

Face Recognition Committee Machine: Methodology, Experiments and A System Application

> Oral Defense by Sunny Tang 15 Aug 2003

Outline

- Introduction
 - Face Recognition
 - Problems and Objectives
- Face Recognition Committee Machine
 - Committee Members
 - Result, Confidence and Weight
 - Static and Dynamic Structure

Outline

Face Recognition System System Architecture Face Recognition Process Distributed Architecture Experimental Results Conclusion

• Q & A

Introduction: Face Recognition

Definition

- A recognition process that analyzes facial characteristics
- Two modes of recognition
 - Identification: "Who is this"
 - Verification: "Is this person who she/he claim to be?"

Face Recognition Applications

Security

- Access control system
- Law enforcement
- Multimedia database
 Video indexing
 Human search engine

Problems & Objectives

Current problems of existing algorithms

- No objective comparison
- Accuracy not satisfactory
- Cannot handle all kinds of variations

Objectives

- Provide thorough and objectively comparison
- Propose a framework to integrate different algorithms for better performance
- Implement a real-time face recognition system

Face Recognition Committee Machine (FRCM)

Motivation

Achieve better accuracy by combining predictions of different experts

Two structures of FRCM

Static structure (SFRCM)

Dynamic structure (DFRCM)

Static vs. Dynamic

- Static structure
 Ignore input signals
 Fixed weights
- Dynamic structure
 - Employ input signal to improve the classifiers
 - Variable weights

Committee Members

- Template matching approach
 Eigenface
 - Fisherface
 - Elastic Graph Matching (EGM)
- Machine learning approach
 Support Vector Machines (SVM)
 Neural Networks (NN)

Review: Eigenface & Fisherface

Feature space

Eigenface: Principal Component Analysis (PCA)Fisherface: Fisher's Linear Discriminant (FLD)

Training & Recognition

- Project images on feature space
- Compare Euclidean distance and choose the closest projection

Review: Elastic Graph Matching

Based on dynamic link architecture

- Extract facial feature by Gabor wavelet transform
- Face is represented by a graph consists of nodes of jets
- Compare graphs by cost function
 - Edge similarity S_e and vertex similarity S_v
 - Cost function

$$C_{total}(G^{I},G^{M}) = \lambda S_{e}(G^{I},G^{M}) - S_{v}(G^{I},G^{M})$$

Review: SVM & Neural Networks

SVM

Look for a separating hyperplane which separates the data with the largest margin

Neural Networks

Adjust neuron weights to minimize prediction error between the target and output

Result, Confidence & Weight

Result
Result of expert
Confidence
Confidence of expert on its result
Weight
Weight of expert's result in ensemble

SFRCM Architecture

Result & Confidence (1)

- Eigenface, Fisherface & EGM Result:
 - Identification:

• Verification:

$$r_{i} = \arg \max_{j} (v(j))$$
$$r_{i} = \begin{cases} 1 & \text{if } N_{threshold} \geq \frac{N_{total}}{2} \\ 0 & \text{otherwise} \end{cases}$$

- Confidence:
 - Identification:

$$c_i = \frac{v(r_i)}{K}$$

• Verification:

$$c_i = \frac{N_{threshold}}{N_{total}}$$

Result & Confidence (2)

SVM

- One-against-one approach
- Result:
 - Identification: SVM result
 - Verification: direct matching

Confidence:

$$c_i = \frac{v(r_i)}{J-1}$$

Result & Confidence (3)

Neural network

- A binary vector of size J for target representation
- Result:
 - Identification: $r_i = \arg \max_i(o_j)$

0

0

0

0

0

0

1 0

0

0

- Verification: $r_i = \begin{cases} 1 & \text{if } o_j \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$
- Confidence: output value oj

Weight

Derived from performance of expert:

$$p_i = \frac{n_i}{t_i}$$

Amplify the difference of the performance:

 $w_i = \exp(\alpha p_i)$

Normalize in range [0, 1]:

$$\hat{w}_i = \frac{w_i}{\sum_{i=1}^5 w_i}$$

Voting Machine

Assemble result and confidenceScore of expert's result:

$$s_j = \sum_{i=1}^{5} \hat{w}_i * c_i, \forall j \in r_i$$

Ensemble result:

$$\hat{r} = \arg\max_{j}(s_j)$$

SFRCM Drawbacks

Fixed weights under all situations The weights of the experts are fixed no matter which images are given.

No update mechanism

The weights cannot be updated once the system is trained

DFRCM Architecture

Gating Network

- Keep the performance of experts on different face databases
- Determine the database of input image
- Give the corresponding weights of the experts for that database

Feedback Mechanism

- 1. Initialize $n_{i,j}$ and $t_{i,j}$ to 0
- 2. Train each expert i on different database j
- 3. While TESTING
 - a) Determine *j* for each test image
 - b) Recognize the image in each expert *i*
 - c) If $t_{i,j} != 0$ then Calculate $p_{i,j}$
 - d) Else Set $p_{i,j} = 0$
 - e) Calculate $w_{i,j}$
 - f) Determine ensemble result
 - g) If FEEDBACK then Update $n_{i,j}$ and $t_{i,j}$
- 4. End while

Implementation: Face Recognition System

- Real-time face recognition system
- Implementation of FRCM
- Face processing
 - Face tracking
 - Face detection
 - Face recognition

System Architecture

Face Recognition Process

Enrollment

Collect face images to train the experts

- Recognition
 - Identification
 - Verification

System Snapshots

Identification

FaceRecognition				×	FaceRecogni	tion
Г	Preview	Captured Im	age	StartTrack		Г
				StopTrack		
Name :	Train	Committee Machine	Recognition Result	Capture Image	Name :	Sunny
TrainList :	Recognition	Eigenface	Sunny	Capture Video	TrainList :	
RecogList :	Verification	Fisherface	Sunny	Control	RecogList :	
Server IP :	□ Save Data □ Load Data	Support Vector Machine	Sunny	Start	Server IP :	
Server Port :	Real Time	 Neural Network Elastic Graph 	Sunny	Stop	Server Port :	
	☐ Client ☐ FeedBack	Gating Network		Exit		
	🖵 Dynamic	Final Result	Sunny			

Verification

🛃 FaceRecognitio	n				×
	F	Preview	Captured I	mage	
					StartTrack StopTrack
Name :	Sunny	Train	Committee Machine		
		Becognition	Expert	Recognition Result	Capture Image
TrainList :		recognition	Eigenface	Authorized	Capture Video
RecogList :		Verification	🔽 Fisherface	Authorized	Control
Server IP -	·	Save Data	Support Vector Machine	Authorized	SnapShot
ourient .	·		🔽 Neural Network	Authorized	Start
Server Port :		Server	Elastic Granh		Stop
		Client			Extract
		FeedBack	J Gating Network		Exit
		🔽 Dynamic	Final Result	Authorized	

Problems of FRCM on mobile device

Memory limitation

Little memory for mobile devices

Requirement for recognition

Algorithm	ORL(40)	$\operatorname{Yale}(15)$	AR(130)	$\mathrm{HRL}(5)$
Eigenface	$5.0 \mathrm{MB}$	$5.0 \mathrm{MB}$	$5.5 \mathrm{MB}$	$15.0\mathrm{MB}$
Fisherface	4.0MB	$1.5 \mathrm{MB}$	$13.5 \mathrm{MB}$	$0.5 \mathrm{MB}$
EGM	$1.5 \mathrm{MB}$	$0.5 \mathrm{MB}$	$4.5 \mathrm{MB}$	1.0MB
SVM	38.0MB	$14.0 \mathrm{MB}$	$122.0 \mathrm{MB}$	14.0MB
Neural Networks	32.0KB	13.0KB	106.0KB	6.0K

CPU power limitation

Time and storage overhead of FRCM

$$T_{FRCM} = \sum_{i=1}^{n} T_i$$

Distributed Architecture

Distributed System: Evaluation

Implementation

- Desktop (1400MHz), notebook (300MHz)
- S: Startup, R: Recognition

Machine for Testing	Time $(S+R)$	Time (R)
PIV 1400 MHz(Desktop)	13s	1s
PII 300 MHz (Notebook)	93s	2s
PII 300 MHz Client + PIV 1400 MHz Server	16s	2s

Distinct servers:

$$T_{FRCM} = T_{cs} + \max_i T_i + T_{sc}$$

Experimental Results

Databases used:
 ORL from AT&T Laboratories
 Yale from Yale University
 AR from Computer Vision Center at U.A.B
 HRL from Harvard Robotics Laboratory
 Cross validation testing

Preprocessing

- 1. Apply median filter to reduce noise in background
- 2. Apply Sobel filter for edge detection
- 3. Covert to a binary image
- 4. Apply horizontal and vertical projection
- 5. Find face boundary
- 6. Obtain the center of the face region.
- 7. Crop the face region and resize it

ORL Result

ORL Face database

- 400 images
- a 40 people
- Variations
 - Position
 - Rotation
 - Scale
 - Expression

S	Eigen	Fisher	EGM	SVM	NN	DFRCM	SFRCM
1	82.5%	90.0%	90.0%	92.5%	97.5%	92.5%	92.5%
2	85.0%	100.0%	92.5%	100.0%	97.5%	100.0%	100.0%
3	87.5%	100.0%	72.5.0%	100.0%	92.5%	100.0%	100.0%
4	75.0%	92.5%	85.0%	95.0%	87.5%	100.0%	95.0%
5	72.5%	97.5%	80.0%	90.0%	87.5%	90.0%	97.5%
6	82.5%	90.0%	82.5%	97.5%	87.5%	95.0%	92.5%
7	80.0%	92.5%	75.0%	92.5%	90.0%	97.5%	92.5%
8	77.5%	87.5%	77.5%	95.0%	87.5%	95.0%	90.0%
9	75.0%	90.0%	77.5%	97.5%	92.5%	100.0%	97.5%
10	85.0%	97.5%	82.5%	95.0%	95.0%	95.0%	97.5%
Average	80.3%	93.8%	81.5%	95.5%	91.5%	96.5%	95.5%

Yale Result

Yale Face Database

- 165 images
- 15 people
- Variations
 - Expression
 - Lighting

S	Eigen	Fisher	EGM	SVM	NN	DFRCM	SFRCM
1: centerlight	40.0%	73.3%	100.0%	93.3%	60.0%	93.3%	86.7%
2: glasses	73.3%	93.3%	80.0%	86.7%	86.7%	86.7%	93.3%
3: happy	73.3%	86.7%	93.3%	86.7%	93.3%	86.7%	93.3%
4: leftlight	26.7%	40.0%	66.7%	26.7%	40.0%	46.7%	40.0%
5: noglasses	93.3%	100.0%	100.0%	100.0%	93.3%	100.0%	100.0%
6: normal	86.7%	93.3%	80.0%	86.7%	93.3%	93.3%	93.3%
7: rightlight	26.7%	40.0%	93.3%	20.0%	26.7%	53.3%	46.7%
8: sad	66.7%	93.3%	93.3%	93.3%	86.7%	93.3%	93.3%
9: sleepy	80.0%	93.3%	86.7%	100.0%	93.3%	100.0%	93.3%
10: surprised	73.3%	53.3%	26.7%	66.7%	46.7%	60.0%	53.3%
11: wink	93.3%	86.7%	86.7%	100.0%	100.0%	100.0%	100.0%
Average	66.7%	77.6%	82.4%	78.2%	74.5%	83.0%	81.2%
Nolighting	75.6%	85.9%	83.0%	90.4%	83.7%	90.4%	89.6%

AR Result

AR Face Database

- 1300 images
- 130 people
- Variations
 - Expression
 - Lighting
 - Occlusions

Performance	Eigen	Fisher	EGM	SVM	NN	DFRCM	SFRCM
Validation	38.1%	86.2%	35.4%	55.4%	59.2%		
Testing	28.7%	89.2%	58.7%	59.7%	76.4%	89.2%	86.4%

HRL Result

HRL Face Database

- 345 images
- 5 people
- Variation
 - Lighting

Performance	Eigen	Fisher	EGM	SVM	NN	DFRCM	SFRCM
Validation	79.2%	81.3%	87.5%	75.0%	83.3%		
Testing	80.4%	89.7%	86.6%	82.5%	90.7%	94.8%	90.7%

Average Running Time & Results

Average running time

Database (no.)	Eigen	Fisher	EGM	SVM	NN	FRCM	FRCM/Image
ORL (40)	2.1	1.5	16.3	6	1.4	27.3	0.68
Yale (15)	0.9	0.2	6.5	0.6	0.3	8.5	0.57
AR (390)	21	48	123	118	56	366	0.94
HRL (97)	20	1	54	3	1	79	0.81

Average experimental results

Database	Eigen	Fisher	EGM	SVM	NN	DFRCM	SFRCM
ORL	80.3%	93.8%	81.5%	95.5%	91.5%	96.5%	95.5%
Yale	66.7%	77.6%	82.4%	78.2%	74.5%	83.0%	$\mathbf{81.2\%}$
AR	28.7%	89.2%	58.7%	59.7%	76.4%	89.2%	86.4%
HRL	80.4%	89.7%	86.6%	82.5%	90.7%	94.8%	90.7%
Average	64.0%	87.6%	77.3%	79.0%	83.3%	90.9%	88.5%

Conclusion

- Make a thorough comparison of five face recognition algorithms
- Propose FRCM to integrate different face recognition algorithms
- Implement a face recognition system for real-time application
- Propose a distributed architecture for mobile device

Question & Answer Section

Thanks