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Real-time AI Services
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a) Object Detection b) Machine Translation

c) Speech Recognition d) Tumor Detection
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The Increasing Model Size

3

a) Computer Vision Models b) Natural Language Processing Models

Efficient deep learning by network compression and neural architecture search

(Sanh et.al., 2020)(Bianco et.al., 2018)
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Overview: Network Compression

4

§ Common methods

Pruning Quantization Knowledge distillation Tensor factorization

Teacher

Student

⇡

+ +

§ Unstructured 
pruning
(Zhu et.al, 2017)

§ Structured 
pruning
(He et.al., 2017)

§ Multi-bit quant
(He et.al., 2017)

§ Ternarization
(Li et.al., 2016)

§ Binarization
(Courbariaux
et.al, 2016)

§ Logit
(Hinton et.al., 
2015)

§ Hidden 
representation
(Romero et.al, 
2015)

§ Canonical 
Polyadic
(Lebedev et.al., 
2015)

§ Tucker
(Kim et.al., 
2016)

full-prec

8-bit
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Overview: Network Compression

5

§ Compression pipeline
Training Resources

Data

Challenge 2: sharp performance drop

Caused by extreme compression such as: 
§ Pruning: higher sparsity

§ Quantization: lower bit-width 
(e.g., binarization)

Challenge 1: access of training resources

: Accessible on the user side

: Restricted for the compression service
§ Data: privacy and security
§ GPU: quick deployment

Model Pre-training Compression Fine-tuning

User Service
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Overview: Neural Architecture Search (NAS)
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§ NAS components

Search Space Search Strategy Performance Estimation

§ Basic cell
(Zoph et.al, 2017)

§ Width and depth
(He et.al., 2017)

§ Compression strategy
(Wang et.al., 2019)

§ Differentiable search
(Liu et.al., 2019)

§ Evolutionary algorithm
(Real et.al., 2017)

§ Reinforcement learning
(Zoph et.al., 2017)

§ Accuracy
(Zoph et.al., 2017)

§ Model storage
(Zhu et.al, 2017)

§ Computational FLOPs 
(He et.al., 2017)
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Overview: Neural Architecture Search (NAS)
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§ NAS pipeline

Search space Search strategy Performance 
estimationf(·)A

a = f(A)
Sample architecture

Re-training
a?Optimal

R(a)Architecture reward

Challenge 3: NAS efficiency with parameter sharing

§ Individually evaluating each candidate can take up to 1,000 GPU hours
§ Existing solutions: parameter sharing

§ However, the mechanism behind is not well studied
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Overall Taxonomy
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Network 
Compression

Pruning

Types Unstructured, Stripe, Filter, Channel

Data Access

Full Data: CP, ThiNet, DCP, CCP

Few Data: FSKD, CURL

Quantization

Quantization  
Training

QAT: DoReFa, PACT, LSQ

PTQ: Bit-split, AdaRound, BRECQ

Bit-width

m-bit: DoReFA, PACT, LSQ

2-bit: TWN, TTQ, LAQ, RTN

1-bit: BWN, BiReal, XNOR, ReActNet

Architecture 
Search

Search space Cell, Width/Depth, 
Compression NAS, FBNet, Auto-slim, TAS

Search Strategy Differentiable, RL, 
Evolutionary DARTS, ENAS, MetaPruning

Performance 
Estimation Parameter sharing NAS, ENAS, DARTS, TAS

Ch3: AAAI 2020

Ch4: In submission

Ch5: ACL 2021

Ch6: NeurIPS 2020

Challenge 1: network compression with
limited training resources

Challenge 3: NAS efficiency with
parameter sharing

Challenge 2: extreme network compression
with sharp performance drop
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Outline

9

1
Efficient Post-training Quantization for Pre-trained Language Models
(In submission)

2

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)3

Challenge 1: Network Compression with Limited Training Resources

Challenge 2: Extreme Compression with Sharp Performance Drop

Challenge 3: NAS Efficiency with Parameter Sharing

Revisit Parameter Sharing for Automatic Neural Channel Number
Search (NeurIPS 2020)

4

Few-shot Network Pruning via Cross Distillation (AAAI 2020)
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Background: Network Pruning
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§ Given convolutional kernel , find a mask 
such that  

§ Types of pruning

§ Pruning criteria (by minimizing the loss change)

1. Magnitude 2. Gradient (sensitivity) 3. Hessian (loss curvature)

(a) Unstricuterd Pruning. (b) Stripe Pruning. (c) Channel Pruning. (d) Filter Pruning.
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Motivation
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§ Typical paradigm for network pruning

§ However, passing the training data can be risky
§ New paradigm: few-shot network pruning (e.g., 5 images per class)

Privacy issues!

Light-weight model

User Pruning service

Training 
data

User 
model Pruning 

+
finetuning
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Prior Methods
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§ Pruning resembles knowledge distillation

§ Minimize the layer-wise Euclidean distance
• Objective function

• Layer-wise training: sample-efficient (Zhou et.al., 2020)

• Poor generalization due to over-fitting to few-shot data

• Error propagation layer-wisely

: Teacher (original unpruned model) : Student (pruned model)

Estimation error Pruning regularization
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Our Approach: Cross Distillation
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Correction

§ Motivation
Student receives clean signal from 
teacher to reduce error propagation

§ Student discrepancy

Imitation

§ Motivation
Teacher becomes aware of the error 
accumulated on student

§ Teacher discrepancy
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Our Approach: Cross Distillation
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§ Trade-off between correction and imitation
• Convex combination of loss terms

• Convex combination of cross connections

§ Correction § Imitation
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Pruning with Regularization
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§ Different regularizations on student parameters

• Structured pruning: where 

• Unstructured pruning:

§ Solve by proximal gradient descent:

• Structured pruning:

• Unstructured pruning:

R(WS)
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Experimental Results: Structured Pruning
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§ 50% channel sparsity
§ VGG-19 on CIFAR-10
§ Few-shot data: {1, 2, 3, 5, 10, 50} data / per class

§ CD: convex combin. over loss terms
§ SCD: convex combin over feature maps
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Experimental Results: Unstructured Pruning

17

§ 50% sparsity
§ VGG-19 on ImageNet
§ Few-shot data:
• {50, 100, 500} randomly sampled data in any classes
• {1, 2, 3} data / per class
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Experimental Results: Discussions
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§ How cross distillation alleviate the error propagation
§ Compare the ratio of estimation error on the test set

Ratio =
Lours

Lprev
( )

Ratio < 1: generalize better
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Summary
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§ We study the problem of few-shot network pruning, a new pruning paradigm that 
considers data security issues for users

§ We propose cross distillation, a new layer-wise pruning technique with  knowledge 
distillation. The interconnection between teacher and student layers alleviate the 
error propagation

§ Experiments on popular network architectures show that our approach can bring 
consistent improvement for pruning even when only 1~10 images per class are 
available
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Outline
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Few Shot Network Pruning via Cross Distillation (AAAI 2020)1
Efficient Post-training Quantization for Pre-trained Language Models
(In submission)

2

Challenge 1: Network Compression with Limited Training Resources

Challenge 2: Extreme Compression with Sharp Performance Drop

Challenge 3: NAS Efficiency with Parameter Sharing

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)3

Revisit Parameter Sharing for Automatic Neural Channel Number
Search (NeurIPS 2020)

4



Haoli BaiHaoli Bai Network Compression and Architecture Search in Deep Learning / 58

Network Quantization in NLP Tasks

21

§ The increasing size of pre-trained models (Sanh et.al., 2020)

§ The huge pre-training corpus: slow training

• BERT (Devlin et.al., 2018) uses BookCorpus (800M words) & English Wikipedia (2500M words) 

§ Even resource-demanding for network compression
§ Efficient quantization pipelines
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Background: Quantization
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§ Given the full-precision parameter

• Multi-bit quantization (b-bit):

• Ternarization (2-bit)

• Binarization (1-bit)

§ Quantization workflow
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Background: Quantization
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§ Training
• Quantization-aware training (QAT):  cross entropy over full data

• Post-training quantization (PTQ):  reconstruction error over few data

§ Comparison

(Similar to layer-wise pruning)
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Methodology: Model Splitting

24

§ Goal: improve post-training quantization while keeping its advantages
§ Approach: split the language model into multiple modules
§ Improvement: layer-wise -> module-wise

where      and      are the full-precision and quantized output of each module
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Methodology: Parallel Training
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§ Training procedure:
• Sequential training: one by one
• Parallel training: an input queue help achieve theoretical speedup

§ Teacher forcing

§ Adapt to normal training:

(resembles cross distillation)
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Experiments: Main Results
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§ Text classification (MNLI)
§ Only 4K training instances (original dataset: 393K instances)
§ Our approach: MREM-S (sequential) and MREM-P (parallel)
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Experiments: Compare with Existing SOTA
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§ Compare with existing SOTA (both QAT and PTQ baselines)
§ On GLUE benchmark
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Experiments: Effect of Teacher Forcing

28

§ Loss curves with 250 training steps (up) and 2,000 training steps (down)
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§ We investigate post-training quantization (PTQ) for pre-trained language models

§ The proposed PTQ method enjoys quick training (36x ~ 144x faster), light memory 
consumption (3x savings) with only 4K instances (<1%) and reasonable performance 
(1.3% drop compared with QAT)

§ The designed parallel strategy further achieves theoretical training speed-up
(e.g., 4x on 4 GPUs)

Summary

29
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Outline
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Few Shot Network Pruning via Cross Distillation (AAAI 2020)

1
Efficient Post-training Quantization for Pre-trained Language Models
(In submission)

2

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)3

Challenge 1: Network Compression with Limited Training Resources

Challenge 2: Extreme Compression with Sharp Performance Drop

Challenge 3: NAS Efficiency with Parameter Sharing

Revisit Parameter Sharing for Automatic Neural Channel Number
Search (NeurIPS 2020)

4
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Introduction

31

§ Advantages of binarization (1-bit):
• The most size reduction
• Conversion of floating-point multiplication to cheap integer addition 
• Fast and energy-saving on edge devices

§ However, it is HARD to train a binary BERT directly
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§ Visualization of loss landscape

§ Perturbation as follows:

where , and 

Background: Underlying Challenges

32

is the average value of 
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Background: Underlying Challenges

33

§ The top-1 eigenvalue of Hessian matrix       at different parts

• Measuring the steepness of loss curvature

• is the quantization noise
• Top-1 eigenvalue reflects the quantization sensitivity
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Methodology: Ternary Weight Split
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§ First train a ternary BERT as the bridge model

§ For each ternary weight         and its quantized counterpart        , we apply ternary 
weight splitting (TWS) as

§ TWS ensures equivalency, inheriting knowledge from ternary model
§ We assign the following form of solution

§ Next: solve 𝑎 and 𝑏
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Methodology: Ternary Weight Split
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§ TWS allows closed-form solution as

§ where , ,
§ TWS can be finished immediately
§ Detailed derivations can be found in the thesis
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Methodology: Ternary Weight Split

36
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Methodology: Adaptive Splitting

37

§ Adaptive splitting: fit BinaryBERT to various edge devices
§ Train a ternary and binary mixed BERT, and split the ternary (sensitive) ones
§ Equivalent to mixed-precision, but enjoy hard-ware efficiency
§ Formulation: a combinatorial optimization problem

where       is the resource constraint, and                   is the utility vector
§ The utility       can be measured by performance gain from ternarization
§ A knapsack problem, solved by dynamic programing
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Experiments: Main Results
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§ GLUE benchmark (test set results)
§ TWS (ours): ternary weight splitting
§ BWN: train binary model from scratch
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Experiments: More Results
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§ Compare with SOTA

Size reduction
418/17 = 24.5

§ Optimization trajectory after splitting
• Follow (Li et.al, 2017)

Moving towards a better minima
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Experiments: Adaptive Splitting Results
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§ Maximal Gain
split the most sensitive

§ Random Gain
split in the random way

§ Minimal Gain
split the most insensitive
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Summary

41

§ We find that directly training a BinaryBERT suffers from large performance drop 
due to the steep loss landscape issues

§ We thus propose ternary weight splitting, by first training a ternaryBERT as the 
initialization of the full-sized BinaryBERT

§ The proposed approach also supports adaptive splitting, which can flexibly adjust 
the model size depending on hardware constraints

§ We achieve new state-of-the-art BERT quantization results, being 24x smaller in 
size with only 0.4% accuracy drop compared with the full precision model
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Outline
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Few Shot Network Pruning via Cross Distillation (AAAI 2020)

1
Efficient Post-training Quantization for Pre-trained Language Models
(In submission)

2

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)3

Challenge 1: Network Compression with Limited Training Resources

Challenge 2: Extreme Compression with Sharp Performance Drop

Challenge 3: NAS Efficiency with Parameter Sharing

Revisit Parameter Sharing for Automatic Neural Channel Number
Search (NeurIPS 2020)

4
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Background: Reinforcement Learning based NAS
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§ Bi-level optimization problem
• Inside: minimize the loss function w.r.t. candidate parameter
• Outside: level: maximize the reward function by policy gradient

§ Computationally intractible to compute            for evaluation 
§ Associating      with different           make the supernet too large
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Background: Parameter Sharing
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§ Recall the workflow of neural architecture search

§ Parameter sharing is widely used to improve the searching efficiency

slow

Slimmable Net (Yu et.al., 2018)

big
(Elsken et.al., 2019)
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Previous Parameter Sharing Schemes

45

§ Summarization of previous parameter sharing schemes

§ We aim at a better understanding of parameter sharing in NAS

Ordinal selection Independent selection
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Methodology: Affine Parameter Sharing
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§ Parameter sharing can be achieved by affine transformation
§ Meta weight        , transformation matrices

Ordinal selection

Independent selection
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Methodology: Affine Parameter Sharing
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§ Quantitative measurement with affine parameter sharing

• Ordinal selection: maximum
• Independent selection: minimum

Theorem

Definition
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Methodology: Parameter Sharing Effect
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The two sides of parameter sharing
§ Parameter sharing benefits efficient searching 

A positive cosine value indicates a descent direction

§ Parameter sharing couples architecture optimization 
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Methodology: Affine Parameter Sharing

49

§ How does the parameter sharing level relate to the following aspects
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Methodology: Transitionary Affine Parameter Sharing
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§ A large cosine value benefits efficient training
§ A large coupled gradient norm may bring less discriminative architectures
§ Initialize with maximum and gradually anneal it by:

where in each update, we project them back to unit length:
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Experiments: Effect of Parameter Sharing
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§ Efficient training

§ Architecture discrimination



Haoli BaiHaoli Bai Network Compression and Architecture Search in Deep Learning / 58

Experiments: Main Results
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§ ImageNet Results § ACCs under varying FLOPs
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Summary

53

§ We propose affine parameter sharing as a general framework to unify previous 
hand-crafted parameter sharing heuristics

§ We define a metric to qualitatively measure the parameter sharing level, and find it 
improves searching efficiency but at the cost of less architecture discrimination

§ We thus design a transitionary parameter sharing strategy that balances searching 
efficiency and architecture discrimination, which can stably pick out the best 
architecture choices

§ Extensive empirical results show that our searching algorithm outperforms a 
number of strong NAS baselines across different model sizes and architectures
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Outline
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Few Shot Network Pruning via Cross Distillation (AAAI 2020)1
Efficient Post-training Quantization for Pre-trained Language Models
(In submission)

2

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)3

Revisit Parameter Sharing for Automatic Neural Channel Number
Search (NeurIPS 2020)

4

Challenge 1: Network Compression with Limited Training Resources

Challenge 2: Extreme Compression with Sharp Performance Drop

Challenge 3: NAS Efficiency with Parameter Sharing
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Future Work
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§ Network compression

• Data unavailable: domain adaptation

• Trillion-scale models

§ Neural architecture search

• Few-shot NAS: fast-training before evaluation

• Refining the search space 
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