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Abstract of thesis entitled:
Linear Stochastic Bandits with Heavy-Tailed Payoffs

Submitted by SHAO, Han
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in March 2019

In this thesis, we center around bandit models, especially linear stochas-
tic bandits. Bandit models can tackle numerous problems of sequential
learning with feedback of instantaneous payoffs. With such an ability,
bandits have been applied into many applications, such as clinical tri-
als, online recommendations and portfolio managements.

The main problem solved in this thesis is linear stochastic bandits
with heavy-tailed payoffs. This problem is motivated by the wide appli-
cation of linear stochastic bandits and the phenomenon of heavy-tailed
distributions in various scenarios, e.g., network routing and financial
markets. However, the problem has not been studied well in the pre-
vious work.

In linear stochastic bandits, it is commonly assumed that payoffs
are with sub-Gaussian noises. In this thesis, we study the problem of
linear stochastic bandits with non-sub-Gaussian payoffs. We assume
that the distributions of the payoffs have finite moments of order p, with
p ∈ (1, 2]. First, we analyze the regret lower bound of Ω(T

1
p ), where

T denotes the number of rounds. This provides us with two hints:
one is that the prior algorithms are far from optimal and the other is
that finite variances (which refer to finite moments of order 2) lead to
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the regret of Ω(
√

T ). Then we propose two algorithms based on the
techniques of median of means and truncation for two slightly different
assumptions, which are bounded central moments and bounded raw
moments. Both algorithms achieve the optimal regret upper bounds
on the polynomial order of T . As far as we know, we are the first to
derive the lower bound for this problem and develop almost optimal
algorithms. Finally, we conduct experiments on synthetic datasets to
demonstrate the superior performance of our algorithms.
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Chapter 1

Introduction

The bandit problem is a fundamental problem in the area of reinforce-
ment learning. The origin of bandits dates back to its application in
clinical trials by Thompson (1933). In this problem, a doctor has ac-
cess to a set of treatments (corresponding to arms in bandits), of which
performance follows unknown probability distributions. At each time
step, after a patient’s arrival, the doctor has to select one of the treat-
ments and observes whether the patient is cured or not before the next
time step. The goal is to maximize cumulative number of cured pa-
tients, which naturally addresses a trade-off between exploration and
exploitation.

1.1 Background

Bandits, also called online learning with bandit feedback or optimiza-
tion with bandit feedback, can be used to solve various sequential
decision making problems. The basic model of bandits is K-armed
multi-armed bandits (MAB). In the K-armed MAB model, there are
K arms corresponding to K distributions {v1, · · · , vK} with means
{u1, · · · , uK}. Usually, we assume that the distributions are light-
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CHAPTER 1. INTRODUCTION 2

tailed. An agent has to choose arms sequentially for T rounds. At
each round t, the agent chooses one arm It ∈ {1, · · · , K} without
knowing the means and then observes feedback of arm It. The feed-
back is usually a stochastic reward of the chosen arm yt(It), which is
drawn from vIt . Note that the rewards of one arm are identically and
independently distributed. The learning process of K-armed MAB is
sketched as follows.

Learning process of K-armed MAB
Input: the arm set {1, · · · , K}, the number of rounds T ≥ K.
For time t = 1, · · · , T ,

Select an arm It ∈ {1, · · · , K}.
Observe a stochastic reward yt(It) ∼ vIt of the chosen arm It.

One general goal of bandits is to maximize cumulative rewards,
which naturally addresses a trade-off between exploration and exploita-
tion. To be specific, exploration means selecting the arms the agent
has not pulled enough to gain more information. Exploitation means
selecting the empirical optimal arm to obtain the instantaneous re-
ward as high as possible at the current round. We denote by u∗ ≜
maxi∈{1,··· ,K} ui the largest value among the expected rewards of arms.
A performance metric for an algorithm A named regret is defined as

R̄(A, T ) ≜ max
i=1,··· ,K

T∑
t=1

yt(i) −
T∑

t=1
yt(It), (1.1)

which represents the difference between the cumulative rewards of al-
ways choosing the optimal arm at every around and the rewards of
the algorithm A. In the basic K-armed MAB setting aforementioned,
the arm set is discrete and unchanged. The rewards of arms are unre-
lated. To break these constraints, an extension of MAB called struc-
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tured bandits is proposed, where we usually assume that the rewards of
arms follow a structure, e.g., linearity (Dani et al., 2008a), unimodal-
ity (Combes and Proutiere, 2014) and Lipschitz structure (Magureanu
et al., 2014). Linear stochastic bandits (LSB) are a common class of
structured bandits with rewards being linear mappings from arms to
real numbers with an underlying linear parameter θ. In LSB, each
arm is represented by a d-dimensional vector x and the expected re-
ward of arm x is x⊤θ. The observed reward is the summation of x⊤θ

and a stochastic noise, which is usually assumed to be sub-Gaussian
conditional on historical information. In LSB, the number of arms
can be infinite and the arm set can change over time. For a better
understanding, the learning process of LSB is sketched as follows.

Learning process of LSB
Input: the number of rounds T .
For time t = 1, · · · , T ,

Given the arm set Dt ⊆ Rd, select an arm xt ∈ Dt.
Observe a stochastic reward yt(xt) = x⊤

t θ + ηt, where ηt is a
stochastic noise.

1.2 Motivation

Bandits can be applied to solve many real-world sequential decision
making problems with feedback, such as clinical trials, online personal-
ized recommendations and portfolio managements. In these problems,
decision makers are provided with a set of choices. At each time, they
make a decision and then receive a noisy feedback. The question is
how to design a strategy to optimize a certain criterion.
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1.2.1 Clinical Trials

As mentioned at the beginning of this chapter, clinical trials are the
primal application of MAB (Thompson, 1933). A doctor has K treat-
ments for a disease without knowing which treatment is optimal. As-
sume that the performance of each treatment is stochastic. At each
time, a patient comes to the doctor. The doctor selects a treatment
and treats the patient with it. The patient may be cured or die. The
doctor collects the feedback of the patient and then treats the next
patient. The goal is to save as many lives as possible.

1.2.2 Online Personalized Recommendations

Personalized recommendation, including news recommendation, adver-
tisements in online shopping and sponsored search, learns users’ pref-
erences in a sequential process and recommends appealing items to the
users. Taking news recommendation as an example, the recommender
has a set of news and selects one piece from the set to a user at each
time. If the user clicks the news, the recommender regards it as a
positive reward; otherwise regards it negative. We assume that the
feedback is drawn from Bernoulli distributions with expectations being
the user’s preferences. Therefore, the problem can be formulated into
a bandit problem.

Furthermore, the recommender usually has feature information of
users and news. It is common to assume that a user’s preference for
a piece of news is a linear function of the features of the user and the
news. LSB can be used to solve this problem by taking the features into
consideration. One advantage of LSB in news recommendation is to
make recommendations for new users and with the latest news. For a
new user without any history data, it is hard to recommend news feed-
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Figure 1.1: Simulation result of Nasdaq returns in the last 20 years.

ing the user’s appetite without using the user’s features. Besides, the
pool of news evolves with time and thus how to recommend the latest
news which have never been recommended before is difficult without
considering the news’ features. The effectiveness of LSB in personal-
ized recommendation has been empirically validated by Li et al. (2010);
Schwartz et al. (2017).

1.2.3 Portfolio Managements

Bandits can also find its application in finance, such as portfolio man-
agements. An investor has fixed budget to invest in some financial
products. At each time, the investor selects the weights of budget to
invest, and then receives the returns, which are stochastic due to the
randomness of financial markets. Hence, the portfolio managements
can be formulated into a bandit problem (Badanidiyuru et al., 2013).
With the features of the products, LSB can be adopted.

In practice, the noises of returns usually do not follow sub-Gaussian
distributions. In Figure 1.1, it shows that the simulation result of
Nasdaq returns in the last 20 years follows a heavy-tailed distribu-
tion. Hence, study of bandits with heavy-tailed payoffs is important.
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MAB with heavy-tailed payoffs have been investigated by Bubeck et al.
(2013). However, it is surprising to find that LSB with heavy-tailed
payoffs have not been solved well. In this thesis, we study the problem
of LSB with heavy-tailed payoffs.

1.3 Notations

In this section, we list all common symbols used in this thesis in Ta-
ble 1.1.

Table 1.1: Common symbols used in the thesis.

symbol description

≜ definition

A a bandit algorithm

N, N+ natural numbers, N ≜ {0, 1, · · · } and N+ ≜ N\{0}

R, R+ R ≜ (−∞, +∞) and R+ ≜ (0, +∞)

E[A] the expectation of a random variable A

P[E ] the probability of an event E

KL(v1, v2) the Kullback-Leibler divergence between v1 and v2

Opt the optimal arm

Out the output

∆i gap between arm i and the optimal arm, ∆i = u∗ − ui

⟨x, y⟩ or x⊤y the inner product of vectors x and y
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1.4 Thesis Structure

The rest of this thesis is organized as follows.

• Chapter 2

In this chapter, we present a survey of bandits. In Section 2.1, we
discuss the theoretical developments of K-armed MAB with two
general goals, which are regret minimization and pure exploration.
In Section 2.2, we discuss the problems of structured bandits,
including LSB and other important classes of structured bandits.
Especially, we present the theoretical developments of LSB. In
Section 2.3, we present some important variants of bandits. In
Section 2.4, we construct a taxonomy of bandits.

• Chapter 3

In this chapter, we show the results of our investigation for the
problem of regret minimization in LSB with heavy-tailed pay-
offs. In Section 3.1, we introduce the background of the problem
and our contributions in this problem. In Section 3.2, we give
the preliminary of the problem, including the background, formal
definition of the problem and basic algorithm framework to solve
LSB. In Section 3.3, we develop the regret lower bound of the
problem in this setting. In Section 3.4, we propose two almost
optimal algorithms to solve the problem under two slightly differ-
ent assumptions: one is bounded central moments of payoffs and
the other is bounded raw moments. In Section 3.5, we give the
proofs for the worst-case regret lower bound and the regret upper
bounds of the two algorithms. In Section 3.6, we demonstrate
the empirical study of our algorithms on synthetic datasets. In
Section 3.7, we conclude our study in this problem.
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• Chapter 4

In this chapter, we summarize this thesis and present three po-
tential directions for future work.

2 End of chapter.



Chapter 2

A Survey of Bandits

In the chapter, we review the present research progress in bandit prob-
lems. First, we give the literature review of theoretical developments in
K-armed MAB and structured bandits. Then, we discuss some impor-
tant variants of bandits. Finally, we construct a taxonomy of bandits.

2.1 K-armed Multi-Armed Bandits

Stochastic bandits have two common goals: one is regret minimization
(equivalent to rewards maximization) as mentioned in Section 1.1 and
the other is pure exploration, which usually refers to best arm identi-
fication. For regret minimization, we have to balance the decisions all
over the time to maximize the cumulative rewards, which addresses the
trade-off between exploration and exploitation. For pure exploration,
we only take into accounts the final output at the end of the learning
process, which addresses exploration only. We present the theoretical
developments of K-armed MAB with these two goals in this section.
In this thesis, we mainly focus on regret minimization.

9
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2.1.1 Regret Minimization

The regret is defined in Eq. (1.1). The expected regret of an algorithm
A is

E
[
R̄(A, T )

]
= E

[
max

i=1,··· ,K

T∑
t=1

yt(i) −
T∑

t=1
yt(It)

]
. (2.1)

A frequently used metric named pseudo-regret is defined as

R(A, T ) ≜ max
i=1,··· ,K

E
[

T∑
t=1

yt(i) −
T∑

t=1
yt(It)

]
= Tu∗ −

T∑
t=1

uIt . (2.2)

Actually, the pseudo-regret is more statistically meaningful than the
expected regret. Therefore, the pseudo-regret is more common to use
than the expected regret. In the following of this thesis, we adopt the
pseudo-regret as the performance metric. When we mention regret, we
refer to pseudo-regret.

We show the theoretical developments of regret minimization in K-
armed MAB in Table 2.1. The origin of K-armed MAB dates back
to 1933 (Thompson, 1933). The MAB problem was proposed for-
mally by Robbins (1952) for the first time. Then by Lai and Rob-
bins (1985), the problem-dependent asymptotic lower bound and an
algorithm based on upper confidence bound (UCB) index with asymp-
totically optimal upper bound were proposed. But this index is hard
to compute. After that, Agrawal (1995) proposed a simpler and more
general sample mean index policy, which also achieves asymptotically
optimal upper bound. Auer et al. (2002a) proposed an efficient index
policy named UCB1 that can achieve logarithmic regret uniformly over
time. All these index policies mentioned adopt the idea of UCB. The
main idea of UCB is optimism in face of uncertainty. The UCB-based
policies estimate the means of arms and construct the confidence inter-
vals of the true means based on historical data. With high probability,
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Table 2.1: Theoretical developments of regret minimization in MAB. ∆i =

u∗ − ui.

work results

(Thompson, 1933)
original formalization(Robbins, 1952)

(Lai and Robbins, 1985)
the first theoretical analysis

limT →∞
R(A,T )
log(T ) ≥

∑
∆i>0

∆i
KL(ui,u∗)

limT →∞
R(UCB,T )

log(T ) ≤
∑

∆i>0
∆i

KL(ui,u∗)

(Agrawal, 1995)
a simpler algorithm

limT →∞
R(SM,T )

log(T ) ≤
∑

∆i>0
∆i

KL(ui,u∗)

(Auer et al., 2002a)
finite-time analysis

R(UCB1, T ) = O

(∑
∆i>0

log(T )
∆i

)
R(UCB1, T ) = O

(√
T
)

(Agrawal and Goyal, 2012)
Bernoulli payoffs

R(TS, T ) = O

((∑
∆i>0

1
∆i

2
)2

log(T )
)

(Kaufmann et al., 2012)
Bernoulli payoffs

limT →∞
R(TS,T )

log(T ) ≤
∑

∆i>0
∆i

KL(ui,u∗)

(Garivier et al., 2018)
finite-time lower bound

small T : lower bound R(A, T ) ≥
∑

∆i>0
∆iT
2K

large T : lower bound R(A, T ) = Ω
(∑

∆i>0
∆i log(T )
KL(ui,u∗)

)

the true means lie in the confidence intervals. Then the UCB-based
algorithms choose the arm with the largest value among supremes of
the confidence intervals.

Another line of methodology is Thompson sampling (TS), which
has been investigated by Agrawal and Goyal (2012); Kaufmann et al.
(2012). The idea of TS is to construct posterior distributions for the
means of arms based on history. At each round, the algorithm draws
a sample from the posterior distribution of each arm, and then selects
the arm with the largest value of samples.

More recently, the non-asymptotic regret lower bound was proposed
by Garivier et al. (2018), which proved that the regret lower bound is
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linear when the total number of rounds is small and that the regret
lower bound is logarithmic when the total number of rounds is large.

2.1.2 Pure Exploration

Pure exploration is to output a solution to a question after exploration
among the arm set. The most common question is identifying the
best arm. There are two general settings of pure exploration: fixed
confidence and fixed budget.

In the fixed confidence setting, given a probability threshold δ ∈

(0, 1), the agent has to output an optimal arm at the end of learning
process with probability of error no greater than δ. The performance
metric is sample complexity, which refers to the total number of rounds.
In the fixed budget setting, given the total number of rounds T , the
agent has to output an optimal arm after T rounds of learning. The
performance metric is probability of error. We show the theoretical
developments of pure exploration in K-armed MAB in Table 2.2.

In the fixed confidence setting, Even-Dar et al. (2002) proposed an
algorithm based on successive elimination with upper bound of sample
complexity matching the lower bound, which was proposed by Mannor
and Tsitsiklis (2004), up to a logarithmic factor. The logarithmic factor
was improved to doubly-logarithmic factor by Karnin et al. (2013).
These two studies require the constraints of bounded payoffs. Jamieson
et al. (2014) proposed a UCB-based algorithm to solve the problem of
payoffs with sub-Gaussian noises. Kaufmann et al. (2016) provided a
lower bound of sample complexity that involves information-theoretic
divergences and proposed an algorithm with upper bound of sample
complexity matching the lower bound in two-armed Gaussian bandits.

In the setting of fixed budget setting, Audibert and Bubeck (2010)
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proposed a lower bound of probability of error and two algorithms
matching the lower bound up to a logarithmic factor. One of the al-
gorithms called UCB-E is based on UCB and the other is based on the
idea of successive rejects. The results were improved by Karnin et al.
(2013) via sequential halving. Kaufmann et al. (2016) proposed an
improved lower bound of probability of error in Gaussian cases.

Beyond identifying the best arm, bandits can do pure exploration
to output solutions to other questions. For example, Yu et al. (2017)
explored to output the arm with largest mean-variance, Garivier et al.
(2016) explored to output the best actions in game trees and Kaufmann
et al. (2018) explored to output whether the lowest value among the
expected rewards of arms is smaller than a given threshold.

2.2 Structured Bandits

In the previous section, we assume that all the expected rewards of
arms are unrelated. However, if we have infinite number of arms, it is
necessary to have some structure over the expected rewards of arms,
such as linearity, unimodality and Lipschitz structure. Linear stochas-
tic bandits are a very important class of structured bandits. In this
section, we present the theoretical developments of regret minimization
in LSB and introduce other important classes of structured bandits.

2.2.1 Linear Stochastic Bandits

The theoretical developments of LSB are shown in Table 2.3. The prob-
lem of LSB was first studied by Abe and Long (1999); Auer (2000).
Auer (2002) proposed an algorithm named LinRel based on UCB in-
dex for K-armed LSB. Dani et al. (2008a) investigated the problem of
stochastic linear optimization with bandit feedback, which is LSB with
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Table 2.2: Theoretical developments of pure exploration in MAB. H1 and

H2 are hardness parameters of the problem.

work results

(Even-Dar et al., 2002)
bounded payoffs

P
[
T ≥

∑K
k=1 ∆−2

k log
(

K
δ∆k

)]
≤ δ

(Audibert and Bubeck, 2010)

bounded payoffs

P[Out ̸= Opt] ≤ TK exp
(

− T −K
H1

)

(Karnin et al., 2013)

bounded payoffs

P
[
T ≥

∑K
k=1 ∆−2

k log
(

1
δ log

(
1

∆k

))]
≤ δ

P [Out ̸= Opt] ≤ log(K) exp
(

− T
log(K)H2

)
(Jamieson et al., 2014)

sub-Gaussian noises

P
[
T ≥ H1 log

( 1
δ

)
+ H3

]
≤ 4

√
cδ + 4cδ

(Kaufmann et al., 2016)

two-armed Gaussian bandits

limδ→0
E[T ]

log( 1
δ ) ≥ 2(σ1+σ2)2

(u1−u2)2

limδ→0
E[T ]

log( 1
δ ) ≤ 2(σ1+σ2)2

(u1−u2)2

limT →∞ sup − log(P[Out̸=Opt])
T ≤ (u1−u2)2

2(σ1+σ2)2

arms belonging to a compact and convex set. They derived the worst-
case regret lower bound and proposed an algorithm with worst-case
regret upper bound matching the lower bound up to a polylogarith-
mic factor. The algorithm also achieved a polylogarithmic problem-
dependent regret upper bound in the K-armed case. The upper bounds
were improved by Abbasi-Yadkori et al. (2011) in the polylogarithmic
factor. For K-armed LSB, Chu et al. (2011) derived the worst-case re-
gret lower bound and proposed an algorithm named LinUCB similar to
LinRel. Agrawal and Goyal (2013) studied TS for LSB. Lattimore and
Szepesvari (2017) proposed a problem-dependent regret lower bound
and an asymptotically optimal algorithm.
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Table 2.3: Theoretical developments in LSB. ∆ = mini u∗ − ui.

work results

(Abe and Long, 1999)
original formalization

(Auer, 2000)

(Auer, 2002)
first theoretical analysis; K arms

R(LinRel, T ) = O

(√
T d log

3
2 (KT log(T ))

)

(Dani et al., 2008a)

compact and convex arm set; bounded payoffs

R(A, T ) = Ω
(

d
√

T
)

R(CB2, T ) = O

(
d
√

T log
3
2 (T )

)
R(CB2, T ) = O

(
d2

∆ log3(T )
)

, if ∆ > 0

(Abbasi-Yadkori et al., 2011)
compact and convex arm set; sub-Gaussian noises

R(OFUL, T ) = O
(

d
√

T log(T )
)

(Chu et al., 2011)

K arms; bounded payoffs

R(A, T ) = Ω
(√

dT
)

R(LinUCB, T ) = O

(√
dT log

3
2 (KT log(T ))

)
(Agrawal and Goyal, 2013)

K arms; sub-Gaussian noises

R(TS, T ) = O
(

d2√
T log(dT )

)
(Lattimore and Szepesvari, 2017)

K arms; Gaussian payoffs

limT →∞
R(A,T )
log(T ) ≥ c(A, θ)

limT →∞
R(OA,T )

log(T ) ≤ c(A, θ)

2.2.2 Other Classes of Structured Bandits

Numerous types of structures have been investigated in bandits. Here
we list some important classes. Lipschitz bandits, where the expected
rewards are a Lipschitz function of arms, were studied by Bubeck et al.
(2011); Magureanu et al. (2014). Stochastic convex optimization with
bandit feedback was investigated by Agarwal et al. (2011). In this
setting, the arm set is a compact and convex set and the expected
rewards are a 1-Lipschitz convex function of arms. Unimodal bandits,
where the expected rewards of arms follow a unimodal structure, were
studied by Combes and Proutiere (2014). Rank-1 bandits, where the
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expected rewards follow a special unimodal structure, were investigated
by Katariya et al. (2017). Dueling bandits were studied by Komiyama
et al. (2015); Yue et al. (2012). In the problem of dueling bandits, at
each time two arms are pulled and only the relative feedback is revealed.
Combes et al. (2017) proposed an asymptotically optimal algorithm for
general structured bandits.

2.3 Variants of Bandits

In this section, we present several important variants of bandit prob-
lems. All bandits mentioned above have stochastic payoffs. Besides
stochastic payoffs, another type is adversarial payoffs, which are gen-
erated by an adversary arbitrarily (Auer et al., 1995, 2002b). Bandits
with adversarial payoffs are called adversarial bandits. At each round,
the agent chooses an arm and the adversary generates a payoff for the
chosen arm at the same time. An intermediate type of payoffs between
stochastic payoffs and adversarial payoffs is contaminated stochastic
payoffs (Seldin and Lugosi, 2017; Seldin and Slivkins, 2014). In this
setting, most of the payoffs are stochastic and some of the payoffs are
contaminated to be adversarial under some specific assumptions.

Bandit problems can also be called online learning with bandit feed-
back, because in this setting, an agent can only obtain the feedback of
the chosen arm. If the agent gets feedback of all arms, the problem
is called online learning with full information (Hazan et al., 2016). If
the agent gets feedback of partial arms (i.e., more than one arm), the
problem is called online learning with semi-bandit feedback (Lattimore
et al., 2014). Semi-bandit feedback is popular in the problems of com-
binatorial bandits, where the agent chooses more than one arm at each
time and the reward is a function of all chosen arms. It is common to
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assume that the agent observes the feedback of all chosen arms (Chen
et al., 2014, 2013; Kveton et al., 2015).

Usually we assume that there is only one agent who selects arms.
However, the number of agents can be more than one in practical ap-
plications, which leads to the problem of multi-player bandits (Besson
and Kaufmann, 2018; Kalathil et al., 2014). In multi-player bandits,
the expected rewards of arms for different agents are different. At each
round, each arm can only be selected by one agent and thus, avoiding
collision is an essential issue in this problem.

2.4 Taxonomy

The taxonomy of bandit problems is constructed in Figure 2.1. We can
classify a bandit problem according to the categories of goal, arm set,
feedback format and number of agents basically. According to different
goals of bandits, we can classify bandit problems into pure exploration
and regret minimization. According to the arm set, we have bandit
problems with discrete arms or continuous arms. If expected rewards
of arms follow a structure, we have structured bandits, such as linear
bandits, unimodal bandits and etc. According to feedback generating
methods, we have adversarial bandits and stochastic bandits. With
further assumptions on the distribution of payoffs in stochastic ban-
dits, we have bandits with sub-Gaussian payoffs, heavy-tailed payoffs
and etc. According to the amount of feedback, we have online learn-
ing problems with full information feedback, semi-bandit feedback and
bandit feedback. According to the number of agents, we have multi-
player bandits and classical bandits with single agent.

A specific bandit problem can be classified by these categories, e.g.,
regret minimization for linear stochastic bandits with sub-Gaussian
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bandits

goal

regret	
minimization

pure	
exploration

arm	set

feedbackagent

stochastic

adversarial

full	information semi-bandit bandit

discrete continuous

single

multiple

unstructured

structured

sub-
Gaussian

heavy-
tailed

linear

unimodal

Figure 2.1: Taxonomy of bandits.

payoffs. Also, a specific problem can have further assumptions in dif-
ferent settings.

2 End of chapter.



Chapter 3

Linear Stochastic Bandits

with Heavy Tails

Linear stochastic bandits are an important class of structured ban-
dits. Previously, studies on LSB usually assumed that the noises fol-
low sub-Gaussian distributions. In practice, many real applications
with sequential decision making encounter noises, which follow non-
sub-Gaussian distributions.

In this chapter, we study the problem of LSB under a different
noise assumption. Specifically, we assume the distributions of payoffs
have finite moments of order p, for some p ∈ (1, 2], which is a weaker
assumption compared with the sub-Gaussian noise assumption. The
problem is called linear stochastic bandits with heavy-tailed payoffs
(LinBET).

We analyze the regret lower bound as Ω(T
1
p ), which provides us

with two hints: one is that the prior algorithms are far from optimal
and the other is that finite variances (which refer to finite moments of
order 2) lead to the regret of Ω(

√
T ). Then we propose two algorithms

based on the techniques of median of means and truncation. Both

19
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algorithms achieve the optimal regret upper bounds on the polynomial
order of T . As far as we know, we are the first to derive the lower
bound for this problem and develop the almost optimal algorithms.
Finally, we conduct experiments on synthetic datasets to demonstrate
the superior performance of our algorithms.

In this chapter, we first present the background of linear stochas-
tic bandits with heavy-tailed payoffs, the challenges and our contri-
butions. Then we provide the preliminary for the problem and the
technical results of this chapter. Finally, we give the conclusion for
linear stochastic bandits with heavy-tailed payoffs.

3.1 Introduction

In the domain of bandits, algorithms are usually designed for maxi-
mizing cumulative payoffs in a sequence of decisions. Linear stochastic
bandits have the assumption the the rewards are a linear mapping from
arm space to real number space. There are good theoretical properties
with the linear assumption, such as a closed-form solution for the lin-
ear parameter estimation. In prior work, linear stochastic bandits have
been applied into many practical scenarios, e.g., online personalized
recommendations (Li et al., 2010) and resource allocations (Lattimore
et al., 2014).

In the traditional investigation of bandits, researchers usually as-
sume that payoffs in decisions have noises following sub-Gaussian distri-
butions (Abbasi-Yadkori et al., 2011; Bubeck et al., 2012). Note that
sub-Gaussian noises are common, which include all bounded payoffs
and many unbounded payoffs, such as Gaussian distributions.

However, in practice, we will encounter many cases with non-sub-
Gaussian noises. An intuitive example is high-probability extreme re-
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turns in sequential investments in financial markets (Cont and Bouchaud,
2000). These events have higher probability to generate extreme values
and we call that the events have heavy-tailed noises.

For a better understanding, we show two examples of heavy-tailed
distributions. One is Pareto distributions, and the other is Weibull
distributions. Both cases are with higher tails compared with sub-
Gaussian distributions.

In this chapter, we consider a general definition of heavy-tailed
noises. In particular, we investigate heavy-tailed payoffs in bandits
with finite moments of order p, where p ∈ (1, 2]. When p = 2, stochas-
tic payoffs in bandits are generated from distributions with finite vari-
ances. We notice that sub-Gaussian noises also have finite variances.
Thus the question of the connection between the results of p = 2 and
those of sub-Gaussian noises arises. When 1 < p < 2, stochastic pay-
offs are generated from distributions with infinite variances (Shao and
Nikias, 1993). In this case, noises from heavy-tailed distributions do
not enjoy exponentially decaying tails. Clearly, it is difficult to learn a
parameter of an arm when payoffs have heavy-tailed noises.

The regret minimization in K-arm MAB with heavy-tailed payoffs
has been studied by Bubeck et al. (2013). For linear stochastic ban-
dits, we adopt the same definition of the noises for heavy-tailed MAB
proposed by Bubeck et al. (2013). Bubeck et al. (2013) proposed two
algorithms with the regrets of Õ(

√
T ) 1 for MAB with finite moments

of order 2. This result gives us a hint of the relation between the results
of payoffs with finite variances and sub-Gaussian noises. Taking into
consideration the importance of heavy tails in real applications, such
as network routing with delays (Liebeherr et al., 2012) and sequential

1We omit a polylogarithmic factor of T for Õ(·).
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investments in financial markets (Cont and Bouchaud, 2000), it is ur-
gent and necessary to conduct a rigorous analysis of LinBET. Solving
the problem of LinBET generalizes the applications of linear stochastic
bandits.

Recently, Medina and Yang (2016) studied the problem of LinBET.
The proposed algorithms only achieved the regret of Õ(T 3

4 ) for the
case of finite variances. Clearly, this result is very far away from the
regret of the state-of-the-art algorithms (i.e., Õ(

√
T )) in linear stochas-

tic bandits under the sub-Gaussian assumption (Abbasi-Yadkori et al.,
2011; Dani et al., 2008a). Thus, we have an interesting and essential
question as

Is it possible to recover the regret of Õ(
√

T ) when p = 2 for LinBET?

In this chapter, we answer this question affirmatively. In particular,
we study the problem of LinBET characterized by finite p-th moments,
where p ∈ (1, 2]. The problem of LinBET intrinsically has several
interesting challenges. The first challenge is the lower bound of the
problem. As far as we know, the regret lower bound of the problem
remains unknown. The technical issues of the lower bound come from
the construction of an elegant setting, including the arm set, payoffs
and the linear parameter, for LinBET, which conserves the information
of p, and the derivation of a lower bound with respect to p. The second
challenge is to develop a estimator for the linear parameter that will be
stable under the heavy-tailed noises as heavy-tailed noises increase the
errors of least-squares estimator largely. We consider about adopting
the techniques of median of means and truncation to construct such
a robust estimator. The third challenge is how to adopt median of
means and truncation to solve the problem with regret upper bounds
matching the lower bound as closely as possible.
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It is worth mentioning that the prior work by Medina and Yang
(2016) has tried to solve this problem with median of means and trun-
cation, but their estimators did not make full use of the contextual
information of chosen arms to eliminate the effect from heavy-tailed
noises, which eventually caused large regrets.

To solve the aforementioned challenges, we have the following three
contributions. First, we rigorously analyze the worst-case regret lower
bound on the problem of LinBET, and prove it as Ω(T

1
p ). The lower

bound indicates that finite variances are possible to result in a regret
bound of Ω(

√
T ) and that the prior results are sub-optimal according

to the order of T . Second, based on the common techniques of me-
dian of means and truncation, we develop two novel bandit algorithms
to solve LinBET. Both of the algorithms take advantage of the opti-
mism in the face of uncertainty principle and build on the framework
of OFUL proposed by Abbasi-Yadkori et al. (2011). The regret upper
bounds of the proposed two algorithms match the lower bound up to
a polylogarithmic factor. As far as we know, we are the first to solve
LinBET almost optimally. Finally, we conduct experiments on syn-
thetic datasets. The noises in the data are generated from Student’s
t-distribution and Pareto distribution, and then we demonstrate the
effectiveness of our algorithms. Experimental results clearly demon-
strate that our algorithms outperform the state-of-the-art results. For
a better understanding, the main contributions of this chapter are sum-
marized as follows.

• We provide the worst-case lower bound for the problem of Lin-
BET characterized by finite moments of order p, where p ∈ (1, 2].
In the analysis, we construct an elegant setting of arms, linear
parameters and payoffs in LinBET. Then we prove that for any
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bandit algorithm, the expectation of regret is at least Ω(T
1
p ).

• We develop two new bandit algorithms for LinBET, which are
named as MENU and TOFU (with technical details shown in Sec-
tion 3.4). The MENU algorithm adopts median of means with a
well-designed grouping of payoffs and the TOFU algorithm adopts
truncation by setting truncation threshold based on historical in-
formation. Both algorithms achieve the regret Õ(T

1
p ) with high

probability.

• We run our algorithms on synthetic datasets to show the effec-
tiveness of our proposed algorithms. The comparisons between
our algorithms and two baselines MoM and CRT demonstrate the
improvements on cumulative rewards for MENU and TOFU. It
shows that our algorithms outperform the two baselines empiri-
cally.

3.2 Preliminary and Related Work

In this section, we first present the preliminary of the study, i.e., nota-
tions and learning setting of LinBET. Then, we give a detailed discus-
sion on the line of research for bandits with heavy-tailed payoffs.

3.2.1 Notations

For a positive integer K, [K] ≜ {1, 2, · · · , K}. Let the ℓ-norm of a
vector x ∈ Rd be ∥x∥ℓ ≜ (xℓ

1 + · · · + xℓ
d) 1

ℓ , where ℓ ≥ 1 and xi is the
i-th element of x with i ∈ [d]. The inner product of two vectors x, y is
denoted by x⊤y = ⟨x, y⟩. Given a positive definite matrix A ∈ Rd×d,
the weighted Euclidean norm of a vector x ∈ Rd is ∥x∥A =

√
x⊤Ax.

B(x, r) denotes a Euclidean ball centered at x with radius r ∈ R+,
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where R+ is the set of positive numbers. Let e be Euler’s number, and
Id ∈ Rd×d an identity matrix. Let 1{·} be an indicator function, and
E[X] the expectation of X. For r ∈ R, its absolute value is |r|, its
ceiling integer is ⌈r⌉, and its floor integer is ⌊r⌋.

3.2.2 Learning Setting

For a bandit algorithm A, we consider sequential decisions in a given
decision set. In a sequence of T decisions, the ultimate goal is to max-
imize cumulative rewards. In particular, for each round t = 1, · · · , T ,
the bandit algorithm A is given a decision set Dt ⊆ Rd such that
∥x∥2 ≤ D for any x ∈ Dt and some D ≥ 0. The algorithm A has
to choose an arm xt ∈ Dt and then observes a stochastic payoff yt(xt)

of the chosen arm. For notation simplicity, we also write yt = yt(xt).
In the linear setting, the expectation of the observed payoff for the
chosen arm is a linear function of the arm as yt(xt) ≜ ⟨xt, θ∗⟩ + ηt,
where θ∗ is an underlying parameter with ∥θ∗∥2 ≤ S and ηt is a ran-
dom noise. Without loss of generality, we assume E [ηt|Ft−1] = 0,
where Ft−1 ≜ {x1, · · · , xt}∪{η1, · · · , ηt−1} is a σ-filtration and F0 = ∅.
Clearly, we have E[yt(xt)|Ft−1] = ⟨xt, θ∗⟩. As mentioned in previous
chapters, for an algorithm A, to maximize cumulative payoffs is equiv-
alent to minimizing the regret as

R(A, T ) ≜
(

T∑
t=1

⟨x∗
t , θ∗⟩

)
−
(

T∑
t=1

⟨xt, θ∗⟩
)

=
T∑

t=1
⟨x∗

t − xt, θ∗⟩, (3.1)

where x∗
t denotes the optimal decision at time t for θ∗, i.e., x∗

t ∈

arg maxx∈Dt⟨x, θ∗⟩. In this chapter, we will provide high-probability
worst-case upper bounds of R(A, T ) with respect to T , and provide
the worst-case lower bound for LinBET in expectation for any algo-
rithm. The formal definition for the problem of LinBET is shown as
follows.
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Definition 3.1 (LinBET). Given a decision set Dt for time step
t = 1, · · · , T , an algorithm A, of which the goal is to maximize cu-
mulative rewards over T rounds, chooses an arm xt ∈ Dt. With Ft−1,
the observed stochastic payoff yt(xt) is conditionally heavy-tailed, i.e.,
E [|yt|p|Ft−1] ≤ b or E [|yt − ⟨xt, θ∗⟩|p|Ft−1] ≤ c, where p ∈ (1, 2], and
b, c ∈ (0, +∞).

3.2.3 Related Work

The origin model of MAB dates back to 1933 with study by Rob-
bins (1952); Thompson (1933). One of the most important charac-
teristics of MAB is addressing the trade-off between exploration and
exploitation. The problem-dependent asymptotic lower bound of ban-
dits was proposed by Lai and Robbins (1985). In bandits, there are
two important methodologies. One is upper confidence bound, and the
other is Thompson sampling. The methodology of UCB was developed
in Agrawal (1995); Lai and Robbins (1985) to match the lower bound as
close as possible. Other related techniques can refer to (Agrawal and
Goyal, 2012; Chapelle and Li, 2011; Gittins et al., 2011; Thompson,
1933).

The problem of MAB with heavy-tailed payoffs characterized by
finite moments of order p has been well studied by Bubeck et al. (2013);
Vakili et al. (2013); Yu et al. (2018). Bubeck et al. (2013) stated
that finite moments of order 2 in MAB were able to achieve regret
bounds of Õ(

√
T ). This is the same polynomial order of T as the sub-

Gaussian case. Besides, Bubeck et al. (2013) also pointed out that
the polynomial order of T in regret bounds decreased with p. Bubeck
et al. (2013) constructed a specific setting to prove the lower bound of
MAB with heavy-tailed payoffs and then proved that algorithms with
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the proposed robust estimators were optimal. Note that Bubeck et al.
(2013); Vakili et al. (2013) derived a robust estimator for the expected
payoff of each arm individually, which required using the technique
of median of means and truncation for scalars. In our problem, we
can have infinite number of arms and all arms are represented by d-
dimensional vectors. Vakili et al. (2013) also presented the theoretical
results for the case of p > 2. But we note that the case of p > 2 is not
much interesting, because it can reduce to the case of p = 2 via Jensen’s
inequality. Recently, Yu et al. (2018) investigated pure exploration of
MAB with heavy-tailed payoffs.

For the problem of linear stochastic bandits, which is also named lin-
ear reinforcement learning by Auer (2002), the worst-case lower bound
is Ω(d

√
T ) when arms are represented by d-dimensional vectors (Dani

et al., 2008b). Almost optimal bandit algorithms in linear stochastic
bandits, which match the lower bound up to a polylogarithmic factor,
have been well developed by Abbasi-Yadkori et al. (2011); Auer (2002);
Chu et al. (2011); Dani et al. (2008a) in the sub-Gaussian setting.

Although we are not the first to study the problem of LinBET, the
lower bound of this problem has never been studied before. Medina
and Yang (2016) studied LinBET with p ∈ (1, +∞) and proposed two
bandit algorithms based on median of means and confidence region with
truncation respectively, which we just name as MoM and CRT. The
algorithm of MoM achieved the regret of Õ(T

2p−1
3p−2 ) and the algorithm of

CRT achieved the regret of Õ(T
1
2 + 1

2p ). Both of the algorithms cannot
recover the regret of Õ(

√
T ) when p = 2. The algorithm of CRT only

achieved the regret of Õ(
√

T ) when p → +∞. Medina and Yang (2016)
conjectured that it was possible to recover the regret upper bound of
Õ(

√
T ) with p being a finite number.
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Recently, the assumption in stochastic payoffs of MAB was relaxed
from sub-Gaussian noises to bounded kurtosis (Lattimore, 2017), which
can be viewed as an extension of Bubeck et al. (2013). The interest-
ing point of Lattimore (2017) is the scale free algorithm, which might
be practical in applications. Besides, Carpentier and Valko (2014) in-
vestigated the problem of extreme bandits, where stochastic payoffs
of MAB follow Fréchet distributions. The setting of extreme bandits
well fits for the real scenario of anomaly detection without contextual
information. The order of regrets in extreme bandits was characterized
by distributional parameters, and the regrets of algorithms for extreme
bandits were similar to the results by Bubeck et al. (2013).

It is worth mentioning that, for linear regression with heavy-tailed
noises, several interesting studies have been conducted. Hsu and Sabato
(2016) proposed a generalized method in light of median of means for
loss minimization with heavy-tailed noises. Heavy-tailed noises in Hsu
and Sabato (2016) might come from contextual information, which is
more complicated than the setting of stochastic payoffs in this chapter.
Hence, linear regression with heavy-tailed noises usually requires a fi-
nite fourth moment. In Audibert et al. (2011), the basic technique of
truncation was adopted to solve robust linear regression in the absence
of exponential moment condition. The related studies in this line of
research are not directly applicable for the problem of LinBET.

3.2.4 The Basic Algorithm OFUL

Our two algorithms are developed based on the framework of OFUL
proposed by Abbasi-Yadkori et al. (2011). The idea of OFUL is using
ridge regression to estimate the linear parameter θ and constructing a
self-normalized confidence ellipsoid of the estimate. In this subsection,
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Algorithm 3.1 OFUL
1: input R, d, δ, λ, S, T , {Dt}T

t=1

2: initialization: V0 = λId, C0 = B(0, S)

3: for t = 1, 2, · · · , T do

4: (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1⟨x, θ⟩ ▷ to select an arm

5: Vt = Vt−1 + xtx
⊤
t

6: θ̂t = V −1
t X⊤

t Yt

7: βt = R

√
d log

(
1+tD2/λ

δ

)
+ λ

1
2 S

8: Ct = {θ : ∥θ − θ̂t∥Vt
≤ βt} ▷ to update the confidence region

9: end for

we present the prior algorithm of OFUL and two lemmas about the
theoretical results of OFUL, which are the basics for the analysis of
our algorithms in Section 3.4. Lemma 3.1 shows a high probability
self-normalized confidence region of the least square estimate.

Lemma 3.1 (Theorem 2 in (Abbasi-Yadkori et al., 2011)). Let θ̂t de-
note the least square estimate of θ∗ with the sequence of decisions
x1, · · · , xt and observed payoffs y1, · · · , yt. We assume that ∥θ∗∥2 ≤ S.
Assume that for all t ∈ [T ] and all xt ∈ Dt ⊆ Rd, ηt is Ft−1 measur-
able and ηt is conditionally R-sub-Gaussian for some R ≥ 0. Then θ̂t

satisfies

P

∥θ̂t − θ∗∥Vt ≤ R

√√√√d log
(

1 + tD2/λ

δ

)
+ λ

1
2 S

 ≥ 1 − δ, (3.2)

where λ > 0 is a regularization parameter and Vt = λId +∑t
τ=1 xτ x⊤

τ .

The upper bound of the instantaneous regret ⟨x∗
t − xt, θ∗⟩ at time t

can be decomposed as ∥xt∥V −1
t

∥θ̂t −θ∗∥Vt . With Lemma 3.1, it is direct
to derive the following result for the regret of OFUL.

Lemma 3.2 (Theorem 3 in (Abbasi-Yadkori et al., 2011)). Assume
that for all t and xt ∈ Dt with ∥xt∥2 ≤ D, ∥θ∗∥2 ≤ S, |x⊤

t θ∗| ≤ 1
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and ηt is conditionally R-sub-Gaussian for some R ≥ 0. Then, with
probability at least 1 − δ, for every T ≥ 0, the regret of the OFUL
algorithm satisfies

R(OFUL, T )

≤ 4

√
Td log

(
λ + TD

d

)(
R

√
d log

(
1 + nD

λd

)
+ 2 log

(
1
δ

)
+ λ

1
2 S

)
.

In Section 3.4, we develop two algorithms based on OFUL and adopt
the similar proof techniques.

3.3 Lower Bound

In this section, we provide the lower bound for the problem LinBET.
We construct a setting where the payoffs are heavy-tailed distribu-
tions with finite p-th raw moments. Assume d ≥ 2 is even (when d

is odd, the results of d − 1 dimensions can be directly applied). For
Dt ⊆ Rd with t ∈ [T ], we set the decision set fixed as D1 = · · · =

DT = D(d) ≜ {(x1, · · · , xd) ∈ Rd
+ : x1 + x2 = · · · = xd−1 + xd = 1}.

This is a subset of intersection of the cube [0, 1]d and the hyperplane
x1 + · · · + xd = d/2. We define a set Sd ≜ {(θ1, · · · , θd) : ∀i ∈

[d/2] , (θ2i−1, θ2i) ∈ {(2∆, ∆), (∆, 2∆)}} with ∆ ∈ (0, 1/d]. The payoff
functions take values in {0, (1/∆)

1
p−1 } such that, for every x ∈ D(d),

the expected payoff is θ⊤
∗ x. In particular, we have the payoff function

of x as

y(x) =


(

1
∆

) 1
p−1 with a probability of ∆

1
p−1 θ⊤

∗ x,

0 with a probability of 1 − ∆
1

p−1 θ⊤
∗ x.

(3.3)

In this setting, we can derive the worst-case lower bound of LinBET
as follows.
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Theorem 3.1. If θ∗ is chosen uniformly at random from Sd, and the
payoff for each x ∈ D(d) is in {0, (1/∆)

1
p−1 } with mean θ⊤

∗ x, then for
any algorithm A and every T ≥ (d/12)

p−1
p , we have

E [R(A, T )] ≥ d

192
T

1
p . (3.4)

In the proof of Theorem 3.1, we first prove the lower bound for
the case of d = 2, and then generalize the argument to any d > 2.
We notice that the parameter in the original d-dimensional space is
rearranged to d/2 tuples, each of which is a 2-dimensional vector as
(θ2i−1, θ2i) ∈ {(2∆, ∆), (∆, 2∆)} with i ∈ [d/2]. If the i-th tuple of the
parameter is selected as (2∆, ∆), then the i-th tuple of the optimal
arm is (x∗,2i−1, x∗,2i) = (1, 0). Thus, if we define the i-th tuple of the
chosen arm as (xt,2i−1, xt,2i), the instantaneous regret is ∆(1 − xt,2i−1).
Then, the expectation of regret can be represented as an integration
of ∆(1 − xt,2i−1) over D(d). Finally, with fundamental inequalities in
information theory, it is easy to obtain the worst-case regret lower
bound by taking ∆ = T − p−1

p /12.
Dani et al. (2008a) proposed a method of taking martingale differ-

ences to prove the lower bound for linear stochastic bandits. But it
is not directly feasible for the proof of lower bound in LinBET, be-
cause under our construction of heavy-tailed payoffs (i.e., Eq. (3.5)),
the information of p will be excluded in the computation of martin-
gale differences. In addition, our proof is partially inspired by Bubeck
(2010). The detailed proof of Theorem 3.1 is shown in Section 3.5.

Remark 3.1. The above lower bound provides two essential hints for
bandit algorithms: one is that finite variances in LinBET yield a
bound of Ω(

√
T ), and the other is that algorithms proposed by Med-

ina and Yang (2016) are far from optimal. The result in Theorem 3.1
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Figure 3.1: Framework comparison between our algorithm MENU and prior

algorithm MoM by Medina and Yang (2016).

strongly indicates that it is possible to design bandit algorithms recov-
ering Õ(

√
T ) with finite variances.

3.4 Algorithms and Upper Bounds

In this section, we develop two novel bandit algorithms to solve Lin-
BET. Both are proved to be almost optimal with respect to the order of
T . We prove regret upper bounds for the two algorithms. In particular,
our core idea is based on the optimism in the face of uncertainty prin-
ciple (OFU). Our algorithms are built based on the algorithm OFUL.
The first algorithm is median of means under optimism in the face of
uncertainty (MENU), which is shown in Algorithm 3.2, and the sec-
ond algorithm is truncation under optimism in the face of uncertainty
(TOFU), which is shown in Algorithm 3.3.

Both algorithms in this chapter adopt the tool of ridge regression.
At time step t, let θ̂t be the ℓ2-regularized least-squares estimate (LSE)
of θ∗ as θ̂t = V −1

t X⊤
t Yt, where Xt ∈ Rt×d is a matrix of which rows
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Algorithm 3.2 MENU
1: input d, c, p, δ, λ, S, T , {Dn}N

n=1

2: initialization: k = ⌈24 log
(

eT
δ

)
⌉, N = ⌊ T

k ⌋, V0 = λId, C0 = B(0, S)

3: for n = 1, 2, · · · , N do

4: (xn, θ̃n) = arg max(x,θ)∈Dn×Cn−1⟨x, θ⟩ ▷ to select an arm

5: Play xn with k times and observe payoffs yn,1, yn,2, · · · , yn,k

6: Vn = Vn−1 + xnx⊤
n

7: For j ∈ [k], θ̂n,j = V −1
n

∑n
i=1 yi,jxi ▷ to calculate LSE for the j-th group

8: For j ∈ [k], let rj be the median of {∥θ̂n,j − θ̂n,s∥Vn : s ∈ [k]\j}

9: k∗ = arg minj∈[k] rj ▷ to take median of means of estimates

10: βn = 3
(

(9dc)
1
p n

2−p
2p + λ

1
2 S
)

11: Cn = {θ : ∥θ − θ̂n,k∗∥Vn
≤ βn} ▷ to update the confidence region

12: end for

are x⊤
1 , · · · , x⊤

t , Vt ≜ X⊤
t Xt + λId, Yt ≜ (y1, · · · , yt) is a vector of the

historical observed payoffs until time t and λ > 0 is a regularization
parameter.

3.4.1 MENU and Regret

In this section, we first give the details of the design of MENU. Then,
we develop the regret upper bound of the algorithm MENU.

Description of Algorithm MENU

We adopt median of means for heavy-tailed payoffs to obtain a robust
estimate. To conduct median of means in LinBET, it is common to
divide T pulls of bandits into N ≤ T epochs. In each epoch, once an
arm is chosen to be pulled, it will be played for multiple times to obtain
an estimate of θ∗. We find that there exist different ways to construct
the epochs. We design the framework of MENU in Figure 3.1(a), and
show the framework of MoM designed by Medina and Yang (2016)
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in Figure 3.1(b). For MENU and MoM, we have the following three
differences. First, for each epoch n = 1, · · · , N , MENU plays the same
arm xn by O(log(T )) times, while MoM plays the same arm by O(T

p
3p−2 )

times. Second, at epoch n with historical payoffs, MENU conducts LSEs
by O(log(T )) times, each of which is based on {xi}n

i=1, while MoM
conducts LSE by one time based on intermediate payoffs calculated
via median of means of observed payoffs. Third, MENU adopts median
of means of LSEs, while MoM adopts median of means of the observed
payoffs. Intuitively, the execution of multiple LSEs will lead to the
improved regret of MENU. With a better trade-off between k and
N in Figure 3.1(a), we derive an improved upper bound of regret in
Theorem 3.2.

In light of Figure 3.1(a), we develop detailed algorithmic procedures
in Algorithm 3.2 for MENU. We notice that, in order to guarantee
the median of means of LSEs not far away from the true underlying
parameter with high probability, we construct the confidence interval
in Line 10 of Algorithm 3.2. Now we have the following theorem for
the regret upper bound of MENU.

Theorem 3.2. Assume that for all t and xt ∈ Dt with ∥xt∥2 ≤ D,
∥θ∗∥2 ≤ S, |x⊤

t θ∗| ≤ L and E[|ηt|p|Ft−1] ≤ c. Then, with probability at
least 1 − δ, for every T ≥ 256 + 24 log (e/δ), the regret of the MENU
algorithm satisfies

R(MENU, T )

≤ 6
(

(9dc)
1
p + λ

1
2 S + L

)
T

1
p

(
24 log

(
eT

δ

)
+ 1
) p−1

p

√
2d log

(
1 + TD2

λd

)
.

The technical challenges in MENU (i.e., Algorithm 3.2) and its
proofs are discussed as follows. Based on the common techniques
in linear stochastic bandits (Abbasi-Yadkori et al., 2011), in order to
guarantee the instantaneous regret in LinBET, we need to guarantee
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∥θ∗ − θ̂n,k∗∥Vn ≤ βn with high probability. We attack this issue by guar-
anteeing ∥θ∗ − θ̂n,j∥Vn ≤ βn/3 with a probability of 3/4, which could
reduce to a problem of bounding a weighted sum of historical noises.
Interestingly, by conducting singular value decomposition on Xn (of
which rows are x⊤

1 , · · · , x⊤
n ), we find that 2-norm of the weights is no

greater than 1. Then the weighted sum can be bounded by a term as
O
(

n
2−p
2p

)
. With a standard analysis in linear stochastic bandits from

the instantaneous regret to the regret, we achieve the above results for
MENU. We show the detailed proof of Theorem 3.2 in Section 3.5.

Remark 3.2. For MENU, we adopt the assumption of heavy-tailed
payoffs on central moments, which is required in the basic technique of
median of means (Bubeck et al., 2013). In addition, there exists an
implicit mild assumption in Algorithm 3.2 that, at each epoch n, the
decision set must contain the selected arm xn at least k times, which is
practical in applications, e.g., online personalized recommendations (Li
et al., 2010). The condition of T ≥ 256 + 24 log (e/δ) is required for
T ≥ k. The regret upper bound of MENU is Õ(T

1
p ), which implies that

finite variances in LinBET are sufficient to achieve Õ(
√

T ).

3.4.2 TOFU and Regret

In this section, we first describe the design of TOFU. Then, we present
the regret upper bound of the algorithm TOFU.

Description of Algorithm TOFU

We demonstrate the algorithmic procedures of TOFU in Algorithm 3.3.
For a better understanding, we point out two subtle differences between
our TOFU and the algorithm of CRT as follows. In TOFU, to obtain the
accurate estimate of θ∗, we need to trim all historical payoffs for each



CHAPTER 3. LINEAR STOCHASTIC BANDITS WITH HEAVY TAILS36

Algorithm 3.3 TOFU
1: input d, b, p, δ, λ, T , {Dt}T

t=1

2: initialization: V0 = λId, C0 = B(0, S)

3: for t = 1, 2, · · · , T do

4: bt =
(

b

log( 2T
δ )

) 1
p−1

t
2−p
2p

5: (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1⟨x, θ⟩ ▷ to select an arm

6: Play xt and observe a payoff yt

7: Vt = Vt−1 + xtx
⊤
t and X⊤

t = [x1, · · · , xt]

8: [u1, · · · , ud]⊤ = V
−1/2

t X⊤
t

9: for i = 1, · · · , d do

10: Y †
i = (y11ui,1y1≤bt

, · · · , yt1ui,tyt≤bt
) ▷ to truncate the payoffs

11: end for

12: θ†
t = V

−1/2
t (u⊤

1 Y †
1 , · · · , u⊤

d Y †
d )

13: βt = 4
√

db
1
p
(
log
( 2dT

δ

)) p−1
p t

2−p
2p + λ

1
2 S

14: Update Ct = {θ : ∥θ − θ†
t ∥Vt

≤ βt} ▷ to update the confidence region

15: end for

dimension individually. Besides, the truncating operations depend on
the historical information of arms. By contrast, in the prior algorithm
CRT, the historical payoffs are trimmed once, which is controlled only
by the number of rounds for playing bandits. Compared to CRT, our
TOFU achieves a tighter confidence interval, which can be found from
the setting of βt. Now we have the following theorem for the regret
upper bound of the TOFU algorithm.

Theorem 3.3. Assume that for all t and xt ∈ Dt with ∥xt∥2 ≤ D,
∥θ∗∥2 ≤ S, |x⊤

t θ∗| ≤ L and E[|yt|p|Ft−1] ≤ b. Then, with probability at
least 1 − δ, for every T ≥ 1, the regret of the TOFU algorithm satisfies

R(TOFU, T )

≤ 2T
1
p

4
√

db
1
p

(
log

(
2dT

δ

)) p−1
p

+ λ
1
2 S + L


√√√√2d log

(
1 + TD2

λd

)
.
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Similarly to the proof in Theorem 3.2, we can achieve the above
results for the algorithm TOFU. We show the detailed proof of Theo-
rem 3.3 in Section 3.5.

Remark 3.3. For TOFU, we adopt the assumption of heavy-tailed
payoffs on raw moments. It is worth pointing out that, when p =

2, we have regret upper bound for TOFU as Õ(d
√

T ). This implies
that we can recover the same order of d as that under sub-Gaussian
assumption (Abbasi-Yadkori et al., 2011). We notice that a weakness in
TOFU is high time complexity, because for each round TOFU needs to
truncate all historical payoffs. The time complexity might be reasonably
reduced by dividing T into multiple epochs, each of which contains only
one truncation.

3.5 Proofs of Theorems

In this section, we show the proofs of theorems.

3.5.1 Proof of Theorem 3.1

We prove the lower bound for d ≥ 2. Assume d is even (when d is
odd, similar results can be easily derived by considering the first d − 1

dimensions). For Dt ⊆ Rd with t ∈ [T ], we fix the decision set as
D1 = · · · = DT = D(d). Then, the fixed decision set is constructed
as D(d) ≜ {(x1, · · · , xd) ∈ Rd

+ : x1 + x2 = · · · = xd−1 + xd = 1},
which is a subset of intersection of the cube [0, 1]d and the hyper-
plane x1 + · · · + xd = d/2. We define a set Sd ≜ {(θ1, · · · , θd) : ∀i ∈

[d/2] , (θ2i−1, θ2i) ∈ {(2∆, ∆), (∆, 2∆)}} with ∆ ∈ (0, 1/d]. The pay-
off functions take values in {0, (1/∆)

1
p−1 } with p ∈ (1, 2], for every

x ∈ D(d), the expected payoff is θ⊤
∗ x, where θ∗ is the underlying param-
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eter drawn from Sd. To be more specific, we have the payoff function
of x as

y(x) =


(

1
∆

) 1
p−1 with a probability of ∆

1
p−1 θ⊤

∗ x,

0 with a probability of 1 − ∆
1

p−1 θ⊤
∗ x.

(3.5)

In this setting, the p-th raw moments of payoffs are bounded by d

and |θ⊤
∗ x| ≤ 1. We start the proof with the 2-dimensional case in

Subsection 3.5.1. Its extension to the general case (i.e., d > 2) is
provided in Subsection 3.5.1. Though we set a fixed decision set in
the proofs, we can easily extend the lower bound here to the setting of
time-varying decision sets, as discussed by Dani et al. (2008a).

d = 2 Case

Let µ0 = (∆, ∆), µ1 = (2∆, ∆) and µ2 = (∆, 2∆). The 2-dimensional
decision set is D(2) = {(x1, x2) ∈ R2

+ : x1 + x2 = 1}. Our payoff
functions take values in {0, (1/∆)

1
p−1 }, and for every x ∈ D(2), the

expected payoff is θ⊤
∗ x, where θ∗ is chosen uniformly at random from

{µ1, µ2}. It is easy to find µ⊤
j x = ∆(1 + xj) which is maximized at

xj = 1 for j ∈ {1, 2}, and µ⊤
0 x = ∆ for any x ∈ D(2).

Lemma 3.3. If θ∗ is chosen uniformly at random from {µ1, µ2}, and
the payoff for each x ∈ D(2) is in {0, (1/∆)

1
p−1 } with mean θ⊤

∗ x, then
for every algorithm A and every T ≥ 1, the regret satisfies

E[R(A, T )] ≥ 1
96

T
1
p . (3.6)

Proof. We consider a deterministic algorithm A first. Let qx,T = T (x)/T ,
where T (x) denotes the number of pulls of arm x. QT is the empirical
distribution of arms with respect to qx,T and X is drawn from QT . We
let Pj and Ej denote, respectively, the probability distribution of X
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conditional on θ∗ = µj and the expectation conditional on θ∗ = µj,
where j ∈ {0, 1, 2}. Thus, we have Pj(X ∈ E) = Ej[

∑
x∈E T (x)]/T for

any E ⊆ D(2). At each time step t, xt = (xt,1, xt,2) is selected. We let
y∗

t = ⟨x∗
t , θ∗⟩. Hence, for j ∈ {1, 2}, we have

Ej

[
T∑

t=1
(y∗

t − yt(xt))
]

=
T∑

t=1
Ej [∆(1 − xt,j)] = T

∫
D(2)

∆(1 − xj)dPj(x)

= T∆
(

1 −
∫

D(2)

xjdPj(x)
)

= T∆
(

1 −
(∫

0≤xj≤ 1
2

xjdPj(x) +
∫

1
2 <xj≤1

xjdPj(x)
))

≥ T∆
(

1 −
(1

2
Pj

(
0 ≤ Xj ≤ 1

2

)
+ Pj

(1
2

< Xj ≤ 1
)))

, (3.7)

which implies

E[R(A, T )] = Eθ∗

[
Ej

[
T∑

t=1
(y∗

t − yt(xt))
]]

≥ T∆

1 − 1
2

2∑
j=1

(1
2

Pj

(
0 ≤ Xj ≤ 1

2

)
+ Pj

(1
2

< Xj ≤ 1
)) . (3.8)

According to Pinsker’s inequality, for any E ⊆ D(2), we have

Pj(X ∈ E) ≤ P0(X ∈ E) +
√

1
2

KL(P0, Pj), (3.9)

where KL(P0, Pj) denotes the Kullback-Leibler divergence (simply KL
divergence). Hence,

E[R(A, T )]

≥ T∆

1 − 1
2

2∑
j=1

(
1
2

P0

(
0 ≤ Xj ≤ 1

2

)
+ P0

(
1
2

< Xj ≤ 1
)

+ 3
2

√
1
2

KL(P0, Pj)

)
= T∆

1
4

− 3
4

2∑
j=1

√
1
2

KL(P0, Pj)

 . (3.10)

Since A is deterministic, the sequence of received rewards denoted by
WT ≜ (y1, y2, · · · , yT ) ∈ {0, (1/∆)

1
p−1 }T uniquely determines the em-

pirical distribution QT and thus, QT conditional on WT is the same for
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any θ∗. We let P t
j be the probability distribution of Wt = (y1, y2, · · · , yt)

conditional on θ∗ = µj. Based on the chain rule for KL divergence, we
have

KL(P0, Pj) ≤ KL(PT
0 , PT

j ). (3.11)

Further, iteratively using the chain rule for KL divergence, we have

KL(PT
0 , PT

j )

= KL(P1
0 , P1

j ) +
T∑

t=2

∫
Wt−1

KL
(
P t

0(·|wt−1), P t
j(·|wt−1)

)
dP t−1

0 (Wt−1)

= KL(P1
0 , P1

j ) +
T∑

t=2

∫
xt∈D(2)

∫
Wt−1|xt,j=xj

(3.12)

KL
(
∆

p
p−1 , ∆

p
p−1 (1 + xj)

)
dP t−1

0 (Wt−1|xt,j = xj)dP t−1
0 (xt,j = xj)

(3.13)

≤ 2∆
p

p−1 + (3.14)
T∑

t=2

∫
xt∈D(2)

∫
Wt−1|xt,j=xj

2∆
p

p−1 dP t−1
0 (Wt−1|xt,j = xj)dP t−1

0 (xt,j = xj)

(3.15)

= 2T∆
p

p−1 , (3.16)

where Eq. (3.15) could be derived by setting ∆ ≤ (1/2)
p−1

p . Note that
for any p, q ∈ (0, 1), let P and Q denote the Bernoulli distribution with
parameters a and b respectively. We denote KL(P , Q) as KL(a, b) in
Eq. (3.13). Therefore, we have

E[R(A, T )] ≥ T∆
(

1
4

− 3
2

√
T∆

p
p−1

)
≥ 1

96
T

1
p , (3.17)

where we set ∆ = T − p−1
p /12.

So far we have discussed the case where A is a deterministic algo-
rithm. When A is a randomized algorithm, the result is the same. In
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particular, let EA denote the expectation with respect to the random-
ness of A. Then, we have

E[R(A, T )] = EA

[
Eθ∗

[
Ej

[
T∑

t=1
(y∗

t − yt(xt))
]]]

. (3.18)

If we fix the realization of the algorithm’s randomization, the results of
the previous steps for a deterministic algorithm apply and we know that
Eθ∗

[
Ei

[∑T
t=1(y∗

t − yt(xt))
]]

could be lower bounded as before. Hence,
E[R(A, T )] is lower bounded as Eq. (3.17).

General Case (d > 2)

Now we suppose d > 2 is even. If d is odd, we just take the first d − 1

dimensions into consideration. Then we consider the contribution to
the total expected regret from the choice of (x2i−1, x2i), for all i ∈ [d/2].
We call (x2i−1, x2i) the i-th component of x.

Analogously to the d = 2 case, we set (θ∗,2i−1, θ∗,2i) ∈ {µ1, µ2}.
The decision region is D(d) = {(x1, · · · , xd) ∈ Rd

+ : x1 + x2 = · · · =

xd−1 + xd = 1}. Then, by following the proof for d = 2 case, we could
derive the regret due to the i-th component of x as

E
[
R(i)(A, T )

]
≥ 1

96
T

1
p , (3.19)

where i ∈ [d/2]. Summing over the d/2 components of Eq. (3.19)
completes the proof for Theorem 3.1.

3.5.2 Proof of Theorem 3.2

To prove Theorem 3.2, we start with proving the following two lem-
mas. Recall that the algorithm in the chapter is based on least-squares
estimate (LSE).
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Lemma 3.4 (Confidence Ellipsoid of LSE). Let θ̂n denote the LSE
of θ∗ with the sequence of decisions x1, · · · , xn and observed payoffs
y1, · · · , yn. Assume that for all τ ∈ [n] and all xτ ∈ Dτ ⊆ Rd,
E[|ητ |p|Fτ−1] ≤ c and ∥θ∗∥2 ≤ S. Then θ̂n satisfies

P
[
∥θ̂n − θ∗∥Vn ≤ (9dc)

1
p n

2−p
2p + λ

1
2 S
]

≥ 3
4

, (3.20)

where λ > 0 is a regularization parameter and Vn = λId +∑n
τ=1 xτ x⊤

τ .

Proof. The singular value decomposition of Xn is UΣnV ⊤, where U is
an n×d matrix with orthonormal columns, V is a d×d unitary matrix
and Σn is an n × n diagonal matrix with non-negative entries. We
calculate Vn = V (Σ2

n + λId)V ⊤ and

V
− 1

2
n X⊤

n = V
(
Σ2

n + λId

)− 1
2 ΣnU⊤. (3.21)

Let u⊤
i denote the i-th row of V (Σ2

n + λId)− 1
2 ΣnU⊤, which leads to

∥ui∥2 ≤ 1. More importantly, by optimization, we have ∥ui∥p ≤ n
2−p
2p .

By letting Yn = (y1, · · · , yn), we have

∥θ̂n − θ∗∥Vn = ∥V −1
n X⊤

n (Yn − Xnθ∗) − λV −1
n θ∗∥Vn

≤ ∥V
− 1

2
n X⊤

n (Yn − Xnθ∗)∥2 + λ∥θ∗∥V −1
n

≤

√√√√ d∑
i=1

(
u⊤

i (Yn − Xnθ∗)
)2

+ λ
1
2 S. (3.22)

Inspired by Bubeck et al. (2013); Medina and Yang (2016), we bound
the desired probability by using a union bound as

P

 d∑
i=1

(
n∑

τ=1
ui,τ ητ

)2

> γ2


≤ P [∃i, τ, |ui,τ ητ | > γ] + P

 d∑
i=1

(
n∑

τ=1
ui,τ ητ1|ui,τ ητ |≤γ

)2

> γ2

 , (3.23)
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where 1{·} is the indicator function. By using a union bound and
Markov’s inequality, the first term could be bounded as

P [∃i, τ, |ui,τ ητ | > γ] ≤
d∑

i=1

n∑
τ=1

P[|ui,τ ητ | > γ] (3.24)

≤
∑d

i=1
∑n

τ=1 E[|ui,τ ητ |p]
γp

(3.25)

≤
∑d

i=1
∑n

τ=1 |ui,τ |pc

γp
≤ dcn

2−p
2

γp
. (3.26)

Based on Markov’s inequality, we bound the second term as

P

 d∑
i=1

(
n∑

τ=1
ui,τ ητ1|ui,τ ητ |≤γ

)2

> γ2


≤

E
[∑d

i=1(
∑n

τ=1 ui,τ ητ1|ui,τ ητ |≤γ)2
]

γ2

=
d∑

i=1

E
[∑n

τ=1(ui,τ ητ )21|ui,τ ητ |≤γ

]
γ2 +

d∑
i=1

2
E
[∑

τ ′>τ (ui,τ ητ )1|ui,τ ητ |≤γ(ui,τ ′ητ ′)1|ui,τ ′ ητ ′ |≤γ

]
γ2

≤
d∑

i=1

E
[∑n

τ=1(ui,τ ητ )21|ui,τ ητ |≤γ

]
γ2 +

d∑
i=1

2
∑

τ ′>τ E[(ui,τ ητ )1|ui,τ ητ |≤γ]E[(ui,τ ′ητ ′)1|ui,τ ′ ητ ′ |≤γ|µi,τ ητ ]
γ2

≤
d∑

i=1

∑n
τ=1 |ui,τ |pc

γp
+
(∑n

τ=1 |ui,τ |pc

γp

)2
 (3.27)

≤ dcn
2−p

2

γp
+ d

n
2−p

2 c

γp

2

. (3.28)

Note that Eq. (3.27) uses the fact as follows.

E[(ui,τ ητ )1|ui,τ ητ |≤γ|Fτ−1] = −E[(ui,τ ητ )1|ui,τ ητ |>γ|Fτ−1]. (3.29)

Finally, setting γ = (9dc)
1
p n

2−p
2p completes the proof.
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Lemma 3.5. Recall θ̂n,j, θ̂n,k∗ and Vn in MENU (i.e., Algorithm 3.2).
If there exists a γ > 0 such that P

[
∥θ̂n,j − θ∗∥Vn ≤ γ

]
≥ 3

4 holds for all
j ∈ [k] with k ≥ 1, then with probability at least 1−e− k

24 , ∥θ̂n,k∗−θ∗∥Vn ≤

3γ.

Proof. The proof is inspired by Hsu and Sabato (2014). We define bj ≜
1∥θ̂n,j−θ∗∥Vn >γ, pj ≜ P(bj = 1) and BVn(θ∗, γ) ≜ {θ : ∥θ − θ∗∥Vn ≤ γ}.
We know that pj < 1/4. By Azuma-Hoeffding’s inequality, we have

P

 k∑
j=1

bj ≥ k

3

 < P

 k∑
j=1

bj − pj ≥ k

12

 ≤ e− k
24 , (3.30)

which means that more than 2/3 of {θ̂n,1, · · · , θ̂n,k} are contained in
BVn(θ∗, γ) (denoting by this event E) with probability at least 1−e− k

24 .
Note that the value k/3 in Eq. (3.30) could also be set as other values
in (k/4, k/2). Conditional on the event E , by letting rj be the median
of {∥θ̂n,j − θ̂n,s∥Vn : s ∈ [k]\j}, we have

• If θ̂n,j ∈ BVn(θ∗, γ), ∥θ̂n,j − θ̂n,s∥Vn ≤ 2γ for all θ̂n,s ∈ BVn(θ∗, γ)

by triangle inequality. Therefore, rj ≤ 2γ.
• If θ̂n,j /∈ BVn(θ∗, 3γ), ∥θ̂n,j − θ̂n,s∥Vn > 2γ for all θ̂n,s ∈ BVn(θ∗, γ)

by triangle inequality. Therefore, rj > 2γ.
Combining the above two cases completes proof.

Based on Lemmas 3.4 and 3.5, by setting k = ⌈24 log (eT/δ)⌉, we are
ready to have ∥θ̂n,k∗ −θ∗∥Vn ≤ 3

(
(9dc)

1
1+ϵ n

2−p
2p + λ

1
2 S
)

with probability
at least 1 − δ/T . The following part of proof is standard (Abbasi-
Yadkori et al., 2011; Dani et al., 2008a). We include it for the sake
of completeness. By letting βn = 3

(
(9dc)

1
1+ϵ n

2−p
2p + λ

1
2 S
)

, we can
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decompose the instantaneous regret as follows:

rn = θ⊤
∗ x∗ − θ⊤

∗ xn

≤ θ̃⊤
n xn − θ⊤

∗ xn

≤
(
∥θ̃n − θ̂n−1,k∗∥Vn−1 + ∥θ̂n−1,k∗ − θ∗∥Vn−1

)
∥xn∥V −1

n−1

≤ 2βn−1∥xn∥V −1
n−1

, (3.31)

where we recall that (xn, θ̃n) is optimistic in MENU. Note that, for
n = 1, the above inequality also holds with V0 = λId. On the other
hand, by considering |x⊤

t θ∗| ≤ L, we always have

rn ≤ 2L. (3.32)

We can get that

rn ≤ 2 min{βn−1∥xn∥V −1
n−1

, L} ≤ 2(βn−1 + L) min{∥xn∥V −1
n−1

, 1}. (3.33)

Following Lemma 11 of Abbasi-Yadkori et al. (2011), we know that
N∑

n=1
min{∥xn∥2

V −1
n−1

, 1} ≤ 2
N∑

n=1
log(1 + ∥xn∥2

V −1
n−1

)

= 2 log
(

det(VN)
det(V0)

)

≤ 2d log
(

1 + ND2

λd

)
, (3.34)

where N is the number of epochs in MENU. Therefore, the total regret
can be upper bounded by

R(MENU, T )

≤ k
N∑

n=1
rn ≤ k

√√√√N
N∑

n=1
r2

n

≤ 2kN
1
2 (βN + L)

√√√√ N∑
n=1

min{∥xn∥2
V −1

n−1
, 1}

≤ 6
(
(12dc)

1
p + λ

1
2 S + L

)
T

1
p

(
24 log

(
eT

δ

)
+ 1

) p−1
p

√√√√2d log
(

1 + TD2

λd

)
.

(3.35)
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The condition of T ≥ 256 + 24 log(e/δ) is required for T ≥ k, which
completes the proof.

3.5.3 Proof of Theorem 3.3

Lemma 3.6. With the sequence of decisions x1, · · · , xt, the truncated
payoffs {Y †

i }d
i=1 and the parameter estimate θ†

t are defined in TOFU
(i.e., Algorithm 3.3). Assume that for all τ ∈ [t] and all xτ ∈ Dτ ⊆ Rd,
E[|yτ |p|Fτ−1] ≤ b and ∥θ∗∥2 ≤ S. With probability at least 1 − δ, we
have

∥θ†
t − θ∗∥Vt ≤ 4

√
db

1
p

(
log

(
2d

δ

)) p−1
p

t
2−p
2p + λ

1
2 S, (3.36)

where λ > 0 is a regularization parameter and Vt = λId +∑t
τ=1 xτ x⊤

τ .

Proof. Similarly to Eq. (3.22), we have

∥θ†
t − θ∗∥Vt ≤

√√√√ d∑
i=1

(
u⊤

i (Y †
i − Xtθ∗)

)2
+ λ

1
2 S. (3.37)

We let y†
τ denote Y †

i,τ for notation simplicity as the following proof holds
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for all i ∈ [d]. Then with probability at least 1 − δ/d, we have

u⊤
i

(
Y †

i − Xtθ∗
)

(3.38)

=
t∑

τ=1
ui,τ

(
y†

τ − E[yτ |Fτ−1]
)

(3.39)

=
t∑

τ=1
ui,τ

(
y†

τ − E
[
y†

τ |Fτ−1
]

− E
[
yτ1|ui,τ yτ |>bt |Fτ−1

])

≤
∣∣∣∣∣

t∑
τ=1

ui,τ (y†
τ − E[y†

τ |Fτ−1])
∣∣∣∣∣+

∣∣∣∣∣
t∑

τ=1
ui,τE[yτ1|ui,τ yτ |>bt|Fτ−1]

∣∣∣∣∣
≤
∣∣∣∣∣2bt log

(
2d

δ

)
+ 1

2bt

t∑
τ=1

E
[
u2

i,τ

(
y†

τ − E
[
y†

τ |Fτ−1
])2

|Fτ−1

]∣∣∣∣∣
+
∣∣∣∣∣

t∑
τ=1

E[ui,τ yτ1|ui,τ yτ |>bt|Fτ−1]
∣∣∣∣∣ (3.40)

≤ 2bt log
(

2d

δ

)
+
∑t

τ=1 |ui,τ |pb

2bp−1
t

+
∑t

τ=1 |ui,τ |pb

bp−1
t

≤ 4b
1
p

(
log

(
2d

δ

)) p−1
p

t
2−p
2p , (3.41)

where Eq. (3.40) is obtained by applying Bernstein’s inequality for
martingales (Seldin et al., 2012) and Eq. (3.41) is obtained by the fact
that ∥ui∥p ≤ t

2−p
2p and by setting bt = (b/ log(2d/δ))

1
p t

2−p
2p . Combining

Eq. (3.37) and Eq. (3.41) completes the proof.

With similar procedures to the proof of Theorem 3.2, we have the
regret of TOFU as follows.

R(TOFU, T )

≤ 2T
1
p

4
√

db
1
p

(
log

(
2dT

δ

)) p−1
p

+ λ
1
2 S + L


√√√√2d log

(
1 + TD2

λd

)
,

(3.42)

which completes the proof.
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Table 3.1: Statistics of synthetic datasets in experiments. For Student’s

t-distribution, ν denotes the degree of freedom, lp denotes the location, sp

denotes the scale. For Pareto distribution, α denotes the shape and sm

denotes the scale. NA denotes not available.

dataset Dt {#arms,

#dimensions}

distribution

{parameters}

{p, b, c} mean of the

optimal arm

S1 {20,10} Student’s

t-distribution {ν =

3, lp = 0, sp = 1}

{2.00, NA,

3.00}

4.00

S2 {100,20} Student’s

t-distribution {ν =

3, lp = 0, sp = 1}

{2.00, NA,

3.00}

7.40

S3 {20,10} Pareto distribution

{α = 2, sm =
x⊤

t θ∗
2 }

{1.50, 7.72,

NA}

3.10

S4 {100,20} Pareto distribution

{α = 2, sm =
x⊤

t θ∗
2 }

{1.50, 54.37,

NA}

11.39

3.6 Experiments

In this section, we conduct a series of experiments in light of syn-
thetic datasets to evaluate the performance of our proposed bandit
algorithms: MENU and TOFU. We compare our algorithms with MoM
and CRT proposed by Medina and Yang (2016). We run multiple in-
dependent repetitions for each dataset in a personal computer under
Windows 7 with Intel CPU@3.70GHz and 16GB memory.
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3.6.1 Datasets and Setting

To show effectiveness of bandit algorithms, we show cumulative pay-
offs with respect to number of rounds for playing bandits over a fixed
finite-arm decision set. We run ten independent experiments for calcu-
lating the average cumulative payoffs with a standard deviation. For
verifications, we adopt four synthetic datasets (named as S1–S4) in
the experiments, of which statistics are shown in Table 3.1. In the
experiments, we need to know p, b or p, c, which correspond to the as-
sumptions of Theorem 3.2 or Theorem 3.3. According to the required
information, we can apply MENU or TOFU into practical applications.
We adopt Student’s t and Pareto distributions because they are com-
mon in practice. For Student’s t-distributions, we can estimate c, and
for Pareto distributions, we can estimate b. In addition, we can choose
different parameters (e.g., larger values) in the distributions, and re-
calculate the parameters of b and c.

For datasets of S1 and S2, they contain different numbers of arms
and different dimensions for the contextual information. Then, we
adopt standard Student’s t-distribution to generate heavy-tailed noises.
For the chosen arm xt ∈ Dt at time t, the expected payoff is x⊤

t θ∗. For
the realized payoffs, we add a noise generated from a standard Student’s
t-distribution to the expected payoffs. Without loss of generality, based
on a uniform distribution over [0, 1], we generate each dimension of
contextual information for an arm, as well as the underlying parameter.
The standard Student’s t-distribution implies that the bound for the
second central moment of S1 and S2 is 3.

For S3 and S4, we adopt Pareto distribution, where the shape pa-
rameter is set as α = 2. We know x⊤

t θ∗ = αsm/(α − 1) implying
sm = x⊤

t θ∗/2. Then, we set p = 1.5 leading to the bound of raw mo-
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Figure 3.2: Comparison of cumulative payoffs for synthetic datasets S1-S4

with four algorithms.

ment as E [|yt|1.5] = αs1.5
m /(α − 1.5) = 4s1.5

m . We take the maximum
of 4s1.5

m among all arms as the bound of the 1.5-th raw moment. We
generate arms and the parameter for S3 and S4 similar to S1 and S2.

In Figure 3.2, we show the average of cumulative payoffs with time
evolution over ten independent repetitions for each dataset, and show
error bars of a standard variance for comparing the robustness of al-
gorithms. For S1 and S2, we independently run MENU and MoM and
set T = 2 × 104. For S3 and S4, we independently run TOFU and CRT
and set T = 1 × 104. For all algorithms, we set λ = 1.0, and δ = 0.1.
We also test other parameters in the experiments.
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3.6.2 Results and Discussions

For comparisons, we show experimental results in Figure 3.2. From
the figure, it is easy to find that our proposed two algorithms outper-
form the previous algorithms MoM and CRT. The observations are
consistent with the theoretical results in Theorems 3.2 and 3.3. We
further evaluate our algorithms with other synthetic datasets, as well
as different λ and δ, and also observe similar superiority of MENU and
TOFU. Finally, for comparison on regret, complexity and storage of
four algorithms, we list all the comparison results as shown in Table 3.2.

Table 3.2: Comparison on regret, complexity and storage of four algorithms.

algorithm MoM MENU CRT TOFU

regret Õ(T
2p−1
3p−2 ) Õ(T

1
p ) Õ(T

1
2 + 1

2p ) Õ(T
1
p )

complexity O(T ) O(T log T ) O(T ) O(T 2)

storage O(1) O(log T ) O(1) O(T )

3.7 Conclusion

In this chapter, we have studied the problem of LinBET. In particu-
lar, stochastic payoffs in this problem are characterized by finite p-th
moments with p ∈ (1, 2]. Different from prior work, we broke the
traditional assumption of sub-Gaussian noises in payoffs of bandits,
and derived theoretical guarantees in light of the prior information of
bounds on finite moments. We rigorously analyzed the lower bound
of LinBET, which filled the space in this domain, and developed two
novel bandit algorithms with regret upper bounds matching the lower
bound up to a polylogarithmic factor. Two novel algorithms were pro-
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posed by taking advantage of median of means and truncation. In
terms of polynomial dependence on T , we provided optimal algorithms
for the problem of LinBET, and thus solved an open problem. This
open problem has been pointed out by Medina and Yang (2016). Fi-
nally, our proposed algorithms have been verified in light of synthetic
datasets, and beaten the state-of-the-art results.



Chapter 4

Conclusions and Future

Directions

In this chapter, we conclude this thesis. First, we present the main con-
tributions of this thesis. Then we introduce three potential directions
for future work.

4.1 Main Contributions

We investigated linear stochastic bandits with heavy-tailed payoffs in
this thesis. We developed two algorithms based on the techniques of
median of means and truncation. Theoretically, our two algorithms
achieved the optimal worst-case regret uppers matching the lower bound
up to a logarithmic factor with respect to the number of rounds T . Em-
pirically, we conducted experiments on synthetic datasets to demon-
strate the effectiveness of our two algorithms.

4.2 Future Directions

For future work, we list three potential directions.

53
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1. For LinBET, there are still some open problems unsolved yet.
First, in this thesis, we only derived the worst-case regret bounds.
A trivial extension of current theoretical analysis cannot lead to
polylogarithmic problem-dependent regret upper bounds. How to
derive the problem-dependent results is still unclear. Second, our
results are almost optimal for the number of rounds T but not for
dimension d. The impact of d in LinBET is unclear.

2. Another problem worth investigation is adaptive learning on pa-
rameters. In LinBET, we assume that we have prior knowledge
of the moment bound parameters b and c. However, in real cases,
without any prior knowledge, we have to estimate these parame-
ters. This problem not only exists in LinBET, but also in a lot
of other bandit problems. Therefore, how to learn these param-
eters adaptively in the learning process is very meaningful and
challenging.

3. Finally, it has been pointed out that all index policies and Thomp-
son sampling cannot achieve the optimal problem-dependent re-
gret in linear bandits by (Lattimore and Szepesvari, 2017). In
this work, they provided an asymptotically optimal algorithm
with forced exploration, which forces to pull the arms in each
dimension for

√
log(T ) rounds. However, whether such forced ex-

ploration can be removed or not is unclear and this algorithm
is extremely inefficient and even infeasible sometimes. Designing
an efficient optimal algorithm for linear bandits is important and
worth efforts. Not only linear bandits, but also other structured
bandits face the same efficiency problem.

2 End of chapter.
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List of Publications

[1] Han Shao, Xiaotian Yu, Irwin King and Michael R. Lyu. Almost
optimal algorithms for linear stochastic bandits with heavy-tailed pay-
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2 End of chapter.
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