
An Adaptive Communication
Mechanism for Heterogeneous
Distributed Environments Using
XML and Servlets

Presenter: Vincent Cheung
Supervisors: Prof. M R Lyu & Prof. K W Ng
19 June 2001

Motivation
® Integration of distributed systems to serve the

increasingly demanding users.
® Many obstacles hinder the expansion of distributed

systems.
® Firstly, firewalls block many communication protocols.
® Secondly, objects in heterogeneous distributed

environments cannot communicate.
® The existing solutions for these two problems have

deficiencies.
® Our objective is to develop a simple and generic

method to tackle these two problems but get rid of
those deficiencies in existing solutions.

Presentation Outline
® Overview of XML and Servlets
® Firewall issue in distributed systems

® Causes of the problem and existing solutions
® Our mechanism using XML and Servlets
® How our mechanism supports callbacks

® Our XML schema for communications
® Communication in heterogeneous environments

® Causes of the problem and existing solutions
® Our mechanism using XML and Servlets

® A query system using our mechanism
® Evaluation of our mechanism
® Conclusion

Overview of Related
Technologies

Overview of XML
® XML - eXtensible Markup Language.
® Proposed by WWW Consortium, in 1998.
® To define a complete, platform-independent

and system-independent environment for the
authoring and delivery of information
resources across the web.

® Element is the basic component, i.e., a piece
of text bounded by matching tags.

® Attributes are something associated with
elements.

XML Example
® use elements & attributes to describe information
<database>

<news>
<date year = “2001” month = “2” day = “12”/>
<title> Mayor hails rule of law</title>
<subtitle>Visiting official says HK's traditions can be model for

island but rejects 'one country, two systems<subtitle>
<reporter>Kong Lai-fan</reporter>
<content>
The tradition of rule of law in Hong Kong could act as a model for Taiwan,
visiting Taipei Mayor Ma Ying-jeou said last night. But Mr Ma, who will
become the most prominent Taiwanese figure to meet Chief Executive Tung
Chee-hwa when they hold talks tomorrow, said the concept of "one country,
two systems" was not suitable for Taiwan no matter how successful it was
in Hong Kong. </content>

</news>
<news>

. . .
</news>

</database>

XML – Flexible Structures
® XML is semistructure, which provide great

flexibility to represent complex structures.
® Good tool to represent complicated data

structures.
® For example, a nested tree to arbitrary depth

<node>
<node>

<node> 1 </node>
<node> 2 </node>

<node>
<node> 3 </node>

</node>

3

1 2

Overview on Java Servlets
® Servlets are the bodies of code that run

inside request/response-oriented servers,
and extend their functionality.

® HTTP Servlets are typically capable of
serving multiple clients concurrently and
handling HTTP client requests.

® Due to the growing popularity of Java, the
trend today is to use servlets rather than CGI
programs for new development.

Comparing CGI & Servlets
® Java is platform independent, while CGI can

be platform independent scripts (Perl scripts)
or platform dependent (compiled C programs)

® Servlet module would be loaded once when
the first time it is invoked; stays loaded until
the HTTP server task is shut down or
restarted. CGI script is loaded every time it is
invoked and unloaded when it has finished.

® Many distributed environments, like CORBA,
DCOM and Java RMI support Java. Hence,
Servlet components can be naturally
combined to those platforms.

Using XML and Servlets to
Support CORBA Calls

Firewalls – Obstacles in
Distributed Systems
® Firewalls use packet filtering in network layer

to enforce certain security rules.
® Firewalls can include elements that operate in

application level, e.g. HTTP, FTP, Telnet.
® But for those less common protocols, firewalls

may not support, such as IIOP in CORBA.
® In application level, message body of IIOP is

encoded in Common Data Representation, so
firewalls cannot decode it.

Existing Solutions to Firewall
Problem
® Some firewalls are dedicated for CORBA IIOP,

such as IONA Orbix Wonderwall and
Visibroker Gatekeeper.

® They are vendor-dependent and proprietary,
and cannot handle callbacks.

® Another approach is using HTTP for tunneling
across firewalls. Using XML messages to
describe the communication protocols and
transmit them with HTTP.

® SOAP, XML-PRC and XIOP are using this
approach.

SOAP & XML-RPC

® Simple Object Access Protocol (SOAP) is accepted
by W3C as a standard in 1999.

® Using XML based messages as communication
protocols, hence having flexible semistructure to
represent data.

® Not designed for supporting existing protocols.
® Not designed for bi-directional calls.
® XML-RPC is a smaller subset of SOAP.

Client Object
SOAP

Messages

Firewall

SOAP XML
parser

Server Object

SOAP XML
parser

XIOP

® XIOP is first introduced at April 2000.
® A substitute of CORBA IIOP in XML format. It is not an

international standard.
® Fully compatible with CORBA systems.
® Requires pluggable protocol framework for conversion

of IIOP to XML.
® Requires modifications to existing CORBA

components.
® Not designed for bi-directional calls.
® XIOP schema contains low-level contents, which

increase the complexity of the XML messages.

Our Proposed Mechanism

® Directly IIOP communication is not allowed.
® We put some add-on components in our

systems for communications

FIREWALL Server Side CORBA
Enclave

Client Side CORBA
Enclave

Client
Object

Server
ObjectIIOP

Our Proposed Mechanism

® A Shadow Server in the client side.
® A Servlet Component in the server side.

FIREWALL Server Side CORBA
Enclave

Client Side CORBA
Enclave

Shadow
Server

Client
Object

Server
Object

Servlet
Component

In Client Side
REQUEST.
1. Client object sends a request to

Shadow Server Client Side CORBA
Enclave

Shadow
ServerClient

Object

2. Shadow Server converts the
IIOP request to XML format

RESPONSE
1. Shadow Server receives XML-

based response message

3. Shadow Server sends the XML
message to server side by
HTTP

2. Shadow Server parses the XML
message and extracts the contents

3. Shadow Server sends an IIOP
response calls to client object

IIOP

XML+HTTP

XML+

HTTP

IIOP

In Server Side
REQUEST.
1. Client object sends a request to

Shadow Server
2. Shadow Server converts the

IIOP request to XML format

RESPONSE
1. Shadow Server receives XML-

based response message

3. Shadow Server sends the XML
message to server side by
HTTP

2. Shadow Server parses the XML
message and extracts the contents

3. Shadow Server sends an IIOP
response calls to client object

Server Side
CORBA Enclave

Server
Object

Servlet
Component

IIOP

IIOP

XML + HTTP

XML + HTTP

Overall Procedures

® Client objects regards shadow object as the actual
target server object.

® Shadow Server and Servlet Component are ordinary
local CORBA objects.

FIREWALL Server Side CORBA
Enclave

Client Side CORBA
Enclave

Shadow
Server

Client
Object

Server
Object

Servlet
Component

Contents of XML messages
® A sample method call:

<request>
<Account type="interface">

<deposit type="operation">
<parameter ref="in" order="1">

<float name="amount">23000.45</float>
</parameter>

</deposit>
</Account>

</request>

® HTTP call:
http://pc90003.cse.cuhk.edu.hk:8000/research/testing?%3Crequest+type%

3D%22interface%22%3E+%3Caccount+type%3D%22interface%22%3
E+%3Cdeposit+type%3D%22operation%22%3E+%3Cparameter+ref%
3D%22in%22+order%3D%221%22%3E+%3Cfloat+name%3D%22amo
unt%22%3E23000.45%3C%2Ffloat%3E+%3C%2Fparameter%3E+%3
C%2Fdeposit%3E+%3C%2Faccount%3E+%3C%2Frequest%3E

About Callbacks
® Client objects need to react to changes or

updates that occur on the server side,
callback feature is needed.

® A client object passes itself as parameter to
the server object, hence the server object has
the object reference of client and is able to
invoke client’s methods.

® A bi-directional call. Both side need to invoke
a method call in another side.

® Enhance our mechanism to support callbacks

Overall Calling Procedures

® One pair of add-on components cannot
support callback in a generic way, hence, we
use one more pair of add-on components.

Shadow
ServerIIOP

Client Enclave

Client
Object

HTTP & XML

Server Enclave

Servlet

Server
Object

FIREWALL

HTTP & XMLServlet Shadow
Client

IIOP

In Client Side (Callbacks)
Procedure
1. Client object first sends a method

call to the Shadow Server.
2. Once the Shadow Server checks

out there is callbacks, it will
create a new Servlet component
associated with the client object

4. The new Servlet component
waits for callback from server
side.

3. Shadow Server sends the method
request as normal to the server
side, with some additional info of
the new Servlet component.

Shadow
Server

Client Enclave

Client
Object

Servlet

create

IIOP
HTTP&XML

HTTP & XML

In Server Side (Callbacks)
Procedure
1. Servlet Component in the Server

side receives call from outside. If
there is callback, this Servlet
Component will create a Shadow
Client immediately.

2. Servlet Component will inform
the server object the location of
the Shadow Client that has
required callback.

4. The Shadow Client(s) will invoke
the Servlet Component(s) on the
client side.

3. When there is a need to callback,
server object will call the Shadow
Client(s).

Server Enclave

Servlet

Server
Object

HTTP & XML

create

Shadow
Client
Shadow
Client
Shadow
Client IIOP

IIOP
IIOPHTTP &

XML

Overall Calling Procedures

Shadow
Server

Client Enclave

Client
Object

Server Enclave

Servlet

Server
Object

FIREWALL

IIOP
HTTP & XML

Servlet

create create

Shadow
Client

IIOPHTTP & XML

Importance of Object Interfaces
® Add-on components know the interfaces of

the associated objects, hence they are
perform the same as the target object.

® The interfaces are very important for the
creation of the add-on components.

® The interfaces are also important for XML
messages passing, as object structures,
methods and attributes, parameters required,
etc, are all included in the IDL files.

® CORBA IDL defines the interfaces of objects,
hence we make use of IDL to generate XML
contents for those objects.

A Translator to Convert
CORBA IDL to XML

A Translator for IDL to XML
® All CORBA objects have IDL to describe their

interfaces.
® We implemented a translator in Perl for the

conversion from IDL to XML
® The generated XML schema can help in

® giving a standard for XML transmission messages
® creating the add-on components.

® We need to have unique mapping from IDL to
XML to avoid ambiguity in communications.

® The conversion rules will be discussed now!

IDL Basic Types Conversion
short <short></short>

unsigned short <ushort></ushort>
long <long></long>

unsigned long <ulong></ulong>
long long <longlong></longlong>

unsigned long long <ulonglong></ulonglong>
float <float></float>

double <double></double>
char <char></char>

boolean <boolean></boolean>

Complex Types
®Complex type means data type with

complex structures, such as struct,
enum, arrays, sequence, etc.

®We regard “interface” as complex type
as well, as it presents the details of an
object, which is also a kind of structure.

General Rules for Complex
Type Conversion
® The data type names are used as element tag

names.
® For complex type, they would have an attribute
“complex” for indicating the kind of complex type.

® For both basic and complex type, if they have a
variable name, there will be a “name” attribute in
the element tag.

® For array and sequence, names of element tags
are “array” & “sequence” respectively, without
“complex” attribute.

® Array and sequence have attributes “size” and
“index” to indicate their sizes and each of their
elements. Bounded in the tags are the member
elements.

An Example of Complex Type
<sequence size="6" name=“db">

<Customer complex="struct" index="1">
<long name="id">111</long>
<short name="age">24</short>
<boolean name="ismale">TRUE</boolean>

</Customer>
<Customer complex="struct" index="2">

<long name="id">112</long>
<short name="age">39</short>
<boolean name="ismale">FALSE</boolean>

</Customer>
<Customer complex="struct" index="3">

<long name="id">113</long>
short name="age">23</short>
<boolean name="ismale">TRUE</boolean>

</Customer>
</sequence>

struct Customer {
long id;
short age;
boolean ismale;

}

sequence <Customer> db;

Description for Interfaces
® We have attributes, operations, and exceptions inside

an interface.
® The types of attributes would be the element tag

names and they have “type” as attribute of the tag.
Attribute float balance;
<float type=“attribute” name=“balance”/>

® The operation names and exception names are used
as their element tag names.

® In operation definition, we have “parameter”, “return”
and “raises” tags for indicating parameters passing,
return values, and exceptions that may be raised.

Sample XML Message
<Account complex=“interface”>

<notEnoughMoney type="exception">
<string name="reason"/>

</notEnoughMoney>
<withdraw type=“operation”>

<return> <boolean/> </return>
<parameter ref=“in” order=“1”>

<float name=“amount”/>
</parameter>
<raises> <notEnoughMoney/></raises>

</withdraw>
</Account>

interface Account {
exception notEnoughMoney {

string reason;
};
boolean withdraw(in CashAmount amount)

raises(notEnoughMoney);
}

Use of the XML Schema
® The generated XML schema can help in

® creating the add-on components.
® giving a standard for XML transmission messages.

® CORBA IDL is generic for mapping many
different kinds of programming languages.
Because of its generic property, we can use
its XML schema to map to other Interface
Definition Languages in other distributed
environments.

Communication in
Heterogeneous Distributed
Environments

Across Heterogeneous
Distributed Environments
® Different Distributed Environments have

different communication protocols.
® CORBA systems communicate with IIOP
® DCOM systems use DCOM Protocol
® Java RMI systems talk with JRMP
®…
® It is a problem to ask a CORBA object to

communicate with a DCOM object, or ask a
Java RMI object to communicate with a
DCOM object, as they have NO “common
language”!

Existing Solutions for Bridging
across DCOM and CORBA
® OMG has a specification of COM/CORBA

mapping, which maps CORBA IDL to DCOM
MIDL definitions.

® Based on this spec., there are a number of
products for bridging DCOM and CORBA.
They do message conversion in binary level.

® OrbixCOMet is one of the best products in the
market. Middleware COMET is used
between CORBA and DCOM enclaves and
convert binary messages.

® Yet, it is not generic. It cannot bridge between
other environment, such as Java RMI.

® Similar to DCOM, OMG also provides
specifications for mapping Java Interface
Definition to CORBA IDL, and vice versa.

® Based on the spec., Sun Microsystems
provides a RMI/IIOP package for converting
RMI objects to use IIOP.

® Hence, converted RMI objects can
communicate with CORBA objects, without
bridging overheads.

® But those converted RMI objects cannot
communicate with original RMI objects again,
as they are using different protocols.

Existing Solution for Java RMI
& CORBA Communication

Our Approach
® We rely on the XML schema that we have

described to be the “common language”
® We rely on OMG mapping specifications to be

the standards, and map DCOM or Java RMI
to the same XML schema.

® We rely on the mechanism we have
introduced to provide homogeneous objects
for calling. The add-on components are
developed under the same environment as
the callers or the callees.

Case Study for DCOM
® DCOM is developed by Microsoft and mainly

used in Windows environment.
® Similar to CORBA, DCOM also has its

interface definition language, named MIDL.
® The contents in square brackets can be

ignored in mapping our XML schema as they
are not related to interface definition

A Sample MIDL File
[uuid(7371a240-2e51-11d0-b4c1-444553540000), version(1.0)]
library SimpleStocks
{
importlib("stdole32.tlb");
[uuid(BC4C0AB0-5A45-11d2-99C5-00A02414C655), dual]
interface IStockMarket : IDispatch
{
HRESULT get_price([in] BSTR p1, [out,retval] float* rtn);

}

[uuid(BC4C0AB3-5A45-11d2-99C5-00A02414C655)]
coclass StockMarket
{
interface IStockMarket;
};

};

Mapping between DCOM and
CORBA

® If DCOM object receives tags <longlong> and
<ulonglong>, they would be regarded as long
and unsigned long respectively.

DCOM MIDL CORBA IDL XML Schema
short short <short></short>

unsigned short unsigned short <ushort></ushort>

long long <long></long>

unsigned long unsigned long <ulong></ulong>

float float <float></float>

double double <double></double>

char char <char></char>

bool boolean <boolean></boolean>

Special Issues in Mapping
DCOM
® In MIDL, all methods has return type HRESULT,

which represents error and success notifications. For
actual return value, it would be the last parameter
with [out, retval].

® DCOM does not have attributes in the interface
definition files. For each attribute, DCOM uses two
methods, _get_<NAME> and _put_<NAME> to
represent.

® Application exceptions are represented as
parameters of the corresponding methods.

® DCOM does not support multiple inheritance, but
support multiple extension. We simply list all the
resultant methods, attributes and exceptions in XML
schema to handle inheritance, hence it would not be
a problem.

Case Study for Java RMI
®Java RMI is developed by Sun

Microsystems, and it is platform
independent.

® Interface of Java RMI objects are
defined in ordinary .java files with
keyword “interface”.

®Each interface is defined in a separated
file.

A Sample Java RMI Interface
Definition File

public interface BankAccount extends java.rmi.Remote {
public void deposit (float amount)

throws java.rmi.RemoteException;
public void withdraw (float amount)

throws OverdrawnException, java.rmi.RemoteException;
public float balance()

throws java.rmi.RemoteException;
}

Mapping between JavaRMI
and CORBA

® Java RMI objects do not have unsigned types.
When they receive tags of unsigned types,
they would be regarded as signed types.

Java RMI CORBA IDL XML Schema
short short <short></short>

int long <long></long>

long long long <longlong></longlong>

float float <float></float>

double double <double></double>

char char <char></char>

boolean boolean <boolean></boolean>

Special Issues in Mapping
Java RMI
® Java RMI does not have attributes in the

interface definition files. For each attribute,
Java RMI uses two methods, get<NAME>
and set<NAME> to represent.

® All Java RMI object methods have a system
exception “RemoteException”, which this will
not be included in XML schema.

® Java RMI does not have struct or enum
complex type. Class definitions, without any
object methods, will be used instead.

Linking to the Web
®XML and Servlets also provides a good

interface to connect the objects in a
system to the web.

®Based on XML schema, we can develop
web applications which can
communicate with objects inside DCOM,
CORBA, etc. via Servlets components.

Communicating in
Heterogeneous Systems

CORBA EnclaveDCOM Enclave

DCOM
Objects

DCOM
Protocol

DCOM
add-ons

CORBA
Objects

Web EnvironmentJava RMI Enclave

Java
RMI

Objects
JRMP

Java
RMI

add-ons

WEB Applications
(ASP, JSP,

Servlets, Applets,
CGI, etc)

CORBA
add-ons

IIOP

XML &
HTTP

Building a Scalable Mediator-
based Query System

What is mediator?
® A middle layer for forwarding clients queries

to appropriate sources, and integrate the data
before returning to users

Database
Engine

Database
Engine

Database
Engine

mediator

Client UIClient UIClients UI

query

result

…

Architecture of our system

Web-base UI

Web-base UI

Web-base UI

1st tier

Servlet
Components

Mediator
(forwarding
queries and
integrating

results)

2nd tier
Data Source

Mediator

Data Source

3rd tier

UI Queries and
Results Queries Results

…
Nth tier

Handling some special cases
® Infinite loops:

mediator mediator

mediator
qid = 123

qid = 123

qid = 123

qid = 123

®Broken connection
®Too may layers of traversal

mediator mediator

mediatorTimeout = 15000
Max_layer = 3

Timeout = 10000
Max_layer = 2

Timeout = 5000
Max_layer = 1

IDL design of our system
® IDL (Interface Definition Language) defines

export interface of CORBA objects
® Our IDL design:

® The parameter type for special cases handling
Struct SysPara
{

long qid;
long timeout;
short maxlayer;

}

IDL design of our system
® Mediator may make queries to Databases or

Mediators. To be generic, we want Database
objects and Mediator objects can have the
same interface for calling.

® Both of them implement QueryEngine
Interface

interface QueryEngine {
string query(in SysPara para,

in string querystmt);
}

QueryEngine

QueryDB QueryMed

Implemented by

QueryDB Object
®Directly connects to the data source
®Caller calls query()
® It takes the query statement parameter

and make query to data source
®Returns answer in XML string stream

QueryMed Object
® Same invoking method, query()
® Besides QueryEngine, it implements another

interface, QueryMediator
public interface QueryMediator {

public QueryEngine[] qelist();
public void qelist(QueryEngine[] arg);
public void append_result(String res);

}

® qelist holds a list of QueryEngine objects, i.e.
QueryMed or QueryDB objects, which will be
called by that mediator.

® It starts a thread for each target QueryEngine
object, and the thread will call append_result()
to integrate results from various sources

Across Firewalls
FIREWALL

Web-based UI
SC

D
Database
Servers

Mediator HttpGateway
Object

Servlet
Component

Server EnclaveClient Enclave

Database
object

H

M1

M2
XML+HTTP

Sample Request Message
<request>

<QueryEngine type="interface">
<query type="operation">

<parameter ref="in" order="1">
<SysPara complex=“struct”>

<long name="qid">3984982418240339</long>
<long name="timeout">2000</long>
<short name="maxlayer">3</short>

</SysPara>
</parameter>
<parameter ref="in" order="2">

<string name="QueryStatement">
where <news>$B</news> in "database.xml"
<keyword>separatist</keyword> in $B
construct <result> $B </result>

</string>
</parameter>

</query>
</QueryEngine>

</request>

Sample Response Message
<response>

<QueryEngine type="interface">
<query type="operation">

<return>
<string>

<news> <source>South China Morning Post </source> <date>
<day>15</day><month>4</month> <year>2000</year> </date>
<title>Press warning appro priate, says Beijing</title><content>
Beijing yesterday defendedremarks made by senior SAR-based
official Wang Fengchao that local media should avoid reporting
separatist views.</content> </news>

</string>
</return>

</query>
</QueryEngine>

</response>

Callback Supports
® To enhance the system features, we add a

subscription service in the system which
requires callback.

® A Mediator can subscribe a certain topic of
news and it will be notify whenever there is a
update.

® The new IDL is as follow:
interface QueryEngine {

string query(in SysPara para, in string querystmt);
void subscribe(in QueryEngine qe, in string topic);
void notify(in string newContent);

}

Callback Supports

FIREWALL

Web-based UI

SC2

D

Database
Servers

Mediator HttpGateway
Object

Servlet
Component

Server EnclaveClient Enclave

Database
object

H1

M1
M2

IIO
P

SC1

create

XML+HTTP: subscribe()

H2

create

IIOP

IIOP

IIO
P

XML+HTTP: notify()

IIOP

Across Heterogeneous
Environments
® Expanding the system across the firewalls is

not enough, we want to expand our system
across heterogeneous distributed
environments.

® To provide generic querying to objects in
across heterogeneous systems, we design
the objects of DCOM and Java RMI having
similar interfaces as those CORBA objects.

® For simplicity, we don’t include the callback
features in the DCOM and Java RMI systems.

Query System in DCOM
® The MIDL design of the DCOM object, it will have the

same XML transmission message schema as the
CORBA system.

import "oaidl.idl";
import "ocidl.idl";
typedef struct SysPara
{

long qid;
long timeout;
short maxlayer;

}SysPara;
[uuid(AC6EDE04-ADF2-4324-BB8C-B350295BFD5E)]
interface ICOMQueryEngine : IDispatch
{

HRESULT query([in] SysPara para,
[in] char * queryStmt
[out, retval] char ** rtn);

};

Query System in Java RMI
® The Java Interface Definition Java RMI object, it will

have the same XML transmission message schema
as the CORBA system.

// SysPara.java

public class SysPara implements
java.io.Serializable{

public long qid;
public long timeout;
public short maxlayer;

public SysPara() {
qid=-1;
timeout=-1;
maxlayer=-1;

}
}

// QueryEngine.java

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface QueryEngine extends
Remote {

String query(SysPara para,
String queryStmt)

throws RemoteException;

}

Communication Across
Heterogeneous Environments

SC IIOP

Mediator

HttpGateway
Object

Servlet
Component

CORBA EnclaveDCOM Enclave

M

Database
object

H
M IIOP

M

M

XML + HTTP

Java RMI
Enclave

H
MIIOP

M

H
IIO

P

XM
L +

 H
TT

P

SCIIOP

SC
IIOP

XML +HTTP

Evaluation

Performance Evaluation
®The query system shows our

mechanism is practical in applying to
real-life applications.

®We use the query system to evaluate
the overhead of our mechanism.

Time Spent on Different
Objects
Components Time (ms)
Mediator Objects (excluding waiting time for
the return of query results and connection
setup time)

20 - 80

Database Objects 180 - 800
IIOP Communications with CORBA enclave
(connection within LAN)

10 - 100

Shadow Client or Server (excluding waiting
time for the return of query results and
connection setup time)

20 - 100

Servlet Components with Servlet Engine
(excluding waiting time for the return of query
results)

120 - 250

HTTP communications towards other enclaves
(connection in WAN)

240 - 2200

Observations
® Mediator objects are light-weighted objects

when comparing to Database objects.
® The performance of those add-on

components are somehow similar to those
light-weighted Mediator objects.

® The most time-consuming part of the whole
process is the Internet connection.

® When comparing to Internet latency, the
overhead of our add-on components is not
significant.

Means for Enhancement
® For performance concern, we use HTTP1.1 in

the system
® Provides persistence connection.
® Data compression is done automatically.

® For security concern, we can apply SSL over
HTTP (HTTPS)
® Provides encryption to data in transmission.
® Provides secure channels with authentication

Advantages of our Mechanism
® It solves the incompatible firewall problems of

communication protocols in distributed
environment. Hence, increase the scalability.

® It solves the incompatible problem of
heterogeneous distributed environments. The
mechanism is generic to many different
distributed environments.

® No modification is needed to the existing
components in the systems when applying
our mechanism. Provides transparency to
existing components, and avoids potential
errors.

Advantages of our Mechanism
® Systems maintain good security. External

objects can only invoke internal objects which
are associated with Servlet components.
Traditional security methods for HTTP and
Servlets can be applied.

® It prevents information loss as XML can
represent data structure well.

® It provides a gateway for existing systems to
link with other web applications.

Our Disadvantages
® Add-on components give extra workload to

the systems.
® They are light-weighted.
® Their overhead is negligible when comparing to

Internet latency.
® They provide great transparency to the existing

objects for invoking objects in other enclaves.
® XML messages is highly readable hence

higher level of security is needed. Also XML
lengthens the transmission messages.
® Traditional security methods can be applied, such

as HTTPS.
® HTTP1.1 provides compression to data.

Conclusion
® We conclude our contributions in the followings:
® A generic mechanism for distributed objects to

communication across firewalls has been proposed;
® An extension of the mechanism to support callback

feature has been proposed;
® A schema for mapping CORBA IDL to XML format

has been proposed, and a translator for that has also
been implemented;

® An extension of the mechanism to support generic
remote object calling in heterogeneous environment
has been implemented;

® A mediator-based query system has been
implemented to demonstrate our work.

<appreciation> THANK YOU! </appreciation>

