach

Feature Image

Convolution

Kernel: 2*2,

Stride: 2

Original Image

Convolution

Kernel: 2*2,

Stride: 1

Features should be computed from the same (or super) set of pixels.

Simulator

Kernel: 4*4,

Stride: 2

ℎ = ℎ1 + ℎ2 − 1 × 𝑠1

ℎ = ℎ1 + ℎ𝑛 − 1 × ⋯ × ℎ2 − 1 × 𝑠𝑛−1 × ⋯ × 𝑠1

Kernel size of the simulation network:

Compress 2 layers to 1 layer:

Compress n layers to 1 layer:



Joint Training
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Motivation

Approach

ground truth 2

real label

other layers

input

Teacher Network

(original block)

intermediate output

Student 

Network

(simulator)

ground truth 1

simulation

back propagation

❑ An improvement based on the teacher-student network.

▪ The loss of student network cannot be zero.

▪ The teacher network itself has errors.



Overall Framework of Obfuscation
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Approach

Obfuscation Phase
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inception block (original) simulation network (obfuscated) fully connected Layer

define an intermediate network

new 
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Evaluation Experiments

❑Evaluation Purposes:

▪ Accuracy: can we obfuscate the model with zero accuracy loss?

▪ Overhead: size and execution cost.

▪ Security: resilience to parameter piracy.

❑Models for Obfuscation:

▪ GoogLeNet, ResNet,and DenseNet trained with CIFAR-10.

▪ ResNet and DenseNet trained with ImageNet (five classes).

50

Motivation

Approach

Evaluation



Results of Obfuscated Models
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Evaluation

Model (CIFAR-10)

Performance Overhead

Accuracy
Size 

(MB)

Time 

(us)
Size Time

GoogLeN

et

Original 90.83% 2.51 17.85 - -

Obfuscated 90.92% 2.49 7.01 -1% -63%

ResNet
Original 90.94% 43.36 10.50 - -

Obfuscated 91.04% 11.38 5.17 -74% -51%

DenseNet
Original 90.14% 4.24 35.53 - -

Obfuscated 90.31% 4.21 5.52 -1% -84%

Model (ImageNet)

Performance Overhead

Accuracy
Size 

(MB)

Time 

(us)
Size Time

ResNet
Original 92.4% 43.37 89 - -

Obfuscated 92.4% 36.72 59 -15% -34%

DenseNet
Original 91.6% 4.27 154 - -

Obfuscated 92.8% 2.94 56 -31% -64%

❑ No accuracy loss.

❑ More efficient.



Resilience to Parameter Piracy
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Model

Incremental Learning 
(CIFAR-10 to CIFAR-100)

Transfer Learning 
(CIFAR-10 to STL10)

Accuracy Degradation Accuracy Degradation

GoogLeNet
Original 66.5% - 79.15% -

Obfuscated 63.59% -4.4% 77.95% -1.5%

ResNet
Original 66.92% - 78.86% -

Obfuscated 64.77% -3.2% 75.97% -3.7%

DenseNet
Original 67.16% - 78.45% -

Obfuscated 62.91% -6.3% 76.90% -2.0%

❑The accuracy of pirated models based on the obfuscated models 

declines obviously than based on the original ones. 



❑Objective: to secure deep learning models against piracy.

❑Our Contribution:

▪ We proposed a simulation-based obfuscation approach.

▪ We conducted real-world experiments and achieved promising results.

• No accuracy loss.

• No overhead.

• Resilient to parameter piracy.
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Conclusion

❑We proposed layered obfuscation as a promising way for software 

obfuscation.

❑We presented a taxonomy of obfuscation techniques for layered 

obfuscation.

❑We discussed three novel obfuscation techniques.

▪ Symbolic opaque predicates.

▪ N-version obfuscation.

▪ Deep learning obfuscation.
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Future Work

❑Practice layered obfuscation with more real-world software.

❑Develop a methodology for implementing layered obfuscation.

❑Propose new obfuscation techniques for new security issues.

❑Develop a practical obfuscation tool integrating multiple techniques.
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