
1

Design, Implementation, and Evaluation
of Scalable Content-Based Image

Retrieval Techniques

Oral Examination

Presented by Wyman Wong

Supervised by Prof. Michael R. Lyu

June 15, 2007

2

Introduction

• Content-based Image Retrieval (CBIR)
– The process of searching for digital images in large

databases based on image contents
– It consists of four modules in general:

• data acquisition and processing
• feature representation
• data indexing
• query and feedback processing

3

Introduction – Problem 1

• CBIR is extensively studied in both academia and industry

• Difficulties:
– Large database, high-dimensional Image contents

• Previously Proposed Systems:
– IBM’s QBIC, Virage, MIT’s Photobook, etc

– Some work in small database only à Exhaustive Linear Search

– Some employ PCA to reduce the dimension of feature à Traditional
multidimensional indexing techniques

– They suffer from performance problem in large database of high-
dimensional features

4

Introduction – Problem 2

• To build a web-scale CBIR system
– Fill the database using the WWW as a logical repository
– Obtain web images by web image crawlers

• During web image crawling
– Easy to encounter some web pages that contains images that are

nearly the same
– Near-duplicate images are likely to be

returned to the user together
– Users will not be interested in seeing duplicated images unless they

are interested in that image
– Moreover, it spams the image database

• Thus, web-scale CBIR systems suffer from Duplication Problem

5

Introduction – Problem 3

• Traditional CBIR system employs global feature
• There are increasing interests in applying local invariant feature

in CBIR systems
• SIFT feature descriptor is one of the state-of-the-art local

invariant feature descriptor
• It performs the best in matching tasks and many research work

employs this technique
• However, SIFT descriptor cannot be directly applied in CBIR

because it is variant to change in background and object color
• This is the invariance problem of SIFT

6

Contribution

• Large-Scale CBIRS
– A novel scalable CBIR scheme that employs locality-sensitive hashing

(LSH)
– Comprehensive empirical performance evaluation over one million

images

• IND Detection System
– A novel IND detection scheme that adopts SIFT and LSH
– A new match verification process and a new empirical distance

metric

• Local Descriptor for CBIR
– A new invariant local descriptor that extends SIFT descriptor to

achieve background and object color invariance

7

Web Crawling

IND Detection

Images
Detected
Duplicate
images

IND Detection

Web pages

Data Acquisition

Shape, Color, and
Texture Feature

Description

Image Description

Feature Indexing & Image Searching

Partition
Distribution

Request Query
Forwarding

Search Result
Merging

Master

Data Indexing
using LSH

Slave(s)

Send Request
Query

Load and Send
Images to user

Provide Web
Interface to user

Frontend(s)

Web Browser

Query &
Relevance
Feedback

Shape-
SIFT

Duplicate-free
images

Overview of Contribution
1

3

2

8

A Distributed Scheme for Large-Scale CBIR

• Background & Related Work
– Content-based Image Retrieval (CBIR)

• Similarity search using image content
• Query by providing an example image
• Image contents can be automatically derived from the example
• Similarity between images is defined by a similarity measure
• Fast indexing technique is employed to speed up the search
• Relevance feedback is used to progressively refine the search

– Narrow down the semantic gap between high-level concept and low-
level feature

– Mark each search result as relevant or irrelevant to the query
– Repeat the search with this additional information

• MIT’s Photobook: Suitable for small database (100 – 10,000) only
• IBM’s QBIC, Lew’s CBIRS, Egas’s CBIRS: PCA, k-d tree / R*-tree

9

A Distributed Scheme for Large-Scale CBIR

• Motivation
– Traditional indexing techniques employed by CBIR can not scale up to

a large database of high-dimensional features
– Curse of dimensionality
– Recently, LSH was proposed for solving near neighbor search problem

in high dimensional spaces
• M. Datar et al. reported that LSH searches for near neighbors 30 times

faster than k-d tree does when dimensionality > 200
• No prior dimension reduction is required
• Accurate and fast
• Large memory consumption

10

A Distributed Scheme for Large-Scale CBIR

• For CBIR, image contents are often represented in high
dimensional spaces

• In our proposing CBIRS, image contents are represented
by 238-element global feature vector

• Thus, LSH is very suitable for our system
• However, LSH has memory consuming problem
• We propose a parallel and distributed scheme to

address the problem

11

Locality-Sensitive Hashing (LSH)

• An emerging new indexing algorithm
– LSH cannot always find all the near neighbors
– Instead, it ensures a near neighbor being found with a fixed

probability in sublinear time
• Principles

– Hash function is carefully designed such that

the probability that two points share the same hash value
decreases when the distance between them increases

– By looking into the hash buckets of the query point, we obtain
many near neigbhors of the query points

– A large fraction of data points can be ignored

12

Locality-Sensitive Hashing (LSH)

• We employ the E2LSH (Exact Euclidean LSH)
• Hash function ha,b(v) is defined by:

– a: a d dimensional vector with entries chosen independently from a
Gaussian distribution

– b: a real number chosen uniformly from the range [0, w]
• To locate a hash bucket of a query point in a hash table, k hash

functions are used simultaneously
• larger k reduces the chance of hitting data points that are not R-near

neighbors
• There are L sets of hash tables

• larger L increases the probability of finding all R-near neighbors
• The probability of finding near neighbors can be controlled by the

parameters L and k

v1, v2
a·v1,
a·v2

13

Main problem of E2LSH

• E2LSH is efficient in answering query
– However, like any other memory-based LSH solutions, it has

large memory consumption
– Disk-based LSH à Slow in answering query
– Memory-based LSH à Fast but …

• E2LSH is a memory-based implementation
– All the data points and the data structures are stored in the

main memory
– Maximum database size limited by the amount of free main

memory available

14

Our Scalable Implementation

• We propose two multi-partition indexing approaches
– Both divide the whole database into multiple partitions
– Each partition corresponds to a distinct portion of the whole

database and is associated with a partition structure
– Each of them is small enough to be stored into the main

memory
– Then we can process queries on each of the partitions in

memory
– Two approaches

• Disk-based multi-partition indexing
• Parallel multi-partition indexing

15

Disk-Based Multi-Partition Indexing

• The algorithm
– Employ a machine to

1) load one partition structure at a time from disk into the main
memory, and

2) process query on it

– These two steps are done sequentially and alternatively until
the queries are processed on all partitions

– The first step is very time consuming!

16

Problem with the Disk-Based Approach

• Disk-access overhead for loading the hash tables into
the main memory

• All partitions of a 0.5 million database à 750 sec
• Not suitable for real-time application

• Thus, we propose a parallel and distributed solution to
overcome this overhead issue and speedup the overall
solution

17

Parallel Multi-Partition Indexing

• The algorithm
– Distribute the data indexing tasks over a cluster of Slaves
– Each Slave answers queries over one partition of the database
– Slaves store the assigned partition structures in main memory

permanently
– No re-loading of the partition structures
– No disk-access overhead
– Slaves are managed by Master
– Master listens to the query requests from Frontend and then

forward the requests to Slaves
– Query answers from Slaves are merged in Master and returned

to Frontend

18

System Architecture

System Diagram

Partition
Distribution

Request Query
Forwarding

Search Result
Merging

Master

Data Indexing
using LSH

Slave(s)

Send Request
Query

Load and Send
Images to user

Provide Web
Interface to user

Frontend(s)

Web Browser

Query &
Relevance
Feedback

TCP Client & ASP.NET
web server

Single-thread
concurrent TCP Server

Single-thread
concurrent TCP Client:

minimize process
swapping

19

System Speed

• Network transmission delays exist in every communication
• To minimize the adverse effect of the network delay, we maximize

the efficiency of communication
– Image is represented by a 4-byte integer image ID number in query

and reply messages
– Query message and reply message are represented by a Structure data

structure in C++
• Large Integer and floating-point number inside the structure are

represented in Binary format, which is both accurate and space-saving
• No parsing of value is required

• Query message
– < 1500 bytes, can store a 238-dimensional query feature and 120 +ve /

-ve relevance feedback image ID numbers
• Reply message

– < 1500 bytes, can store up to top 150 ranking image ID numbers
• Total system’s query processing time

20

Disk-Loading for Relevance Feedback

• We allow users to do relevance feedback (RF)
• Thus, the query message must contain relevance feedback info.
• Slaves need to obtain the feature vectors of the RF images
• Solution

– Fetch the feature vectors from the disks upon request
– # feature vectors needed in each query is at most 120 which is not many

• Advantages
– No need to consume the precious memory space
– No need to load all data points into the main memory (not scalable!)
– No need to transmit feature vectors between machines

• The solution can be accelerated by two tricks
– Save the database of feature vectors in Binary format
– Sort the relevance feedback image ID and query according to sorted order

• Hard disk head can read all the vectors by moving in a single direction
(shorten disk seek time!)

21

Advantages of the Parallel Approach

• No disk-access overhead
– Slaves store partitions permanently in memory
– No disk-access overhead

• Reduced retrieval time by parallelization
– System’s retrieval time is reduced by a multiple equals to the

number of employed Slaves
– The tradeoff is hardware resource

• Guaranteed retrieval time
– System’s retrieval time depends mostly on the sizes of

partitions in the Slaves
– By maintaining the size of partition for each Slave below the

maximum size, we guarantee the retrieval time to be below a
small fixed value

22

Feature Representation

• We represent an image with three types of visual
feature: color, shape, and texture

• For color, we use Grid Color Moment
• For shape, we employ an edge direction histogram
• For texture, we adopt Gabor feature
• In total, a 238-dimensional feature vector is employed

to represent each image in our image database

23

Empirical Evaluation

• Experimental Testbed
– Testbed containing 1,000,000 images crawled from

Web
– 5,000 images from COREL image data set are

engaged as the query set
• Contains 50 categories
• Each category consists of exactly 100 images that are

randomly selected
• Every category represents a different semantic topic, such

as butterfly, car, cat, dog, etc

24

Performance Metrics

• Two standard performance metrics
– Precision and recall

– Relevant image if it is one of the 100 COREL images in the
database which share the same category with the query images

– Evaluate efficiency by average CPU time elapsed on a given
query

25

Experimental Setup

• Form a query set of 1000 image examples by randomly
select 20 images from each of the 50 COREL image
categories

• A database of size N contains the followings:
– 5,000 COREL images
– N-5000 other images selected from our testbed

• Extract the image features using the techniques
discussed

26

Experimental Setup

• Perform a series of experiments using our CBIR system with LSH indexing
on all databases
– LSH’s parameters: L = 550 and k = 34
– Retrieve top 20, 50, and 100 ranking images for each query image
– Calculate recall and precision

• Simulate two rounds of relevance feedback
– Re-querying the database with relevant examples with respect to the given

query
• Environments

– Slaves (C++)
• 3.2GHz Intel Pentium 4 PC with 2GB memory running Linux kernel 2.6

– Master (C++)
• Sun Blade 2500 (2 x 1.6GHz US-IIIi) machine with 2GB memory running Solaris 8

– Frontend (C#)
• Nix dual Intel Xeon 2.2GHz with 1 GB memory running Linux kernel 2.6 (Evaluation)
• ASP.NET server on a 3.2GHz PC with 1GB memory running Windows OS (Deployment)

• The same experiments are repeated with Exhaustive Linear Search (ES)

27

Experimental Results

• Parallel-based multi-partition indexing approach (PLSH)
– System performance is related to the number of Slaves we used
– We present the performance of the parallel system that uses

the minimum possible number of Slaves
• Minimize the demand on the precious hardware resource
• Utilize the usage of the currently available hardware resource

– Maximum partition size of Slave is 0.25 million data points

28

Average Precision of TOP20 & TOP 50

• The results of LSH is very close to the ES results
• Their maximal difference is no more than 5% at any database size

29

Average Recall of TOP100

• Average recall and average precision of our CBIR system decrease
with the database size, yet the decreasing rate diminishes when
the database size increases

• Relevance feedback
implemented in our system
significantly improves the
recall and precision

30

Average Query Time

• The system query processing time is nearly constant for
any size of database

31

Query Time of LSH over ES on different
databases

• Taking the disk access overhead into account, DLSH system is not faster
than the ES system

• PLSH is a a lot faster than the ES system
• The last column purely illustrates the advantage of using LSH over ES

32

Application

• We have built a web-based
ASP.NET Frontend to
demonstrate the real-time
performance of the PLSH
system

• Here are some screenshots of
sunset search using our web-
based Frontend application,
PD-CBIR, over 1 million image
database

33

Summary

• Proposed a scalable CBIR scheme based on a fast high
dimensional indexing technique, LSH

• Conducted extensive empirical evaluations on a large
testbed of a half million images

• Suggested a parallel and distributed solution over the
shortcoming of LSH

34

Future Work

• Improve the system by minimizing the usage of Slaves
• Currently, for each search query, the system gets all the Slaves

involved, no matter whether a similar image can be found in each
Slave

• If we know there is no data point within a threshold radius from
the query point in certain Slave, we need not to perform similarity
search in that Slave

• Eventually, the system can process more search queries
simultaneously

• We need a new dispatcher
– We suggest to use PCA to reduce the dimension of the query point,
– And apply k-d tree to determine at which Slave similar data points of

query point would be located

35

Image Near-Duplicate Detection

36

Introduction

• Removing duplicated images prior to the return of results is critical
in improving the quality of CBIR search

• We consider using invariant
local features

• Invariant local features has been
applied in many CV applications
– Panorama Stitching
– Image Retrieval
– Object Recognition

Query Image

Near-duplicate Images

IND Detection

37

Image Near-Duplicate (IND) Detection

• Image near-duplicate (IND) detection
– To remove meaningless duplicates in the returned result of

content-based image retrieval system (CBIRS)
– To detect illegal copies of copyright images on the Web

• Integrate a number of state-of-the-art techniques
– Detector: DOG pyramid from SIFT
– Descriptor: SIFT descriptor
– Matching: Exact Euclidean Locality Sensitive Hashing (E2LSH)

• Propose two new steps to improve recall & precision
– A new matching strategy: K-NNRatio matching strategy
– A new verification process: Orientation verification process

38

Two Main Phases

• Database Construction
– Image Representation
– Index Construction
– Keypoint and Image Lookup Tables Creation

• Database Query
– Matching
– Verification Processes
– Image Voting

39

Database Construction – Image Representation

Database Image

1. Extract SIFT features

• SIFT features are invariant to common
image manipulations which include
changes in:

• Illumination
• Contrast
• Coloring
• Saturation
• Resizing
• Cropping
• Framing
• Affine warping
• Jpeg-compression

Huge amount of SIFT
features in the

database
Slow!

Image Representations

Extract

40

Database Construction – Index Construction

1. Extract SIFT features

Image Representations

Extract

Insert

2. Build LSH Index

• Build LSH index for fast
features retrieval

• E2LSH allows us to find
the k-nearest neighbors
(k-NN) of a query point at
certain probability

Database Image

41

Database Construction – Index Construction

• E2LSH’s scalability problem
– All data points and data structures are stored in the main

memory
– Limitation: Database’s size < Amt. of free M.M.

• Solutions:
– Offline Query Applications:

• Adopt the disk-based solution that we presented eariler

– Online Query Applications:
• Adopt the parallel and distributed solution that we presented

earlier

42

Database Construction - Keypoint and
Image Lookup Tables Creation

• To reduce the main memory usage, we do not store the details of
the keypoints and their corresponding images in the hash table

• We store them in separate files on disk
• To facilitate fast disk memory access

– The details of a keypoint are stored in a line in keypoint lookup table

– The details of an image are stored in a line in image lookup table

Keypoint lookup table schema

Image lookup table schema

43

Database Query

1. Extract SIFT features

Extract

Query

2. Query DatabaseQuery Image

Match

• Matching Strategies:
• Threshold Based

• Set threshold (fixed)
on distance

• k-NN
• Set threshold (fixed)

on distance
• Take top k (fixed)

nearest neighbors
• k-NNRatio

• Assign weights to k
nearest neighbors

• Depend on distance
ratio and place

More Flexible!

…

Candidate
matches

Answer

44

Database Query – 1. Matching

• k-NNRatio
– Weights are assigned based on two principles:

• If a keypoint is nearer to the query point, it is probably the
correct match and thus its weight should be higher

• If a keypoint has large distance ratio to its next nearest neighbor,
it is more likely to be the correct match and thus its weight should
be higher

– Weight of a keypoint is formulated as follow:

• k(KA): the place of the point KA in the top k ranking images
• dist(KA, Q): the distance between point KA and Query point Q
• Parameter b and c control the importance of the two terms
• b = c = 0 is a special case of k-NNRatio in which k-NNRatio

matching strategy is reduced to k-NN matching strategy

45

Database Query – 1. Matching

• Some advantages of k-NNRatio over k-NN
– Nearest neighbor does not always gain high weight

E.g. Weight will not be high if it is far from the query point
– Keypoint with larger place (i.e. k(KA)) can still gain high weight

if it is far from the remaining neighbors
– The k nearest neighbors do not get the same weight. If there

are only two possible matches, ideally only two keypoints will
get high weights. This relieves the adverse effect of the fixed
value of k and the threshold.

46

Database Query – 2. Verification Processes

• Each query keypoint matches a
number of keypoints in the database

• Each matched keypoint in the
database corresponds to one image

• Group the matched keypoints by
their corresponding images (ID)

• False matches can be discovered by
checking the inter-relationship
between the keypoints in the same
group
– However, not all false matches can

be removed
• Others suggested affine geometric

verification using RANSAC
• We further propose orientation

verification

Image 1

…

Image 2

…

Image 3

…

0.75

0.56

0.80

0.30

0.20

47

Database Query – Orientation Verification

• For each group
– Observation:

• If an image is rotated, all keypoints rotate accordingly
• The changes in orientation of all keypoints are more or less the

same
– For each candidate match, find the difference of the

canonical orientation between the query keypoint and the
matched database keypoint

– Map the difference to one of the 36 bins that cover 360 degrees
– Slide a moving window of width

3 bins over the 36 bins and
find a window that contains
the maximum number of supports

– Remove candidate matches in
all the uncovered bins

Simplified Version: 8 bins

Moving
window

48

Database Query – Affine Geometric Verification

• The affine transformation between two images can be modeled by the
following equation:

• We can compute A with 3 matching pairs (x0,b0), (x1,b1) & (x2,b2)

x: the homogenous coordinates of a
keypoint in the query image
b: the homogenous coordinates of the
matched keypoint from the database
A: the transformation matrix

The RANSAC Step
1. Randomly pick 3 matching pairs
2. Compute A
3. Count the number of matches with L2

distance between Ax and b smaller than
a threshold (=> agree the transformation)

4. Loop to find the transformation with the
greatest # support (= # matches)

49

Database Query – Image Voting

• Rank the groups by their total # supports
• Remove groups with support smaller than a

threshold
• Return the top 10 groups (if any) to users

Image 1

…

Image 2

…

Image 3

…
0.75

0.56

0.80

0.30 0.20

2.11 0.30 0.20

…

ß# Support

50

Performance Evaluation

• We evaluate the performance of our system using a feature database
containing 1 million of keypoints from 1200 images

• Images in the database are the transformed versions of the query images
• All of the transformations we chosen are difficult for IND detection
• Example images:

51

Performance Evaluation – Orientation Verification

• Evaluation Metrics
– Correct match is a match between a query image and any one of its

transformed versions in the database

Verification Schemes
a) Orientation Verification
b) Affine Geometric Verification
c) Orientation Verification +

Affine Geometric Verification

+1% recall
+7% precision

52

Performance Evaluation – K-NNRatio

• Determine parameters a, b, and c by trying different values:

• We find that setting (a = 4, b = 0.2, and c = 4) gives the best result
• Under this setting:

correct # false recall Precision

K-NN 1011 301 84% 77%

K-NNRatio 1040 177 87% 85%+3% recall
+8% precision

53

Summary

• We have introduced the followings:
– The IND detection system
– The orientation verification process
– The k-NNRatio matching strategy

54

Conclusions

• We presented
– A scalable content-based image retrieval scheme

• We suggested a parallel and distributed solution to
overcome the memory consumption problem of LSH

• Extensive empirical evaluation is performed on large
dataset

– An IND detection scheme to remove the near-
duplicate images during image crawling process

• The scheme integrated powerful feature detector,
descriptor, new matching strategy, and new verification
process

55

Q & A

56

Shape-SIFT Feature Descriptor

Appendix:

57

Background and Object Color Invariance

• We have tested that SIFT performs better than GLOH and PCA-SIFT in term
of recall rate

• However, SIFT is not robust to changing background and object color
• SIFT is a histogram of gradient orientation of pixels within a 16 x 16 local

window
• Gradient orientations may flip in direction when the colors of feature

change
– E.g. Entries in 0o bin moved to 180o bin (great diff. during matching)

A Coloring B Coloring Common Shape

58

Background and Object Color Invariance

• Orientation flipping happens when background and object change in color
/ luminance

• More precisely, orientation flipping occurs along the contour where color
on either/both sides change

• Contour of object is an important clue for recognizing object. Thus,
correctly describing features near contour is a key to success in object
recognition

Background
color change

Object color
change

59

Our Feature Descriptor

• Orientation Assignment
– For each sample in the Gaussian smoothed image L, L(x,y), the

orientation θ(x,y) is computed as follow:

),1(),1(
)1,()1,(tan),(1

yxLyxL
yxLyxLyx
--+
--+

= -q
Horizontal pixel intensity difference

Vertical pixel intensity difference

cf. SIFT Orientation Assignment

ú
û

ù
ê
ë

é
--+
--+

= -

),1(),1(
)1,()1,(tan),(1

yxLyxL
yxLyxLyxq

Don’t care which side has higher intensity

60

Canonical Orientation Determination

• Keypoint Descriptor
– In order to achieve rotation invariance, the coordinates of the

descriptor is rotated according to the dominant orientation

– However, we have limited the orientation assignment to [0o,180o] and
thus the dominant orientation also lies within [0o,180o]

– This causes ambiguity in rotating the coordinates of the descriptor

or ?

Dominant orientation = θ θ 180o+ θ

61

Canonical Orientation Determination

• We proposed two approaches to tackle this problem:
– Duplication

• Generate two descriptors
• One with canonical orientation θ and the other with 180o+ θ

– By the distribution of peak orientation
• Determine the dominant orientation using a feature’s orientation

dependent statistic value
• Insignificant adverse effect to matching feature
• Over 75% of feature’s orientation can be determined

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

62

SSIFT-64 and SIFT-128

• SSIFT-64 descriptor is computed by concatenating 8 4-bin
orientation histograms over the feature region together

• Problem
– SSIFT-64 is more invariant to background and object color change
– it is inevitably less distinctive

• Solution
– Append 8 more 4-bin orientation histograms to SSIFT-64 to produce

SSIFT-128
– Each of these histograms contains north, east, south and west

orientation bins, covering 360 degree range of orientation
– We adopted a matching mechanism such that the performance of our

descriptor on changing background and object color is retained while
increasing the recall and precision on other cases

63

Matching Mechanism SSIFT-128

• Matching mechanism for SSIFT-128 descriptor
– Find the best match match64 using the first 64 elements of SSIFT-128

(SSIFT-64) and calculate the distance ratio dr64
– Then refine the match using also last 64 elements and calculate the

distance ratio dr128
– If dr64 > dr128

• Best match = match64

– Else
• Best match = match128

– Experiments show that the overall performance of SSIFT-128 is better
than SSIFT-64

64

Performance Evaluation

65

Performance Evaluation

66

Performance Evaluation

Viewpoint change Rotation & Scale change

Illumination Change

