Content Analysis and Summarization for Video Documents

Oral Defense for the degree of Master of Philosophy Presented by Lu Shi

Committee Members Prof. T .T. Wong Prof. M. C. Lee Prof. Michael R. Lyu (Supervisor) Prof. Irwin King (Supervisor)

10 December 2004 - 2pm to 4pm RM 121, Ho Sin Hang Engineering Bldg

Outline

- Background and motivation
- Related work
- Goals
- Our contributions
- Solution 1: Video summarization by graph modeling and optimization
 - Video structure analysis
 - Video skim length distribution
 - Spatial-temporal graph modeling
 - Optimization based video shot selection
- Solution 2: Video summarization with semantic knowledge
 - Video content annotation
 - Mutual reinforcement principle
 - Video skim selection
- Conclusion

Background and Motivation

- Huge volume of video data are distributed over the Web
- Showsing and managing the huge video database are time consuming
- Video summarization helps the user to quickly grasp the content of a video
- Two kinds of applications:
 - Dynamic video skimming
 - Static video summary
- We mainly focus on generating *dynamic video skimming* for movies

Related work

Video summarization systems

- MOCA (dynamic)
- InforMedia (dynamic)
- CueVideo (dynamic)
- Hitchcock (static)

Limitations:

- Based on detected feature distribution
- Neglect that the a video is structured document
- Lack specific goals that a video summary should achieve

Goals for video summarization

- Conciseness
 - Given the target length of the video skim
- Content coverage
 - Visual diversity and temporal coverage
 - Balanced structural coverage
- Visual coherence

Contributions

Our contributions:

- Propose several goals for a good video skim
- Analyze the video structure information and use it to guide the video skim generation
- Utilize the video shot arrangement patterns to achieve better coherence
- Propose the graph optimization based video shots selection to ensure both the visual diversity and the temporal content coverage
- Employ the semantic knowledge to ensure the quality of the video skimming

Outline

- Introduction
 - Background and motivation
 - Related work
 - Goals
 - Our contributions
- Solution 1: Video summarization by graph modeling and optimization
 - Video structure analysis
 - Video skim length distribution
 - Spatial-temporal graph modeling
 - Optimization based video shot selection
 - Solution 2: Video summarization by semantic knowledge
 - Video content annotation
 - Mutual reinforcement principle
 - Video skim selection
- Conclusion

Workflow

8

Video Structure

♦ Video ⇔article

- Video (story)
- Video scenes (paragraph)
- Video shot groups (similar sentences)
- Video shots (sentence)
- Video frames

Video Structure

Hierarchical video structure (Video Table Of Contents)

Raw Video

VToC Construction

Can be built up in a bottom-up manner

- Video shot detection
- Video shot grouping
- Video scene formation

Video Shot Detection

Video shot detection

۲

Video slice image (cut the video from middle line)

Solution 1

12

Video Shot Detection

Video shot detection from the middle slice

- Column pairwise distance
- Neighborhood window filtering and thresholding

Video Shot Detection

 $D'_i = \frac{D_i}{\max_{i=-w}^w {}_{i\neq 0}(D_{i+i})}$

Camera flash

Neighborhood window filtering

- Shot cut cues:
 - Local maxima
 - Jump width is 1
- Robust to sudden lightness change (camera flash)
- Low computation cost

Evaluation

Video shot detection result

Table	1:	Shot	cut	detec	tion	result	for	severa	l video	clips	
											_

Video type	Ground truth	Detected	F. D.	M. D.	Right Per.
Movie	166	157	0	9	94.6
News	40	39	1	1	95
Movie	138	137	2	3	97.8

15

Video shot grouping

- Two methods in the literature:
 - ToC method by Y. Rui, et al
 - Spectral graph partitioning by J. B. Shi, et al

Video Scene Formation

Loop scenes and progressive scenes

- Group the visually similar video shots into groups
- Intersected groups forms loop scenes

- Loop scenes depict an event happened at a place
- Progressive scenes: "transition" between events or dynamic events
- Summarize each video scene respectively

Shot Arrangement Patterns

- The way the director arrange the video shots conveys his intention
- For each scene, video shot group labels form a string (e.g 1232432452.....)
- K-Non-Repetitive String (*k-nrs*)
- Minimal content redundancy and visually coherent—good video skim candidates
- String coverage
 - {3124} covers {312,124,31,12,24,3,1,2,4}
- For loop scenes only

Shot Arrangement Patterns

Several detected *nrs* strings

Shot Arrangement Patterns

Visual similarity between video shot strings

- Shot to shot similarity
- Shot to string similarity
- String to string similarity

Break a scene into a set of video shot strings

- Given the upper bound of the string length l_{nrs}
- Directly break from left to right
- Example: {1234343152} is broken into a set of *nrs* strings {123, 43, 431, 52} under l_{nrs} = 3

Video Scene Analysis

Scene importance: length and complexity
 Content entropy for loop scenes
 Measure the complexity for a loop scene

For progressive scenes, we only consider its length

Skim Length Distribution

- Determine each video scene's target skim length, given L_{vs}
 - Determine each progressive scenes' skim length

• If
$$l_{Sc_i} \times \frac{L_{vs}}{L_v} < t_1$$
, discard it, else $L^i_{vs} = l_{Sc_i} \times \frac{L_{vs}}{L_v}$

Determine each loop scenes' skim length

• If
$$L_{vs}^{i} = L_{vs}^{i} \times \frac{l_{Sc_{i}} \times Entropy(Sc_{i})}{\sum_{j} l_{Sc_{j}} \times Entropy(Sc_{j})} < t_{2}$$
, discard it

• Redistribute $L'_{\nu s}$ to remaining scenes

Graph Modeling of Video Scenes

Visual-temporal dissimilarity function

Linear with visual dissimilarity

Solution 1

Exponential with temporal distance

Graph Modeling of Video Scenes

The visual temporal relation graph

- Each vertex corresponds to a video shot string
- Each edge corresponds to the dissimilarity function between shot strings
- Directional and complete

Graph Modeling of Video Scenes

 Dissimilarity function between video shots in a video with 7 scenes

Skim Generation

The goal of video skimming

- Conciseness: for each scene, given the target skim length L^{i}_{vs}
- Content coverage
- Coherence
- The visual temporal relation graph
 - A path corresponds to a series of video shot strings
 - Vertex weight summation
 - Path length is the summation of the dissimilarity between consecutive vertex pairs

Constrained Longest Path

Objectives:

Solution 1

- Search for a path *P*_s for each scene, such that:
 - Maximize the path length (dissimilarity summation)
 - Vertex weight summation should be close to $L^{i}_{\nu s}$ but not exceed it

The objective function

$$f_{obj}(p_s, L^i_{vs}) = L_{p_s} + w \times (VWS(p_s) - L^i_{vs}), VWS(p_s) <= L^i_{vs}$$
Path length
Summation of the shot length

Constrained Longest Path

- Global optimal solution
- Let $\{p_{v_x,L_r}^i\}$ denote the paths begin with v_x , whose vertex weight summation is upper bounded by L_r

• The optimal path is denoted by $f_{obj}(p_{v_0,L_r}^o) = \max_i f_{obj}(p_{v_0,L_r}^i)$

Graph Optimization

Optimal substructure

 $f_{obj}(p_{v_x,L_r}^{o}) = \max_{v_i=v_x+1}^{v_n} (f_{obj}(p_{v_i,L_r-l_{stri}}^{o}) + Dis(str_x,str_i) + w \times l_{sh_i}), x < n$

$$f_{obj}(p_{v_n,L_r}^o) = w \times (l_{sh_n} - L^i_{v_s}), x = n$$

Dynamic programming

- Effective way to compute the global optimal solution
- Trace back to find the optimal path
- Time complexity $O(n^2 \times L^i_{vs})$, space complexity $O(n \times L^i_{vs})$

Evaluation

Key frames of selected video shots

۲

Solution 1

30

Evaluation

- Subjective experiment:10 people were invited to watch video skims generated from 4 videos with rate 0.15 and 0.30
- Questions about major events: Who has done What? (Meaningfulness)
- Which video skim looks better? (Favorite)
- Mean scores are scaled to 10.00
- Parameters: $t_1 = 3 \sec, t_2 = 4 \sec, w = 0.01, k = 250$

Video Clip	Duration	Major events	Skim Rate	Mfn.	Fav.
Movie 1	1403 sec.	7	0.15	82.9/ 85. 7	4/6
		/	0.30	94.3/ 92.9	3/7
Movie 2	1230 sec.	8	0.15	83.8/ 81.3	4/6
Movie 2			0.30	92.9/ 96.3	2/8
Movie 3	477 sec.	5	0.15	82.0/ 86.0	4/6
Movie 5			0.30	94.0/ 92.0	5/5
Sitcom 1	1183 sec.	0	0.15	71.1/ 76.7	3/7
Silcolli I		9	0.30	84.4/ 88.9	3/7

TABLE I

User test results. The scores with l_{str} is equal to 3 are in **bold**

Summary

Video structure analysis

- Scene boundaries, sub-skim length determination
- Graph modeling for video scenes
- Model the sub skim generation problem as a constrained longest path problem
- Generate a video skim

Outline

Introduction

- Background and motivation
- Related work
- Goals
- Our contributions

• Solution 1: Video summarization by graph modeling and optimization

- Video structure analysis
- Video skim length distribution
- Spatial-temporal graph modeling
- Optimization based video shot selection
- Solution 2: Video summarization by semantic knowledge
 - Video content annotation
 - Mutual reinforcement principle
 - Video skim selection
- Conclusion

Video Semantics

- Low level features and high level concepts: semantic gap
- Summary based on low level features is not able to ensure the perceived quality
- Solution: obtain video semantic information by manual/semi-automatic annotation

Usage:

- Retrieval
- Summary

System Overview

Video Semantics

- Concept representation for a video shot
 - The most popular question: who has done what?
 - The two major contexts: who, what action
 - Concept term and video shot description (user editable and reusable)

Video Semantics

Concept term and video shot description

- Term (key word): denote an entity, e.g. "Joe", "talking", "in the bank"
- Context: "who", "what action"...

- Shot description: the set comprising all the concept terms that is related to the shot {t₁....t_n}
- Obtained by semi-automatic or video annotation

Video Content Annotation

Annotation interface

Video Summarization

- Obtain the structure of the video
- Derive an importance measure for video shots
- Reselect some "important" shots then arrange them into a trailer
- An "inversion" of video editing

How to measure the priority for a set of concept terms and a set of descriptions?

- A more important description should contain more important terms;
- A more important term should be contained by more important descriptions
- Mutual reinforcement principle

Let W be the weight matrix describes the relationship between the term set and shot description set (elements in W can have various definitions, e.g. the number of occurrence of a term in a description)

• Let U, V be the vector of the importance value of the concept term set $\{d_i\}$ and video shot description set $\{t_i\}$

We have

$$U = \frac{1}{k_1} WV, \qquad V = \frac{1}{k_2} W^T U$$

Where k_1 and k_2 are constants. *U* and *V* can be calculated by SVD of *W*

For each semantic context:

- We choose the singular vectors correspond to W's largest singular value as the importance vector for concept terms and sentences
- ♦ Since W is non-negative , the first singular vector V will be non-negative

Importance calculation on 76 video shots
 Based on context "who"

Shots with different importance values "who"

Joe and Terry

Terry

Joe

Background people

Priority calculation

Based on context "what action"

Shot groups

Gun shot and quarrel

Gun shot

Quarrel

Observing

No "action"

Video Summarization

Sased on the result of mutual reinforcement, we can determine the relational priority between video shots $V = V_{what} + V_{who}$

The generated skim can ensure the semantic contents coverage

Shot Arrangement Patterns

- The way the director arrange the video shots conveys his intention
- Minimal content redundancy and visual coherence
- Semantic video shot group label form a string
- K-Non-Repetitive Strings (k-nrs)
- String coverage
 - 43124} covers {312,124,31,12,24,3,1,2,4}
- The importance value of a *nrs* string: summation of the member shots

Video Skim Selection

- Input: the decomposed nrs string set from a scene
- 🔷 do
 - Select the most important *k-nrs* string into the skim shot set
 - Remove those *nrs* strings from the original set covered by the selected string
- Until the target skim length is reached

Video Skim Selection

Input: The set of all *nrs* strings *NRS*; The target skimming length L_{vs} ; Output: The selected *nrs* set *SKIM* that form the video skimming BEGIN *SKIM* = \emptyset

STEP 1: Sort the *nrs* strings in *NRS* according to their importance value; while $L_{vs} > 0$ do

Select the best nrs string nrs_{opt} , such that:

- 1. $L_{nrs_{opt}} < L_{vs}$
- 2. $\forall nrs_i \in N \text{ and } L_{nrs_i} < L_{vs}, I_{nrs_{opt}} \geq I_{nrs_i}$

if Found then

1. $SKIM = S \cup \{nrs_{opt}\}$

2. $L_{vs} = L_{vs} - L_{nrs_{opt}}$

3. $NRS = NRS - \{nrs_t | nrs_{opt} \text{ covers } nrs_t\}$ else if Not found then GOTO END end if END

Solution 2

50

Evaluation

- We conduct the subjective test
- Compared with the previous graph based algorithm
- Achieve better coherency

Video Clip	Duration	Events	Skim Rate	Mfn.	Fav.
Movie1	1403 sec.	7	0.15	82.9/7 8.6	3/7
			0.30	94.3/ 97.1	2/8
Movie2	1230 sec.	8	0.15	83.8/ 85.0	2/8
			0.30	92.9/ 96.3	2/8
Movie3	477 sec.	5	0.15	82.0/ 88.0	4/6
			0.30	94.0/ 94.0	2/8
Sitcom1	1183 sec.	9	0.15	71.1/7 3.3	3/7
			0.30	84.4/ 88.8	3/7

Table 1:User test results. Scores for the new approach are bold

51

Outline

Introduction

- Background and motivation
- Related work
- Our contributions
- Video summarization by graph modeling and optimization
 - Video structure analysis
 - Video skim length distribution
 - Spatial-temporal graph modeling
 - Optimization based video shot selection
- Video summarization by semantic knowledge
 - Video content annotation
 - Mutual reinforcement principle
 - Video skim selection

Conclusion

Conclusion

In this presentation, we have:

- Discussed the video summarization problem
- Proposed three goals that a good video skim should achieve
- Described two solutions to generate useful video skims
 - Graph modeling and optimization
 - Mutual reinforcement principle
- Future work:
 - More efficient way to annotate video shots
 - Augment the semantic template
 - Comply to MPEG-7 standard
 - Personalized video summary
 - New evaluation method

Summary

Publication list

- Video summarization by greedy method in a constraint satisfaction framework", S. Lu, I. King and M. R. Lyu, in proceedings of DMS 2003
- "Video summarization by spatial-temporal graph optimization",
 S. Lu, M. R. Lyu and I. King, in proceedings of ISCAS 2004
 - "Video summarization by video structure analysis and graph optimization", S. Lu, I. King and M. R. Lyu, in proceedings of ICME 2004
 - "Semantic video summarization by mutual reinforcement principle and shot arrangement patterns", S. Lu, M. R. Lyu and I. King, accepted by MMM2005, to appear
 - "A novel video summarization framework for document preparation and archival applications", S. Lu, I. King and M. R. Lyu, accepted by IEEE Aerospace05, to appear

Appendix

