

Network Compression and Architecture Search in Deep Learning

Haoli Bai

Supervisors:

Prof. Michael Rung-Tsong Lyu

Prof. Irwin Kuo-Chin King

Committee Members:

Prof. Laiwan Chan Prof. Andrej Bogdanov

Prof. Hsuan-Tien Lin

Real-time AI Services

a) Object Detection

c) Speech Recognition

b) Machine Translation

d) Tumor Detection

Haoli Bai

The Increasing Model Size

(Bianco et.al., 2018)

> Efficient deep learning by **network compression** and **neural architecture search**

Overview: Network Compression

Common methods

Haoli Bai

Overview: Network Compression

Compression pipeline

Haoli Bai

Overview: Neural Architecture Search (NAS)

NAS components

- Basic cell (Zoph et.al, 2017)
- Width and depth (He et.al., 2017)
- Compression strategy (Wang et.al., 2019)

Search Strategy

- Differentiable search (Liu et.al., 2019)
- Evolutionary algorithm (Real et.al., 2017)
- Reinforcement learning (Zoph et.al., 2017)

Performance Estimation

- Accuracy (Zoph et.al., 2017)
- Model storage (Zhu et.al, 2017)
- Computational FLOPs (He et.al., 2017)

Haoli Bai

Overview: Neural Architecture Search (NAS)

Haoli Bai

Overall Taxonomy

Outline

Challenge 1: Network Compression with Limited Training Resources

Few-shot Network Pruning via Cross Distillation (AAAI 2020)

Efficient Post-training Quantization for Pre-trained Language Models (In submission)

Challenge 2: Extreme Compression with Sharp Performance Drop

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)

Challenge 3: NAS Efficiency with Parameter Sharing

Revisit Parameter Sharing for Automatic Neural Channel Number Search (NeurIPS 2020)

Background: Network Pruning

- Given convolutional kernel $\mathbf{w} \in \mathbb{R}^{c_o \times c_i \times k \times k}$, find a mask $\mathbf{m} \in \{0, 1\}^{c_o \times c_i \times k \times k}$ such that $\tilde{\mathbf{w}} = \mathbf{w} \odot \mathbf{m}$
- Types of pruning

Pruning criteria (by minimizing the loss change)

$$\ell(\tilde{\mathbf{w}}) \approx \ell(\mathbf{w}) + \mathbf{g}(\mathbf{w})^{\top}(\tilde{\mathbf{w}} - \mathbf{w}) + \frac{1}{2}(\tilde{\mathbf{w}} - \mathbf{w})^{\top}\mathbf{H}(\mathbf{w})(\tilde{\mathbf{w}} - \mathbf{w}).$$

1. Magnitude 2. Gradient (sensitivity) 3. Hessian (loss curvature)

Motivation

• Typical paradigm for network pruning

• However, passing the training data can be risky

• New paradigm: few-shot network pruning (e.g., 5 images per class)

Prior Methods

- Pruning resembles knowledge distillation
 - \mathcal{F}^T : Teacher (original unpruned model)
- \mathcal{F}^S : Student (pruned model)
- Minimize the layer-wise Euclidean distance
 - Objective function

- Layer-wise training: sample-efficient (Zhou et.al., 2020)
- <u>Poor generalization</u> due to over-fitting to few-shot data
- Error propagation layer-wisely

Our Approach: Cross Distillation

Motivation

Student receives clean signal from teacher to reduce error propagation

Student discrepancy

 $\epsilon^{S} = \|\mathbf{W}^{S} \ast \mathbf{h}^{T} - \mathbf{W}^{S} \ast \mathbf{h}^{S}\|_{F}^{2}$

Imitation

Motivation

Teacher becomes aware of the error accumulated on student

- Teacher discrepancy $\epsilon^T = \|\mathbf{W}^T \! \ast \! \mathbf{h}^S \! - \! \mathbf{W}^T \! \ast \! \mathbf{h}^T \|_F^2$

Haoli Bai

Our Approach: Cross Distillation

Correction

Imitation

$$\mathcal{L}^{c}(\mathbf{w}^{S}) = \|\mathbf{w}^{T} * \mathbf{h}^{T} - \mathbf{w}^{S} * \mathbf{h}^{T}\|_{F}^{2}$$

$$\mathcal{L}^{i}(\mathbf{w}^{S}) = \|\mathbf{w}^{T} * \mathbf{h}^{S} - \mathbf{w}^{S} * \mathbf{h}^{S}\|_{F}^{2}$$

- Trade-off between correction and imitation
 - Convex combination of loss terms

-

$$\tilde{\mathcal{L}} = \mu \mathcal{L}^c + (1 - \mu) \mathcal{L}^i, \quad \mu \in [0, 1].$$

• Convex combination of cross connections

$$\hat{\mathbf{L}}_{\mathbf{x}} = \begin{bmatrix} \alpha & 1-\alpha \\ 1-\beta & \beta \end{bmatrix} \begin{bmatrix} \mathbf{h}^{T} \\ \mathbf{h}^{S} \end{bmatrix} = \begin{bmatrix} \alpha & 1-\alpha \\ 1-\beta & \beta \end{bmatrix} \begin{bmatrix} \mathbf{h}^{T} \\ \mathbf{h}^{S} \end{bmatrix}, \quad \alpha, \beta \in [0,1]$$

$$\hat{\mathbf{L}}(\mathbf{w}^{S}) = \| (\mathbf{w}^{T} * \hat{\mathbf{h}}^{T}) - (\mathbf{w}^{S} * \hat{\mathbf{h}}^{S}) \|_{F}^{2},$$

Pruning with Regularization $\mathcal{R}(\mathbf{W}^S)$

- Different regularizations on student parameters
 - Structured pruning: $\mathcal{R}(\mathbf{W}^S) = \|\mathbf{W}^S\|_{2,1} = \sum_i \|\mathbf{W}^S_i\|_2$ where $\mathbf{W}^S_i \in \mathbb{R}^{c_o \times k \times k}$
 - Unstructured pruning: $\mathcal{R}(\mathbf{W}^S) = \|\mathbf{W}^S\|_1 = \sum_{i,j,h,w} |W^S_{ijhw}|$
- Solve by proximal gradient descent:
 - Structured pruning: $\operatorname{Prox}_{\lambda \|\cdot\|_2}(\mathbf{w}_i^S) = \max(1 \frac{\lambda}{\|\mathbf{w}_i^S\|_2}, 0) \cdot \mathbf{w}_i^S$
 - Unstructured pruning:

$$\operatorname{Prox}_{\lambda \|\cdot\|_{1}}(W_{ijhw}^{S}) = \begin{cases} W_{ijhw}^{S} - \lambda & W_{ijhw}^{S} > \lambda \\ 0 & |W_{ijhw}^{S}| \leq \lambda \\ W_{ijhw}^{S} + \lambda & W_{ijhw}^{S} < -\lambda \end{cases}$$

Experimental Results: Structured Pruning

- 50% channel sparsity
- VGG-19 on CIFAR-10

- CD: convex combin. over loss terms
- SCD: convex combin over feature maps
- Few-shot data: {1, 2, 3, 5, 10, 50} data / per class

Methods	1	2	3	5	10	50
L1-norm BP	$14.36_{\pm 0.00}$ $49.24_{\pm 1.76}$	$\begin{array}{c} 14.36_{\pm 0.00} \\ 49.32_{\pm 1.88} \end{array}$	$14.36_{\pm 0.00}$ $51.39_{\pm 1.53}$	$14.36_{\pm 0.00}$ $55.73_{\pm 1.19}$	$14.36_{\pm 0.00}$ $57.48_{\pm 0.91}$	$14.36_{\pm 0.00}$ $64.69_{\pm 0.43}$
FSKD FitNet ThiNet CP	$47.91_{\pm 1.82} \\ 48.51_{\pm 2.51} \\ 58.06_{\pm 1.71} \\ 66.03_{\pm 1.56}$	$55.44_{\pm 1.71}$ $71.51_{\pm 2.03}$ $72.07_{\pm 1.68}$ $75.23_{\pm 1.49}$	$\begin{array}{c} 61.76_{\pm 1.39} \\ 76.22_{\pm 1.95} \\ 75.37_{\pm 1.59} \\ 77.98_{\pm 1.47} \end{array}$	$\begin{array}{c} 65.69_{\pm 1.08} \\ 81.10_{\pm 1.13} \\ 78.03_{\pm 1.24} \\ 81.53_{\pm 1.29} \end{array}$	$72.20_{\pm 0.74} \\ 85.40_{\pm 1.02} \\ 81.15_{\pm 0.85} \\ 83.59_{\pm 0.78}$	$75.46_{\pm 0.49}$ $88.46_{\pm 0.76}$ $86.12_{\pm 0.45}$ $87.27_{\pm 0.27}$
w/o CD CD SCD	$\begin{array}{c} 65.57_{\pm 1.61} \\ \textbf{69.25}_{\pm 1.39} \\ 68.53_{\pm 1.59} \end{array}$	$\begin{array}{c} 75.44_{\pm 1.69} \\ \textbf{80.65}_{\pm 1.47} \\ 76.83_{\pm 1.43} \end{array}$	$\begin{array}{c} 78.40_{\pm 1.53} \\ \textbf{82.08}_{\pm 1.41} \\ 80.16_{\pm 1.32} \end{array}$	$\begin{array}{c} 81.20_{\pm 1.13} \\ 84.91_{\pm 0.98} \\ 84.28_{\pm 1.19} \end{array}$	$\begin{array}{c} 84.07_{\pm 0.83}\\ \textbf{86.61}_{\pm \textbf{0.71}}\\ 86.30_{\pm 0.79}\end{array}$	$\begin{array}{c} 87.67_{\pm 0.29} \\ 87.64_{\pm 0.24} \\ 88.65_{\pm 0.33} \end{array}$

Experimental Results: Unstructured Pruning

- 50% sparsity
- VGG-19 on ImageNet
- Few-shot data:
 - {50, 100, 500} randomly sampled data in any classes
 - {1, 2, 3} data / per class

Methods	50	100	500	1	2	3
L1-norm BP FitNet	$\begin{array}{c} 0.5_{\pm 0.00} \\ 42.87_{\pm 2.07} \\ 52.66_{\pm 2.93} \end{array}$	$\begin{array}{c} 0.5_{\pm 0.00} \\ 48.78_{\pm 1.43} \\ 57.09_{\pm 2.14} \end{array}$	$\begin{array}{c} 0.5_{\pm 0.00} \\ 65.47_{\pm 1.15} \\ 76.59_{\pm 1.45} \end{array}$	$\begin{array}{c} 0.5_{\pm 0.00} \\ 71.25_{\pm 0.97} \\ 80.14_{\pm 1.23} \end{array}$	$\begin{array}{c} 0.5_{\pm 0.00} \\ 74.85_{\pm 0.71} \\ 82.27_{\pm 0.70} \end{array}$	$0.5_{\pm 0.00} \ 76.04_{\pm 0.48} \ 83.14_{\pm 0.51}$
w/o CD CD SCD	$\begin{array}{c} 78.73_{\pm 1.78} \\ 83.81_{\pm 1.49} \\ 83.67_{\pm 1.52} \end{array}$	$\begin{array}{c} 83.29_{\pm 1.12} \\ 86.21_{\pm 1.09} \\ 86.72_{\pm 1.23} \end{array}$	$\begin{array}{c} 85.04_{\pm 0.93} \\ 87.19_{\pm 0.96} \\ 87.82_{\pm 1.04} \end{array}$	$\begin{array}{c} 85.36_{\pm 0.61} \\ 87.61_{\pm 0.82} \\ 88.14_{\pm 0.74} \end{array}$	$\begin{array}{c} 85.21_{\pm 0.41} \\ 87.78_{\pm 0.45} \\ 88.23_{\pm 0.61} \end{array}$	$\begin{array}{c} 85.49_{\pm 0.46} \\ 87.86_{\pm 0.39} \\ 88.38_{\pm 0.43} \end{array}$

Experimental Results: Discussions

- How cross distillation alleviate the error propagation
- Compare the ratio of estimation error on the test set

Ratio =
$$\frac{\mathcal{L}_{ours}}{\mathcal{L}_{prev}}$$
 ($\|\mathbf{w}^T * \mathbf{h}^T - \mathbf{w}^S * \mathbf{h}^S\|_F^2$)

Ratio < 1: generalize better

Summary

- We study the problem of few-shot network pruning, a new pruning paradigm that considers <u>data security issues</u> for users
- We propose cross distillation, a new layer-wise pruning technique with knowledge distillation. The interconnection between teacher and student layers <u>alleviate the</u> <u>error propagation</u>
- Experiments on popular network architectures show that our approach can bring consistent improvement for pruning even when <u>only 1~10 images per class</u> are available

Outline

Challenge 1: Network Compression with Limited Training Resources

Few Shot Network Pruning via Cross Distillation (AAAI 2020)

2 Efficient Post-training Quantization for Pre-trained Language Models (In submission)

Challenge 2: Extreme Compression with Sharp Performance Drop

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)

Challenge 3: NAS Efficiency with Parameter Sharing

Revisit Parameter Sharing for Automatic Neural Channel Number Search (NeurIPS 2020)

Network Quantization in NLP Tasks

The increasing size of pre-trained models (Sanh et.al., 2020)

- The huge pre-training corpus: slow training
 - BERT (Devlin et.al., 2018) uses BookCorpus (800M words) & English Wikipedia (2500M words)
- Even resource-demanding for network compression
- Efficient quantization pipelines

Background: Quantization

- \hfill Given the full-precision parameter w
 - Multi-bit quantization (b-bit):

$$\hat{\mathbf{w}} = \mathcal{Q}_b(\mathbf{w}) = s \cdot \Pi_{\Omega(b)}(\mathbf{w}/s), \ \Omega(b) == \{-2^{b-1}, ..., 0, ..., 2^{b-1} - 1\}$$

$$\hat{w}_i^t = \mathcal{Q}_2(w_i) = \begin{cases} \alpha \cdot \operatorname{sign}(w_i) \ |w_i| \ge \Delta \\ 0 \ |w_i| < \Delta \end{cases}$$

• Binarization (1-bit)

$$\hat{w}_i^b = \mathcal{Q}_1(w_i) = \alpha \cdot \operatorname{sign}(w_i).$$

Quantization workflow

Haoli Bai

Background: Quantization

- Training
 - Quantization-aware training (QAT): cross entropy over full data

$$\min_{\mathbf{w},\mathbf{s}} \mathrm{E}_{\mathbf{x}\sim\mathcal{D}} \left[\ell(\mathbf{x}; \hat{\mathbf{w}}, \mathbf{s}) \right], \quad \text{s.t. } \hat{\mathbf{w}} = \mathcal{Q}_b(\mathbf{w}).$$

Post-training quantization (PTQ): reconstruction error over few data

$$\min_{\mathbf{w},\mathbf{s}} \| \hat{\mathbf{w}}^\top \hat{\mathbf{a}} - \mathbf{w}^\top \mathbf{a} \|^2, \quad \text{s.t. } \hat{\mathbf{w}} = \mathcal{Q}_b(\mathbf{w}). \quad \text{(Similar to layer-wise pruning)}$$

Methodology: Model Splitting

- Goal: improve post-training quantization while keeping its advantages
- Approach: split the language model into multiple modules
- Improvement: <u>layer-wise -> module-wise</u>

$$\min_{\mathbf{w},\mathbf{s}} \|\hat{\mathbf{w}}^{\top}\hat{\mathbf{a}} - \mathbf{w}^{\top}\mathbf{a}\|^{2}, \quad \mathbf{>} \quad \min_{\mathbf{w}_{n},\mathbf{s}_{n}} \ell^{(n)} \; \triangleq \sum_{l \in [l_{n},l_{n+1})} \|\hat{f}_{l} - f_{l}\|^{2},$$

where f_l and \hat{f}_l are the full-precision and quantized output of each module

Methodology: Parallel Training

- Training procedure:
 - Sequential training: one by one
 - Parallel training: an input queue help achieve theoretical speedup
- Teacher forcing $\tilde{\boldsymbol{f}}_{l_n} = \lambda \boldsymbol{f}_{l_n} + (1-\lambda)\hat{\boldsymbol{f}}_{l_n}, \quad \lambda \in [0,1], \text{ (resembles cross distillation)}$
- Adapt to normal training: $\lambda_t = \max(1 \frac{t}{T_0}, 0)$

Experiments: Main Results

- Text classification (MNLI)
- Only 4K training instances (original dataset: 393K instances)
- Our approach: MREM-S (sequential) and MREM-P (parallel)

	#Bits	Quant	BERT-base						BERT-large					
	#Bits (W-E-A)	Quant Method	Time	Mem	# Data	Acc	Acc	Time	Mem	# Data	Acc	Acc		
			(min)	(G)	(K)	m(%)	mm(%)	(min)	(G)	(K)	m(%)	mm(%)		
	full-prec	N/A	220	8.6	393	84.5	84.9	609	21.5	393	86.7	85.9		
	4-4-8	QAT	1,320	11.9	393	84.6	84.9	3,180	29.8	393	86.9	86.7		
		REM	28	2.5	4	$73.3_{\pm 0.3}$	$74.9_{\pm 0.2}$	84	5.5	4	$70.0_{\pm 0.4}$	$71.8_{\pm 0.3}$		
		MREM-S	36	4.6	4	$83.5_{\pm 0.1}$	$83.9_{\pm 0.1}$	84	10.8	4	$86.1_{\pm 0.1}$	$85.9_{\pm 0.1}$		
		MREM-P	9	3.7	4	$83.4_{\pm 0.1}$	$83.7_{\pm 0.1}$	21	8.6	4	$85.5_{\pm 0.1}$	$85.4_{\pm 0.2}$		
Г	2-2-8	QAT	882	11.9	393	84.4	84.6	2,340	29.8	393	86.5	86.1		
MNL		REM	24	2.5	4	$71.6_{\pm 0.4}$	$73.4_{\pm 0.4}$	64	5.5	4	$66.9_{\pm 0.4}$	$68.6_{\pm 0.7}$		
2		MREM-S	24	4.6	4	$82.7_{\pm 0.2}$	$82.7_{\pm 0.2}$	64	10.8	4	$85.4_{\pm 0.2}$	$85.3_{\pm 0.2}$		
-		MREM-P	6	$3.7_{\times 4}$	4	$82.3_{\pm 0.2}$	$82.6_{\pm 0.2}$	16	$8.6_{\times 4}$	4	$84.6_{\pm 0.2}$	$84.6_{\pm 0.1}$		
	2-2-4	QAT	875	11.9	393	83.5	84.2	2,280	29.8	393	85.8	85.9		
		REM	24	2.5	4	$58.3_{\pm 0.5}$	$60.6_{\pm 0.6}$	64	5.5	4	$48.8_{\pm 0.6}$	$51.4_{\pm 0.8}$		
		MREM-S	24	4.6	4	$81.1_{\pm 0.2}$	$81.5_{\pm 0.2}$	64	10.8	4	$83.6_{\pm 0.2}$	$83.7_{\pm 0.2}$		
		MREM-P	6	$3.7_{\times 4}$	4	$80.8_{\pm 0.2}$	$81.2_{\pm 0.2}$	16	$8.6_{\times 4}$	4	$83.0_{\pm 0.3}$	$83.2_{\pm 0.2}$		

Experiments: Compare with Existing SOTA

- Compare with existing SOTA (both QAT and PTQ baselines)
- On GLUE benchmark

Quant	#Bits	Size	РТО	MNLI-m	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Ava
Method	(W-E-A)	(MB)	ЧŲ		IVY	QNLI	551-2	COLA	515-D	MINIC	NIL	Avg.
-	full-prec.	418	-	84.9	91.4	92.1	93.2	59.7	90.1	86.3	72.2	83.9
Q-BERT	2-8-8	43	X	76.6	-	-	84.6	-	-	-	-	-
Q-BERT	2/4-8-8	53	X	83.5	-	-	92.6	-	-	-	-	-
Quant-Noise	PQ	38	X	83.6	-	-	-	-	-	-	-	-
TernaryBERT	2-2-8	28	×	83.3	90.1	91.1	92.8	55.7	87.9	87.5	72.9	82.7
GOBO	3-4-32	43	1	83.7	-	-	-	-	88.3	-	-	-
GOBO	2-2-32	28	1	71.0	-	-	-	-	82.7	-	-	-
MREM-S	4-4-8	50	1	$83.5_{\pm 0.1}$	$90.2_{\pm 0.1}$	$91.2_{\pm 0.1}$	$91.4_{\pm 0.4}$	$55.1_{\pm 0.8}$	$89.1_{\pm 0.1}$	$84.8_{\pm 0.0}$	$71.8_{\pm 0.0}$	$82.4_{\pm 0.1}$
	2-2-8	28	1	$82.7_{\pm 0.2}$	$89.6_{\pm 0.1}$	$90.3_{\pm 0.2}$	$91.2_{\pm 0.4}$	$52.3_{\pm 1.0}$	$88.7_{\pm 0.1}$	$86.0_{\pm 0.0}$	$71.1_{\pm 0.0}$	$81.5_{\pm 0.2}$
MREM-P	4-4-8	50	1	$83.4_{\pm 0.1}$	$90.2_{\pm 0.1}$	$91.0_{\pm 0.2}$	$91.5_{\pm 0.4}$	$54.7_{\pm 0.9}$	$89.1_{\pm 0.1}$	$86.3_{\pm 0.0}$	$71.1_{\pm 0.0}$	$82.2_{\pm 0.1}$
	2-2-8	28	1	$82.3_{\pm 0.2}$	$89.4_{\pm 0.1}$	$90.3_{\pm 0.2}$	$91.3_{\pm 0.4}$	$52.9_{\pm 1.2}$	$88.3_{\pm 0.2}$	$85.8_{\pm 0.0}$	$72.9_{\pm 0.0}$	$81.6_{\pm 0.2}$

Experiments: Effect of Teacher Forcing

Loss curves with 250 training steps (up) and 2,000 training steps (down)

Summary

- We investigate post-training quantization (PTQ) for pre-trained language models
- The proposed PTQ method enjoys quick training (36x ~ 144x faster), light memory consumption (3x savings) with only <u>4K instances (<1%)</u> and reasonable performance (1.3% drop compared with QAT)
- The designed parallel strategy further achieves <u>theoretical training speed-up</u> (e.g., 4x on 4 GPUs)

Haoli Bai

Outline

FethallengetwoetwoorkingwjaressionDisthlationteAAAianapResources

Challenge 2: Extreme Compression with Sharp Performance Drop

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)

Challenge 3: NAS Efficiency with Parameter Sharing

Revisit Parameter Sharing for Automatic Neural Channel Number Search (NeurIPS 2020)

Introduction

- Advantages of binarization (1-bit):
 - The most size reduction
 - Conversion of floating-point multiplication to cheap integer addition
 - Fast and energy-saving on edge devices
- However, it is <u>HARD</u> to train a binary BERT directly

Background: Underlying Challenges

Visualization of loss landscape

Perturbation as follows:

$$\tilde{\mathbf{w}}_x = \mathbf{w}_x + x \cdot \mathbf{1}_x, \quad \tilde{\mathbf{w}}_y = \mathbf{w}_y + y \cdot \mathbf{1}_y,$$

where \bar{w}_x is the average value of \mathbf{w}_x , and $x \in \{\pm 0.2\bar{w}_x, \pm 0.4\bar{w}_x, ..., \pm 1.0\bar{w}_x\}$

Background: Underlying Challenges

• The top-1 eigenvalue of Hessian matrix H at different parts

• Measuring the steepness of loss curvature

$$\ell(\hat{\mathbf{w}}) - \ell(\mathbf{w}) \approx \boldsymbol{\epsilon}^{\top} \mathbf{H} \boldsymbol{\epsilon} \leq \lambda_{\max} \|\boldsymbol{\epsilon}\|^2,$$

- $\boldsymbol{\epsilon} = \mathbf{w} \hat{\mathbf{w}}$ is the quantization noise
- Top-1 eigenvalue reflects the quantization sensitivity

Methodology: Ternary Weight Split

- First train a ternary BERT as the bridge model
- For each ternary weight \mathbf{w}^t and its quantized counterpart $\hat{\mathbf{w}}^t$, we apply ternary weight splitting (TWS) as

$$\mathbf{w}^t = \mathbf{w}_1^b + \mathbf{w}_2^b, \quad \hat{\mathbf{w}}^t = \hat{\mathbf{w}}_1^b + \hat{\mathbf{w}}_2^b$$
.

- TWS ensures equivalency, inheriting knowledge from ternary model
- We assign the following form of solution

$$[\mathbf{w}_1^b]_i = \begin{cases} a \cdot w_i^t & \text{if } \hat{w}_i^t \neq 0\\ b + w_i^t & \text{if } \hat{w}_i^t = 0, w_i^t > 0\\ b & \text{otherwise} \end{cases} \begin{bmatrix} u^{-b} & \text{if } \hat{w}_i^t \neq 0\\ -b & \text{if } \hat{w}_i^t = 0, w_i^t > 0\\ -b + w_i^t & \text{otherwise} \end{cases}$$

Next: solve a and b

Haoli Bai

Methodology: Ternary Weight Split

TWS allows closed-form solution as

$$a = \frac{\sum_{i \in \mathcal{I}} |w_i^t| + \sum_{j \in \mathcal{J}} |w_j^t| - \sum_{k \in \mathcal{K}} |w_k^t|}{2\sum_{i \in \mathcal{I}} |w_i^t|},$$

$$b = \frac{\frac{n}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} |w_i^t| - \sum_{i=1}^n |w_i^t|}{2(|\mathcal{J}| + |\mathcal{K}|)},$$

- where $\mathcal{I} = \{i \mid \hat{w}_i^t \neq 0\}$, $\mathcal{J} = \{j \mid \hat{w}_j^t = 0 \text{ and } w_j^t > 0\}$, $\mathcal{K} = \{k \mid \hat{w}_k^t = 0 \text{ and } w_k^t < 0\}$.
- TWS can be finished immediately
- Detailed derivations can be found in the thesis

Methodology: Ternary Weight Split

Figure 4: The overall workflow of training BinaryBERT. We first train a half-sized ternary BERT model, and then apply ternary weight splitting operator (Equations (6) and (7)) to obtain the latent full-precision and quantized weights as the initialization of the full-sized BinaryBERT. We then fine-tune BinaryBERT for further refinement.

Methodology: Adaptive Splitting

- Adaptive splitting: fit BinaryBERT to various edge devices
- Train a ternary and binary mixed BERT, and split the ternary (sensitive) ones
- Equivalent to mixed-precision, but enjoy hard-ware efficiency
- Formulation: a combinatorial optimization problem

$$\begin{aligned} \max_{\mathbf{s}} & \mathbf{u}^{\top} \mathbf{s} \\ \text{s.t.} & \mathbf{c}^{\top} \mathbf{s} \leq \mathcal{C} - \mathcal{C}_0, \ \mathbf{s} \in \{0, 1\}^Z, \\ & \mathbf{s} \in \{0, 1\}^Z \end{aligned}$$

where \mathcal{C} is the resource constraint, and $\mathbf{u} \in \mathbb{R}^Z_+$ is the utility vector

- $\hfill \hfill \hfill$
- A knapsack problem, solved by dynamic programing

Experiments: Main Results

- GLUE benchmark (test set results)
- TWS (ours): ternary weight splitting
- BWN: train binary model from scratch

#	Quant	#Bits (W-E-A)	Size (MB)	FLOPs (G)	DA	MNLI -m/mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
1	-	full-prec.	417.6	22.5	-	84.5/84.1	89.5	91.3	93.0	54.9	84.4	87.9	69.9	82.2
2	BWN	1-1-8	13.4	3.1	X	83.3/83.4	88.9	90.1	92.3	38.1	81.2	86.1	63.1	78.5
3	TWS	1-1-8	16.5	3.1	X	84.1/83.6	89.0	90.0	93.1	50.5	83.4	86.0	65.8	80.6
4	BWN	1-1-4	13.4	1.5	X	83.5/82.5	89.0	89.4	92.3	26.7	78.9	84.2	59.9	76.3
5	TWS	1-1-4	16.5	1.5	X	83.6/82.9	89.0	89.3	93.1	37.4	82.5	85.9	62.7	78.5
6	BWN	1-1-8	13.4	3.1	1	83.3/83.4	88.9	90.3	91.3	48.4	83.2	86.3	66.1	80.1
7	TWS	1-1-8	16.5	3.1	1	84.1/83.5	89.0	89.8	91.9	51.6	82.3	85.9	67.3	80.6
8	BWN	1-1-4	13.4	1.5	1	83.5/82.5	89.0	89.9	92.0	45.0	81.9	85.2	64.1	79.2
9	TWS	1-1-4	16.5	1.5	1	83.6/82.9	89.0	89.7	93.1	47.9	82.9	86.6	65.8	80.2

Compare with SOTA

Table 4: Comparison with other state-of-the-art methods on development set of MNLI-m and SQuAD v1.1.

Method	#Bits	Size	Ratio	MNLI	SQuAD	
Ivietiioa	(W-E-A) (MB		(↓)	-m	v1.1	
BERT-base	full-prec.	418	1.0	84.6	80.8/88.5	
DistilBERT	full-prec.	250	1.7	81.6	79.1/86.9	
LayerDrop-6L	full-prec.	328	1.3	82.9	-	
LayerDrop-3L	full-prec.	224	1.9	78.6	-	
TinyBERT-6L	full-prec.	55	7.6	82.8	79.7/87.5	
ALBERT-E128	full-prec.	45	9.3	81.6	82.3/89.3	
ALBERT-E768	full-prec.	120	3.5	82.0	81.5/88.6	
Quant-Noise	PQ	11.0	38	83.6	-	
Q-BERT	2/4-8-8	53	7.9	83.5	79.9/87.5	
Q-BERT	2/3-8-8	46	9.1	81.8	79.3/87.0	
Q-BERT	2-8-8	28	15.0	76.6	69.7/79.6	
GOBO	3-4-32	43	9.7	83.7	-	
GOBO	2-2-32	28	15.0	71.0	-	
TernaryBERT	2-2-8	28	15.0	83.5	79.9/87.4	
BinaryBERT	1-1-8	17	24.6	84.2	80.8/88.3	
BinaryBERT	1-1-4	17	24.6	83.9	79.3/87.2	

- Optimization trajectory after splitting
 - Follow (Li et.al, 2017)

(c) 8-bit Activation.

(d) 4-bit Activation.

Moving towards a better minima

Size reduction 418/17 = 24.5

Experiments: Adaptive Splitting Results

- Maximal Gain split the most sensitive
- Random Gain split in the random way
- Minimal Gain split the most insensitive

Summary

- We find that directly training a BinaryBERT suffers from large performance drop due to the <u>steep loss landscape issues</u>
- We thus propose <u>ternary weight splitting</u>, by first training a ternaryBERT as the initialization of the full-sized BinaryBERT
- The proposed approach also supports <u>adaptive splitting</u>, which can flexibly adjust the model size depending on hardware constraints
- We achieve new state-of-the-art BERT quantization results, being <u>24x smaller in</u> <u>size</u> with <u>only 0.4% accuracy drop</u> compared with the full precision model

Outline

FethallengetwoetwoorkingwjaressionDistillationteAAAiamagResources

Challenge 2: Extreme Compression with Sharp Performance Drop

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)

Challenge 3: NAS Efficiency with Parameter Sharing

Revisit Parameter Sharing for Automatic Neural Channel Number Search (NeurIPS 2020)

Background: Reinforcement Learning based NAS

- Bi-level optimization problem
 - Inside: minimize the loss function w.r.t. candidate parameter $\mathbf{w}(a)$
 - Outside: level: maximize the reward function by policy gradient

$$\max_{\theta} J(\theta) = \mathcal{E}_{a \sim \pi_{\theta}} \mathcal{R}(a) \Big(a, \mathbf{w}^{*}(a) \Big),$$

s.t. $\mathbf{w}^{*}(a) = \arg \min_{\mathbf{w}(a)} \mathcal{L} \Big(a, \mathbf{w}(a) \Big)$ and $\mathcal{B} \Big(a \Big) \leq B,$

- Computationally intractible to compute $\mathbf{w}^*(\alpha)$ for evaluation
- Associating a with different $\mathbf{w}(a)$ make the supernet too large

Background: Parameter Sharing

Recall the workflow of neural architecture search (Elsken et.al., 2019)

Parameter sharing is widely used to improve the searching efficiency

Previous Parameter Sharing Schemes

Summarization of previous parameter sharing schemes

• We aim at a better understanding of parameter sharing in NAS

Methodology: Affine Parameter Sharing

- Parameter sharing can be achieved by affine transformation
- Meta weight *W* , transformation matrices *P Q*

 \mathbf{P}^2 kernel size \mathbf{P}^1 $W^{1,1}$ 0 0 $(\mathbf{Q}^1)^ op$ 1 0 0 0 1 0 0 $\mathbf{W}^{2,2}$ Ordinal selection max 0 0 1 0 input $(\mathbf{Q}^2)^ op$ channels 0 0 0 1 W Q max output channels \mathbf{P}^1 \mathbf{P}^2 $\mathbf{W^{1,1}}$ 1 0 $(\mathbf{Q}^1)^ op$ 0 0 0 1 Independent selection 0 0 1 0 $W^{2,2}$ $(\mathbf{Q}^2)^ op$ 0 0 0 1 0 0 0 ${\mathcal W}$ \mathcal{Q} \mathcal{P} selected channels

 $\mathbf{W}^{i,o} = (\mathbf{Q}^i)^\top imes_2 \boldsymbol{\mathcal{W}} imes_1 \mathbf{P}^o,$

Methodology: Affine Parameter Sharing

Quantitative measurement with affine parameter sharing

Definition

Definition 3.1. Assuming each element of meta weight \mathcal{W} follows the standard normal distribution, the **level of affine parameter sharing** is defined as the Frobenius norm of cross-covariance matrix² between candidate parameters $\mathbf{W}^{i,o}$ and $\mathbf{W}^{\tilde{i},\tilde{o}}$, i.e. $\phi(i,o;\tilde{i},\tilde{o}) = \|\operatorname{Cov}(\mathbf{W}^{i,o},\mathbf{W}^{\tilde{i},\tilde{o}})\|_{F}^{2}$.

²The cross-covariance matrix between $\mathbf{X} \in \mathbb{R}^{m \times n}$ and $\mathbf{Y} \in \mathbb{R}^{\tilde{m} \times \tilde{n}}$ is defined as $\operatorname{Cov}(\mathbf{X}, \mathbf{Y}) = \mathbb{E}[(\mathbf{X} - \mathbb{E}(\mathbf{X})) \otimes (\mathbf{Y} - \mathbb{E}(\mathbf{Y}))^{\top}] \in \mathbb{R}^{m \times n \times \tilde{m} \times \tilde{n}}$, where \otimes is the Kronecker product.

Theorem

Theorem 3.1. For $\forall i \leq \tilde{i}$ and $\forall o \leq \tilde{o}$, the overall level Φ of APS is maximized if $\mathcal{R}(\mathbf{Q}^i) \subseteq \mathcal{R}(\mathbf{Q}^{\tilde{i}})$ and $\mathcal{R}(\mathbf{P}^o) \subseteq \mathcal{R}(\mathbf{P}^{\tilde{o}})$. Φ is minimized if $\mathcal{R}(\mathbf{Q}^i) \subseteq \mathcal{R}^{\perp}(\mathbf{Q}^{\tilde{i}})$ and $\mathcal{R}(\mathbf{P}^o) \subseteq \mathcal{R}^{\perp}(\mathbf{P}^{\tilde{o}})$.

- Ordinal selection: maximum
- Independent selection: minimum

Haoli Bai

Methodology: Parameter Sharing Effect

The two sides of parameter sharing

Parameter sharing benefits efficient searching

$$\cos(\mathbf{g}, \tilde{\mathbf{g}}) = \frac{\mathbf{g}^{\top} \tilde{\mathbf{g}}}{\|\mathbf{g}\|_{2} \cdot \|\tilde{\mathbf{g}}\|_{2}}, \text{ where } \mathbf{g} = \nabla_{\boldsymbol{\mathcal{W}}} \mathcal{L}(\mathbf{W}^{i,o}), \ \tilde{\mathbf{g}} = \nabla_{\boldsymbol{\mathcal{W}}} \mathcal{L}(\mathbf{W}^{\tilde{i},\tilde{o}})$$

A positive cosine value indicates a descent direction

Parameter sharing couples architecture optimization

$$\mathbf{W}^{t} = (\mathbf{Q}^{t})^{\top} \boldsymbol{\mathcal{W}}^{0} \mathbf{P}^{t} - \eta \sum_{\substack{i_{\tilde{t}} = i_{t} \\ o_{\tilde{t} = o_{t}}}} (\mathbf{Q}^{t})^{\top} \mathbf{Q}^{\tilde{t}} (\nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}^{\tilde{t}})) (\mathbf{P}^{\tilde{t}})^{\top} \mathbf{P}^{t} - \eta \sum_{\substack{i_{\tilde{t}} \neq i_{t}, \text{or} \\ o_{\tilde{t}} \neq o_{t}}} (\mathbf{Q}^{t})^{\top} \mathbf{Q}^{\tilde{t}} (\nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}^{\tilde{t}})) (\mathbf{P}^{\tilde{t}})^{\top} \mathbf{P}^{t}$$

Normal updates on the current candidate

Coupled updates from other candidates

Methodology: Affine Parameter Sharing

• How does the parameter sharing level relate to the following aspects

Methodology: Transitionary Affine Parameter Sharing

- A large cosine value benefits efficient training
- A large coupled gradient norm may bring less discriminative architectures
- Initialize Φ with maximum and gradually anneal it by:

$$\min_{\boldsymbol{\mathcal{P}},\boldsymbol{\mathcal{Q}}} \Phi \triangleq \sum_{i \leq \tilde{i}} \sum_{o \leq \tilde{o}} \left\| \operatorname{Cov} \left(\mathbf{W}^{i,o}, \mathbf{W}^{\tilde{i},\tilde{o}} \right) \right\|_{F}^{2},$$
s.t. $\left\| \mathbf{p}_{x}^{o} \right\|_{2}^{2} = 1, \text{ for } x \in \{1, ..., c_{o}\} \text{ and } o \in \mathcal{A},$
 $\left\| \mathbf{q}_{y}^{i} \right\|_{2}^{2} = 1, \text{ for } y \in \{1, ..., c_{i}\} \text{ and } i \in \mathcal{A},$

where in each update, we project them back to unit length:

$$\mathbf{p}_x^o \leftarrow \Pi_{\mathcal{U}}(\mathbf{p}_x^o - \tau \nabla_{\mathbf{p}_x^o} \Phi), \ \mathbf{q}_y^i \leftarrow \Pi_{\mathcal{U}}(\mathbf{q}_y^i - \tau \nabla_{\mathbf{q}_y^i} \Phi)$$

Experiments: Effect of Parameter Sharing

Efficient training

Architecture discrimination

Haoli Bai

ImageNet Results

Methods	Types	Top-1 Acc	Top-5 Acc	FLOPs	Ratio↓
Resnet-18 [5]	-	69.76%	89.08%	1.82G	0.0%
LCCL [1]	HC	66.33%	86.94%	1.19G	34.6%
SFP [6]	HC	67.10%	87.78%	1.06G	41.8%
FPGM [7]	HC	68.41%	88.48%	1.06G	41.8%
TAS [2]	Auto	69.15%	89.19%	1.21G	33.3%
APS-T	Auto	69.34%	88.89%	1.05G	41.8%
APS-T	Auto	70.17%	89.59%	1.36G	24.9%
APS-T	Auto	71.67%	90.36%	1.83G	-0.9%
MobileNet-V2 [19]	-	71.80%	91.00%	314M	0.0%
$\times 0.65$ scaling	HC	67.20%	-	140M	55.4%
MetaPrune [15]	Auto	68.20%	-	140M	53.3%
MetaPrune [15]	Auto	72.70%	-	300M	4.4%
AutoSlim [25]	Auto	72.49%	90.50%	305M	2.9%
AutoSlim* [25]	Auto	74.20%	-	305M	2.9%
APS-T	Auto	68.96%	88.48%	156M	50.3%
APS-T	Auto	72.83%	90.75%	314 M	0.0%

ACCs under varying FLOPs

Summary

- We propose affine parameter sharing as a <u>general framework</u> to unify previous hand-crafted parameter sharing heuristics
- We define a metric to <u>qualitatively measure the parameter sharing level</u>, and find it <u>improves searching efficiency</u> but at the cost of <u>less architecture discrimination</u>
- We thus design a transitionary parameter sharing strategy that <u>balances searching</u> <u>efficiency and architecture discrimination</u>, which can stably pick out the best architecture choices
- Extensive empirical results show that our searching algorithm outperforms a number of strong NAS baselines across <u>different model sizes and architectures</u>

Outline

Challenge 1: Network Compression with Limited Training Resources

Few Shot Network Pruning via Cross Distillation (AAAI 2020)

Efficient Post-training Quantization for Pre-trained Language Models (In submission)

Challenge 2: Extreme Compression with Sharp Performance Drop

BinaryBERT: Pushing the Limit of BERT Quantization (ACL 2021)

Challenge 3: NAS Efficiency with Parameter Sharing

Revisit Parameter Sharing for Automatic Neural Channel Number Search (NeurIPS 2020)

- Network compression
 - Data unavailable: domain adaptation
 - Trillion-scale models
- Neural architecture search
 - Few-shot NAS: fast-training before evaluation
 - Refining the search space

My supervisors: Prof. Michael R. Lyu and Prof. Irwin King

My committee members:

Prof. Laiwan Chan, Prof. Andrej Bogdanov and Prof. Hsuan-Tien Lin

- Research collaborators
- Our research group members
- My parents and girlfriend

Haoli Bai

Publication

- Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael R. Lyu, Irwin King. BinaryBERT: Pushing the Limit of BERT Quantization. ACL, 2021.
- Xianghong Fang*, Haoli Bai*, Jian Li, Zenglin Xu, Michael R. Lyu, Irwin King. Discrete Auto-regressive Variational Attention Models for Text Modeling. IJCNN, 2021.
- Jiaxing Wang*, Haoli Bai, Jiaxiang Wu, Xupeng Shi, Junzhou Huang, Irwin King, Michael R. Lyu, Jian Cheng. Revisiting Parameter Sharing for Automatic Neural Channel Number Search. NeurIPS, 2020.
- Haoli Bai, Jiaxiang Wu, Irwin King, Michael R. Lyu. Few Shot Network Compression via Cross Distillation. AAAI, 2020.
- Haoli Bai, Zhuangbin Chen, Irwin King, Michael R. Lyu, Zenglin Xu. Neural Relational Topic Models for Scientific Article Analysis. CIKM, 2018.

Preprints:

- Haoli Bai, Jiaxiang Wu, Mingyang Yi, Irwin King, Michael R. Lyu. Cross Distillation: A Unified Approach for Few-shot Network Compression. Under submission, 2021.
- Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, Michael R. Lyu. Towards Efficient Post-training Quantization of Pre-trained Language Models. Under submission, 2021.
- Chung Yiu Yau, Haoli Bai, Michael R. Lyu, Irwin King. DAP-BERT: Differentiable Architecture Pruning of BERT. Under submission, 2021.

Thank you!

