
Software Obfuscation with Layered
Security

Ph.D. Candidate:

Thesis Supervisor:

Thesis Committee:

Ph.D. Oral Defense

Hui Xu

Michael R. Lyu

Qiang Xu,

Patrick Lee,

Jiannong Cao

1
Sep 21st, 2018

The Problem of Software IP Protection

❑ Examples of MATE attacks:

Disable License Checking Steal AlgorithmsClone Codes

if (verifyLicense (key))

startProgram();

else{

printf (“invalid key”);

exit(-1);

}

❑ Software intellectual property:

▪ Server side (secure)

▪ Client side (vulnerable)

❑ MATE (Man-At-The-End) attack

[Collberg’11]: reverse engineer

[Collberg’11] C. Collberg, et al. Toward digital asset protection. IEEE Intelligent Systems, 2011.

2

Software Obfuscation for IP Protection

❑Transform codes to a new version:

▪ Difficult to read.

▪ Preserve the semantics.

▪ Incur little overhead.

Examples of control-flow obfuscation [Yadegari’15] Example of lexical obfuscation

[Yadegari’15] B. Yadegari, et al. A generic approach to automatic deobfuscation of executable code. IEEE S&P, 2015.
3

Critical Challenges for Obfuscation

❑Problem: Obfuscation is not as secure as other security primitives.

❑Questions:

▪ What is the best security capability of software obfuscation?

▪ How to design reliable obfuscation solutions?

Public-key encryption Physical unclonable functions

4

Fingerprint

Survey Results: Theoretical Area

❑[Barak’01]: Negative result for black-box obfuscation.

❑[Garg’13]: Positive result for indistinguishability obfuscation based on

graded encoding (noisy multi-linear maps).

❑Problems of graded encoding:

▪ Only applicable to circuits: pure arithmetic.

▪ Inefficient: polynomial overhead (several Gigabytes to obfuscate a 16-bit

point function [Apon’14]).

[Barak’01] B. Barak, et al. On the (im) possibility of obfuscating programs. CRYPTO. 2001.

[Garg’13] S. Garg, et al. Candidate indistinguishability obfuscation and functional encryption for all circuits. FOCS. 2013.

[Apon’14] D. Apon, et al. Implementing cryptographic program obfuscation. IACR Cryptology ePrint Archive, 2014. 5

Survey Results: Practical Area

❑Most papers assume software written in particular languages, e.g.,

Java/C/Assembly.

❑But real-world software is more complicated with heterogeneous

components.

❑Two types of software applications:

▪ Client-server mode (e.g., Android applications).

▪ Browser-server mode, i.e., web applications.

6

Example of Android Apps

Components

7

RSA SecureID Software Token

Example of Web Applications

8https://magenta.tensorflow.org/demos/performance_rnn/index.html

Why Hard for Protection?

9

Java Source Code

Java

API

Third-party

Libraries

Android

Framework API

invocation

[Bichsel’16]: We can recover a large portion of lexical information based on the residual

information, e.g., names of invoked methods and strings.

[Bichsel’16] B. Bichsel, et al. Statistical deobfuscation of android applications, CCS, 2016.

residual information

Layered Security

❑Principle: Swiss cheese model:

▪ Mitigate risks through different layers.

▪ Avoid single point of failure.

❑Employed in aviation safety, healthcare, etc.

▪ Safety-critical or security-critical.

▪ The risks cannot be fully avoided.

❑Introduced in IATF3.1.

[IATF’02] Information Assurance Technical Framework Release 3.1, Department of Defense, 2002

Each area has multiple

layers of protections

10

Layered Security for Software Obfuscation

❑Why?

▪ Software is very complicated.

▪ Secure-against-all obfuscation techniques do not exist.

❑How?

▪ Based on risk management.

▪ Integrate multiple obfuscation techniques to mitigate risks.

▪ Each obfuscation technique only corresponds to particular threats.

11

Thesis Contributions

❑Develop a taxonomy of obfuscation for layered security.

▪ Assist developers in designing layered obfuscation solutions.

❑Enrich the taxonomy with three novel obfuscation techniques.

▪ Symbolic Opaque Predicates

• Enhance the security of control-flow obfuscation.

▪ N-version Obfuscation

• Enable the software with resilience to large-scale tampering attacks.

▪ Deep Learning Obfuscation

• Application-level obfuscation technique for deep learning software.

12

Component

Taxonomy for Layered Obfuscation

Obfuscating

Layout
Obfuscating

Methods

Obfuscating

Data

Obfuscating

Controls
…

Obfuscating

DRM Systems
Obfuscating

DNN

Software

Obfuscation

Code-Element

Layer

Software-Component

Layer
Cross-Component

Layer

Application

Layer

What to obfuscate?

Bogus Control

Flows

Probabilistic

Control Flows

Dispatcher-based

Controls

Implicit Controls

Meaningless

Identifiers

Stripping

Redundant

Symbols

Separation of

Related Codes

Junk Codes

How to obfuscate?

White-box

Encryption

Knowledge

Distillation
...

13

Elements

Component

Elements

Application

Symbolic Opaque

Predicates
Deep Learning

Obfuscation

N-version

Obfuscation

Software

Obfuscation

Code-Element

Layer

Software-Component

Layer
Cross-Component

Layer

Application

Layer

Obfuscating

Layout
Obfuscating

Methods

Obfuscating

Data
…

Obfuscating

Controls

Meaningless

Identifiers

Stripping

Redundant

Symbols

Separation of

Related Codes

Junk Codes

Bogus Control

Flows

Probabilistic

Control Flows

Dispatcher-based

Controls

Implicit Controls

Obfuscating

DRM Systems
Obfuscating

DNN

White-box

Encryption

Knowledge

Distillation
...

14

Symbolic Opaque

Predicates

Symbolic Opaque Predicates

Opaque Predicate

15
[Collberg’97] Collberg, et al. “A taxonomy of obfuscating transformations.” Department of Computer Science, 1997.

❑ Definition [Collberg’97] :

▪ The value is known before compilation time.

▪ Reverse analysis is difficult.

❑ Application: Control-flow obfuscation.

Motivation

Predicate

True False

Bogus Code

Predicate

True False

Bogus Code

Vulnerable Example 1

16
[Ogiso’03] Ogiso, et al. “Software obfuscation on a theoretical basis and its implementation.” 2003

❑ Problem: Real-world opaque predicates are vulnerable.

Motivation

int a, b; //b>0
…
func() {

...
if (a > b) {

if (a*(a+1)%2 == 0)
fp = A[((fp)()%2)+2];

else
fp = A[((fp)()%2)+4];

1

2

3

4

5

6

7

8

9

...
}
…
if ((b-2)*(b-1)*b%6 != 0)

fp = A[((fp)()%2)+5];
else

fp = A[((fp)()%2)+3];
...

}

10

11

12

13

14

15

16

17

18

Example in [Ogiso’03]

Vulnerable to automated program analysis tools.

Constantly True

Constantly False

Vulnerable Example 2

17

@x7 = common global i32 0
@y8 = common global i32 0
…
define i32 @main() #0 {

%1 = load i32* @x7
%2 = load i32* @y8
%3 = sub i32 %1, 1
%4 = mul i32 %1, %3
%5 = urem i32 %4, 2
%6 = icmp eq i32 %5, 0
%7 = icmp slt i32 %2, 10
%8 = or i1 %6, %7
br i1 %8, label %originalBB, label %originalBBalteredBB

if(x7(x7 – 1)%2 == 0||y8<10){
originalBB;

} else {
originalBBalteredBB;

}

1
2
3
4
5
6
7
8
9
10
11
12
13

LLVM IR Code: Source Code:

[ollvm’15] Junod, et al. “Obfuscator-LLVM--software protection for the masses.” 2015

int x7 = 0;
int y8 = 0;

Constantly True

Motivation

Default opaque predicate generated by Obfuscator-LLVM [Junod’15]

Adversarial Symbolic Execution

Entry:
if(i > 100)

F

return -1;

T

if(i*(i+1)%2!=0)

Bogus();

T

Return 0;

F

Control-flow Graph
18

int toy_func(int i){
if(i > 100){

return -1;
}
if(i *(i+1)%2!=0) {

Bogus();
}
return 0;

}

Source Code

opaque predicate

Motivation

❑ Symbolic execution can detect opaque predicates by traversing the

control-flow graph.

Symbolic Execution Steps

❑ Round1:

Random Input:

i = 1000

❑ Round 2:

Constraint: NOT (i > 100)

=> i = 0

Entry:
if(i > 100)

return -1;

T

❑ Round 3:

Constraint: NOT(i > 100)

AND i*(i+1)%2!=0

=> No Solution

Entry:
if(i > 100)

F

return -1;

T

if(i*(i+1)%2!=0)

F

Return 0;

19

It implies opaque predicates

and bogus codes.

Motivation

Adversary Model

Symbolic Execution

Constraint Extraction

& Solving

Binary

Program

Symbolic Execution Engine

Test Cases

The constraints are in the form of CNF:

[Ming’15] Ming, et al. "Loop: Logic-oriented opaque predicate detection in obfuscated binary code." CCS’15.

[Yadegari’15] Yadegari, et al. "Symbolic execution of obfuscated code." CCS’15.

[Yadegari’15] Yadegari, et al. "A generic approach to automatic deobfuscation of executable code." S&P’ 15.

[Xu’17] Xu, et al. “Cryptographic function detection in obfuscated binaries via bit-precise symbolic loop mapping.” S&P’17.
20

Constraints

Opaque

Predicates

Rule-based Opaque

Predicate Detection

Motivation

Our Objective and Approach

❑Objective of Symbolic Opaque Predicates:

▪ Enhance the security of opaque predicates.

▪ Combat symbolic execution-based attackers.

❑Approach:

▪ Step 1: Investigate the limitations of symbolic execution tools.

▪ Step 2: Employ these limitations to obfuscate software.

21

Motivation

Approach

Challenges of Symbolic Execution

Motivation

Approach

Challenge Description

Symbolic-

Reasoning

Challenges

Symbolic Variable Declaration Contextual variables other than arguments

Covert Propagations Propagating symbolic values in covert ways

Buffer Overflows Without proper boundary check

Parallel Executions Processing symbolic values in parallel codes

Symbolic Memories Symbolic values as the offset of memories

Contextual Symbolic Values Retrieving contextual values with symbolic values

Symbolic Jumps Symbolic values as the address of jump

Floating-Point Numbers Symbolic values in float/double

Arithmetic Overflows Beyond the scope of an integer type

Path-Explosion

Challenges

Loops Change symbolic values within loops

Crypto Functions Processing symbolic values with crypto functions

External Function Calls Processing symbolic values with external functions

22[Hui’18] Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael R. Lyu, “Benchmarking the Capability of Symbolic Execution Tools,” TDSC, 2018.

a challenging problem:

2-leveled array

Example of Symbolic Memories

23

❑ Use symbolic values as the offsets to access memory.

❑ Theoretical challenge: some pointer analysis problems are NP-hard.

void func(int symvar){
int l1_ary[] = {1,2,3,4,5,6,7};
int l2_ary[] = {symvar,1,2,3,4,5,6,7};
int i = l2_ary[l1_ary[symvar%7]];
if(i == 1)

foobar();
}

1
2
3
4
5
6
7

symbolic variable

condition

Can symbolic execution tools find a test case for triggering foobar()?

Motivation

Approach

no solution

Example of Floating-point Numbers

24

Motivation

Approach

1
2
3
4
5
6
7
8
9

❑ Floating-point numbers are approximations of real numbers.

❑ Defined in IEEE-754: Interval for 32-bit float: [1.401298464324817e-

45, 32767.9990234].

void func(int symvar){
float f = symvar/1000000.0;
if(f==0.1){

bogus();
}
if(1024+f == 1024 && f>0){

foobar();
}

}

solution: f=0.00001

Examining the Prevalence of Challenges

25

Motivation

Approach

Developed at Stanford (2008)

https://klee.github.io/

Developed at UCSB (2016)

http://angr.io/

Developed at Quarkslab (2015)

https:// triton.quarkslab.com

angr

Benchmarking Results

26

Motivation

Approach

Challenge
Result (pass #/ total #)

KLEE Triton Angr

Symbolic-

Reasoning

Challenges

Symbolic Variable Declaration 0/7 0/7 0/7

Covert Propagations 1/5 1/9 4/9

Buffer Overflows 0/4 0/4 2/4

Parallel Executions 0/5 0/5 0/5

Symbolic Memories 5/6 0/8 7/8

Contextual Symbolic Values 0/7 0/7 0/7

Symbolic Jumps 1/1 0/4 2/4

Floating-Point Numbers 0/5 0/5 2/5

Arithmetic Overflows 2/2 1/2 2/2

Path-

Explosion

Challenges

Loops 0/5 0/5 0/5

Crypto Functions 0/2 0/2 0/2

External Function Calls 0/8 1/8 3/8

Total 9/54 3/63 22/63

These tools failed most of the test cases.

Design Symbolic Opaque Predicates

27

Code Snippet

(Function)

input

Opaque

Predicates

output

Opaque Predicate Engine

Choose a Parameter

Design a Challenging

Problem

Create Opaque

Predicates

Template

Repository

Motivation

Approach

Template of Symbolic Memories

28

Source Code

1
2
3
4
5

int func(int i){
if(i == 7){

foobar();
}

}

int func(int i){
int l1_ary[] = {1,2,3,4,5,6,7};
int l2_ary[] = {j,1,2,3,4,5,6,7};
int j = l2_ary[l1_ary[i%7]];
if(i == j)

bogus();
if(j == 1 && i == 7)

foobar();
}

1
2
3
4
5
6
7
8
9

Obfuscated Code

Bi-opaque

Type I opaque predicate

Type II

Motivation

Approach

j=i%7+1

Evaluation

LLVM

Frontend
Source

Code

Input
Backend

IR

Code

Obfuscator-LLVM

Control-flow

Obfuscation

Opaque Predicate

Substitution

Binary

Code

Output

29

Motivation

Approach

Evaluation

❑ Performance Metrics:

▪ Space overhead

▪ Execution overhead

❑ Prototype based on Obfuscator-LLVM.

❑ Target Programs:

▪ Linux Busybox (e.g., cat)

▪ Encryption programs (e.g., AES)

0

5

10

15

20

25

30

35

40

Symbolic Memory Floating-point Number Covert Propagation Parallel Programming

P
ro

gr
am

 S
iz

e
 (

K
B

)

Obfuscating Linux-cat

0 1 5 10 all

Space Overhead

30

Motivation

Approach

Evaluation

Baseline: Obfuscator-LLVM

of replaced opaque predicates

Efficient with dynamic linkage

0

10000

20000

30000

40000

Symbolic Memory Floating-point Number Covert Propagation Parallel Programming

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Obfuscating AES

0 1 5 10 all

0

5

10

15

20

Symbolic Memory Floating-point Number Covert Propagation Parallel Programming

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Obfuscating Linux-cat

0 1 5 10 all

Execution Overhead

31

Motivation

Approach

Evaluation

Be careful of inefficient codes

Amplified in loops

Summary of Symbolic Opaque Predicates

❑Objective:

▪ To secure control-flow obfuscation against symbolic execution.

❑Our Contribution:

▪ We investigated the vulnerabilities of symbolic execution and

developed a dataset to benchmark symbolic execution tools.

▪ We proposed a framework to compose opaque predicates leveraging

these vulnerabilities.

❑Current Work:

▪ Enrich the template repository with more diversified samples.

▪ Develop a systematic strategy of opaque predicate insertion with

small overhead.

32

Motivation

Approach

Evaluation

Conclusion

N-version Obfuscation

Software

Obfuscation

Code-Element

Layer

Software-Component

Layer
Cross-Component

Layer

Application

Layer

Obfuscating

Layout
Obfuscating

Methods

Obfuscating

Data
…

Obfuscating

Controls

Meaningless

Identifiers

Stripping

Redundant

Symbols

Separation of

Related Codes

Junk Codes

Bogus Control

Flows

Probabilistic

Control Flows

Dispatcher-based

Controls

Implicit Controls

Obfuscating

DRM Systems
Obfuscating

DNN

White-box

Encryption

Knowledge

Distillation
...

33

N-version

Obfuscation

Motivation

❑ Software tampering attack is popular for smartphones, especially Android.

Static App Repack:

[Zhou’14] Rongyu Zhou, Leave The App Alone! - Attack and Defense of Android App, RSA2014

Dynamic Injection: 7/10 Android security apps in China inject payloads into their

“protected” apps.

34

apk file

Smali code

tampered

apk

apktool

unpack

apktool

repack

Motivation

The Protection Challenge

35

“Given enough time, effort and determination, a competent

programmer will always be able to reverse engineer any

application.”

--Christian Collberg

[Collberg’97] Christian Collberg, et al. A taxonomy of obfuscating transformations, 1997.

❑We can have a bunch of solutions, but none is overwhelming.

Motivation

Our Objective and Approach

36

❑Objective of N-version obfuscation:

▪ Defend apps against software tampering attack.

▪ We focus on impeding large-scale attacks only.

❑Approach:

▪ Create diversified apps for different clients.

▪ Impede the replication of an attack on multiple hosts.

Motivation

Approach

A Candidate Solution for Networked Apps

37

App Client 1

App Client 2

Safeguard

App Client N

Server

request

response

Safeguard

Safeguard

Integrity Checking

Diversified components

Diversified algorithms

MAC(request)

MAC

Hash
Parent

N-version
Database

ID

p
a

ra
m

Message Authentication

Motivation

Approach

Diversified MAC Algorithms based on SHA1

38SHA1 Parent of SHA1

Each client employs a random combination

2^160

Motivation

Approach

Feasibility of Automation

❑Automation of N-version Generation:

▪ Can be implemented as a compiler pass.

❑Automation of N-version Delivery:

▪ Server delivers the safeguard as a dynamic library to each client at

the first time of launch.

▪ Clients register their versions on the server.

39

Motivation

Approach

❑Objective:

▪ To defend software against tampering attacks.

▪ We focus on impeding large-scale attacks.

❑Our Contribution:

▪ We proposed an N-version obfuscation solution for networked apps.

▪ It is efficient to automatically generate and deliver N software versions.

40

Motivation

Approach

Conclusion

Summary of N-version Obfuscation

Our Proposed Approaches in the Taxonomy

Software

Obfuscation

Code-Element

Layer

Software-Component

Layer
Cross-Component

Layer

Application

Layer

Obfuscating

Layout
Obfuscating

Methods

Obfuscating

Data
…

Obfuscating

Controls

Meaningless

Identifiers

Stripping

Redundant

Symbols

Separation of

Related Codes

Junk Codes

Bogus Control

Flows

Probabilistic

Control Flows

Dispatcher-based

Controls

Implicit Controls

Obfuscating

DRM Systems
Obfuscating

DNN

White-box

Encryption

Knowledge

Distillation
...

41

Deep Learning

Obfuscation

Motivation

42

https://datascience.stackexchange.com/questions/13175/neural-network-obfuscation

Motivation

Client

1. reverse
engineer

Attacker

Company
(model owner)

Pirate Model

release model

2. pirate

▪ structure piracy
▪ parameter piracy

❑ Running deep learning models on client sides is a trend.

❑ Deep learning models are vulnerable to piracy.

Structure Piracy

Motivation

43

❑ Structure is the key factor for improving accuracy.

Conv2D
1*1

ReLU
Conv2D

1*1

ReLU

Conv2D
3*3

ReLU

Conv2D
1*1

Conv2D
5*5

Conv2D
3*3

Concatenate

ReLU

MaxPool

ReLUReLU

GoogLeNet Inception Module

Concatenate

Concatenate

Conv2D
3*3

BatchNorm
+ ReLU

Conv2D
1*1

BatchNorm
+ ReLU

Conv2D
3*3

BatchNorm
+ ReLU

Conv2D
1*1

BatchNorm
+ ReLU

DenseNet Inception Module

(2017)

Conv2D
3*3

BatchNorm
+ ReLU

Add

Conv2D
3*3

BatchNorm
+ ReLU

Conv2D
1*1

BatchNorm
+ ReLU

ResNet Inception Module

0

5

10

15

20

AlexNet VGG GoogLeNet ResNet

Top-5 Error (%) in ILSVRC

2012 winner 2014 runner up 2014 winner 2015 winner

Parameter Piracy

44

Motivation

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1
1

6
3

1
4

6
6

1
7

6
9

1
1

0
6

1
2
1

1
3
6

1
5
1

1
6
6

1
8
1

1
9
6

2
1
1

2
2
6

2
4
1

2
5
6

2
7
1

2
8
6

epoch

ResNet (58.67%)

Transfer Learning Experiment
(CIFAR-10 to STL10)

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

epoch

GoogLeNet (58.49%)

Incremental Learning Experiment
(CIFAR-10 to CIFAR-100)

❑ Employ a well-trained model as the initial state to create new models.

▪ Transfer learning.

▪ Incremental learning.

Transfer Learning(77.94%)

Incremental Learning (67.95%)

Our Objective and Approach

❑Objective: defend deep learning models against piracy attacks.

▪ Structure piracy.

▪ Parameter piracy.

❑Approach: simulate the model with a shallow network.

▪ Combat structure piracy by hiding the critical structures.

▪ Combat parameter piracy by degrading the learning ability.

▪ We should obtain a simulation network with zero accuracy loss.

• Recursive simulation.

• Joint training.

45

Motivation

Approach

Recursive Simulation of GoogLeNet

46

Motivation

Approach

GoogLeNet

Conv (3*3, 64 CN)

BatchNorm + ReLU+ MaxPool

Inception2A (2 Conv, 80 CN)

Inception3A (2 Conv, 160 CN)

Inception3B (2 Conv, 160 CN)

Inception4A (2 Conv, 256 CN)

AvgPool

Fully Connected (512, 10)

Inception4B (2 Conv, 512CN)

Inception3C (2 Conv, 160 CN)

Inception3D (2 Conv, 160 CN)

Inception3E (2 Conv, 160 CN)

Inception2B (2 Conv, 80 CN)

MaxPool

MaxPool

Fully Connected (512, 10)

AvgPool

Simulator 3

(2 Conv, 5*5, 512 CN)

Simulator 2

(4 Conv, 5*5, 160 CN)

MaxPool

Intermediate Result

Conv (3*3, 64 CN)

BatchNorm + ReLU+ MaxPool

Simulator 1

(2 Conv, 9*9, 80 CN)

MaxPool

Obfuscated GoogLeNet

Conv (3*3, 102 CN)

BatchNorm + ReLU+ MaxPool

Fully Connected (512, 10)

BatchNorm + ReLU + MaxPool

Conv (5*5, 118 CN)

Conv (5*5, 35 CN)

BatchNorm + ReLU

BatchNorm + ReLU + MaxPool

Conv (5*5, 141 CN)

Conv (3*3, 42 CN)

BatchNorm + ReLU+ AvgPool

Conv (5*5, 30 CN)

BatchNorm + ReLU

BatchNorm + ReLU

Conv (3*3, 512 CN)

Final simulator

first round

simulation

second round

simulation

19 conv layers 9 conv layers 7 conv layers

Principle of Simulator Design

47

Motivation

Approach

Feature Image

Convolution

Kernel: 2*2,

Stride: 2

Original Image

Convolution

Kernel: 2*2,

Stride: 1

Features should be computed from the same (or super) set of pixels.

Simulator

Kernel: 4*4,

Stride: 2

ℎ = ℎ1 + ℎ2 − 1 × 𝑠1

ℎ = ℎ1 + ℎ𝑛 − 1 × ⋯ × ℎ2 − 1 × 𝑠𝑛−1 × ⋯ × 𝑠1

Kernel size of the simulation network:

Compress 2 layers to 1 layer:

Compress n layers to 1 layer:

Joint Training

48

Motivation

Approach

ground truth 2

real label

other layers

input

Teacher Network

(original block)

intermediate output

Student

Network

(simulator)

ground truth 1

simulation

back propagation

❑ An improvement based on the teacher-student network.

▪ The loss of student network cannot be zero.

▪ The teacher network itself has errors.

Overall Framework of Obfuscation

49

Motivation

Approach

Obfuscation Phase

input

inception block (original) simulation network (obfuscated) fully connected Layer

define an intermediate network

new
param.

train

merge

obfuscate each block iteratively

First Simulation Round

intermediate result

fine-tune input

obfuscated
model

output

Second Simulation Round

train

define an intermediate network

obfuscated
model

merge

new
param.

network dataset

Training Phase

param.

Evaluation Experiments

❑Evaluation Purposes:

▪ Accuracy: can we obfuscate the model with zero accuracy loss?

▪ Overhead: size and execution cost.

▪ Security: resilience to parameter piracy.

❑Models for Obfuscation:

▪ GoogLeNet, ResNet,and DenseNet trained with CIFAR-10.

▪ ResNet and DenseNet trained with ImageNet (five classes).

50

Motivation

Approach

Evaluation

Results of Obfuscated Models

51

Motivation

Approach

Evaluation

Model (CIFAR-10)

Performance Overhead

Accuracy
Size

(MB)

Time

(us)
Size Time

GoogLeN

et

Original 90.83% 2.51 17.85 - -

Obfuscated 90.92% 2.49 7.01 -1% -63%

ResNet
Original 90.94% 43.36 10.50 - -

Obfuscated 91.04% 11.38 5.17 -74% -51%

DenseNet
Original 90.14% 4.24 35.53 - -

Obfuscated 90.31% 4.21 5.52 -1% -84%

Model (ImageNet)

Performance Overhead

Accuracy
Size

(MB)

Time

(us)
Size Time

ResNet
Original 92.4% 43.37 89 - -

Obfuscated 92.4% 36.72 59 -15% -34%

DenseNet
Original 91.6% 4.27 154 - -

Obfuscated 92.8% 2.94 56 -31% -64%

❑ No accuracy loss.

❑ More efficient.

Resilience to Parameter Piracy

52

Motivation

Approach

Evaluation

Model

Incremental Learning
(CIFAR-10 to CIFAR-100)

Transfer Learning
(CIFAR-10 to STL10)

Accuracy Degradation Accuracy Degradation

GoogLeNet
Original 66.5% - 79.15% -

Obfuscated 63.59% -4.4% 77.95% -1.5%

ResNet
Original 66.92% - 78.86% -

Obfuscated 64.77% -3.2% 75.97% -3.7%

DenseNet
Original 67.16% - 78.45% -

Obfuscated 62.91% -6.3% 76.90% -2.0%

❑The accuracy of pirated models based on the obfuscated models

declines obviously than based on the original ones.

❑Objective: to secure deep learning models against piracy.

❑Our Contribution:

▪ We proposed a simulation-based obfuscation approach.

▪ We conducted real-world experiments and achieved promising results.

• No accuracy loss.

• No overhead.

• Resilient to parameter piracy.

53

Motivation

Approach

Evaluation

ConclusionSummary of Deep Learning Obfuscation

Conclusion

❑We proposed layered obfuscation as a promising way for software

obfuscation.

❑We presented a taxonomy of obfuscation techniques for layered

obfuscation.

❑We discussed three novel obfuscation techniques.

▪ Symbolic opaque predicates.

▪ N-version obfuscation.

▪ Deep learning obfuscation.

54

Future Work

❑Practice layered obfuscation with more real-world software.

❑Develop a methodology for implementing layered obfuscation.

❑Propose new obfuscation techniques for new security issues.

❑Develop a practical obfuscation tool integrating multiple techniques.

55

Publications Related to the Thesis

❑ Motivation and Taxonomy (Chapter 2):

[1] “Assessing the Security Properties of Software Obfuscation,” Hui Xu, and Michael R. Lyu, in IEEE Security & Privacy

Magazine, Oct, 2016.

[2] “Layered Obfuscation: A Taxonomy of Software Obfuscation Techniques for Layered Security,” Hui Xu, Jiang Ming,

Yangfan Zhou, and Michael R. Lyu, under review by Elsevier Computers & Security.

❑ Newly Proposed Approaches (Chapter 3,4, 5):

[3] “Manufacturing Resilient Bi-Opaque Predicates against Symbolic Execution,” Hui Xu, Yangfan Zhou, Yu Kang, Fengzhi

Tu, and Michael R. Lyu, in Proc. of the 48th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),

2018.

[4] “Concolic Execution on Small-Size Binary Codes: Challenges and Empirical Study,” Hui Xu, Yangfan Zhou, Yu Kang, and

Michael R. Lyu, in Proc. of the 47th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2017.

[5] “Benchmarking the Capability of Symbolic Execution Tools,” Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael R. Lyu,

under review (minor revision) in IEEE Transactions on Dependable and Secure Computing (TDSC), 2018.

[6] “N-version Obfuscation,” Hui Xu, Yangfan Zhou, and Michael R. Lyu, in Proc. of the 2nd Cyber-Phsical System Security

Workshop (in conjunction with AsiaCCS), 2016.

[7] “DeepObfuscation: Securing the Structure of Convolutional Neural Networks via Obfuscation,” Hui Xu, Yuxin Su, Zirui

Zhao, Yangfan Zhou, Michael R. Lyu, and Irwin King, under review by NDSS, 2019.
56

Other Publications Related to Software Engineering and Cybersecurity

[1] “IntelliAd: Assisting Mobile App Developers in Measuring Ad Costs Automatically [Poster],” Cuiyun Gao, Yichuan Man,

Hui Xu, Jieming Zhu, Yangfan Zhou and Michael R. Lyu, in the 39th International Conference on Software Engineering

(ICSE-C), 2017.

[2] “DiagDroid: Android Performance Diagnosis via Anatomizing Asynchronous Executions,” Yu Kang, Yangfan Zhou, Hui

Xu, and Michael R. Lyu, in Proc. of the 24th ACM SIGSOFT International Symposium on the Foundations of Software

Engineering (FSE), 2016.

[3] “SpyAware: Investigating the Privacy Leakage Signatures in App Execution Traces,” Hui Xu, Yangfan Zhou, Cuiyun

Gao, Yu Kang, Michael R. Lyu, in Proc. of the 26th IEEE International Symposium on Software Reliability Engineering

(ISSRE), 2015.

[4] “AR-Tracker: Track the Dynamics of Mobile Apps via User Review Mining,” Cuiyun Gao, Hui Xu, Junjie Hu, and

Yangfan Zhou, in Proc. of the International Workshop on Internet-based Virtual Computing Environment (IVCE), 2015.

[5] “Towards Continuous and Passive Authentication via Touch Biometrics: An Experimental Study on Smartphones,” Hui

Xu, Yangfan Zhou, and Michael R. Lyu, in Proc. of the USENIX Symposium on Usable Privacy and Security (SOUPS), 2014.

[6] “Towards Designing Fault-Tolerant Deep Learning Systems via N-version Programming,” Hui Xu, Zhuangbin Chen,

Weibin Wu, Irwin King, Michael Lyu, under review.

[7] “Toward Detecting Real-world Adversarial Corner Cases in Deep Neural Networks,” Weibin Wu, Hui Xu, Sanqiang

Zhong, Michael, R. Lyu, Irwin King, under review.

57

58

