
A Progressive Fault Detection and 
Service Recovery Mechanism in 

Mobile Agent Systems

Wong Tsz Yeung
Aug 26, 2002



Outline

l Introduction of the problem

l How to Solve the Problem
– Server failure detection and recovery
– Agent failure detection and recovery
– Link failure

l Failure Detection and Recovery Mechanism Analysis
– Liveness proof
– Mechanism simplification analysis



Outline

l Reliability Evaluations
– Using agent implementation
– Using Stochastic Petri Net Simulation



Introduction of the problem

l Focus on designing a fault-tolerant mobile agent 
system

l The challenge is:
– Guarantee the availability of the servers.
– Guarantee the availability of the agents.
– Preserve data consistency in both agents and servers.
– Preserve the exactly-once property.
– Guarantee the agent can eventually finish its tasks.



Introduction of the problem

l Fault-tolerance is classified into levels

– Level 0: No tolerance to faults
– Level 1: Server failure detection and  recovery
– Level 2: Agent failure detection and recovery
– Level 3: Link failure



Level 0

l No tolerance to faults

– When agent dies
l because of server failure
l because of faults inside agent

– Application has to restart manually.

– Affected server may leave an inconsistent state after recovery.



Level 1

l Server failure detection and recovery

– Have a failure detection program running.

– When a server restarts, abort all uncommitted 
transactions in the server.
l This preserves data consistency

– When the agent re-executes after the initial states
l visited servers will be visited again
l Violates exactly-once execution property



Level 2

l Agent failure detection and recovery

– When server fails, agents resides are lost.
l We aims to recover such loss in this level

– By using checkpointing
l We checkpoint agent internal data
l We use checkpointed data to recover lost agents.



Level 2

– Since we use checkpointed agent data
l Agent data consistency is preserved

– Recovery of agent happens on the failed server
l This preserves the exactly-once execution property.



Level 3

l Link Failure
– We assume the agent agent is now ready to migrate from 

server u to server v, but a link failure happens

– 3 scenarios
l before the agent leaves u.
l while the agent is traveling to v.
l after the agent has reached v.

– Different scenarios has different problems and corresponding 
solutions.



Design of Level 1 FT

l We have a global daemon which monitors all 
the servers.

l Single point of failure problem
monitoring daemon

server pool



Design of Level 1 FT

l When the daemon recovers a server
– it aborts all the uncommitted transactions performed 

by those lost agents.
– This preserves data consistency in the server.

l This technique is
– easy to implement
– can be deployed on every existing mobile agent 

platform, without modifying the platform.



Design of Level 2 FT

l We use cooperative agents.
– Actual agent
– Witness agent

l Actual agent performs actual computation for the user.

l Witness agent monitors the availability of actual agent.
– It lags behind the actual agent.



Design of Level 2 FT

l In our protocol, actual agents are able to 
communicate with the witness agent

– the message is not a broadcast one, but a peer-to-
peer one

– Actual agent can assume that the witness agent is 
in the previous server

– Actual agent must know the address of the previous 
server



Protocol of Level 2 FT

Server i-1 Server i Server i+1

Server logServer log Server log

Arrive at i

Arrive at i
Agent
messages
boxLeave  i

Leave  i

leave

arrive

Checkpointing happens!!



Protocol of Level 2 FT

Server i-1 Server i Server i+1

Server log Server log

Agent
messages
box

Arrive at i+1

Leave  i+1

Arrive at i+1

Leave  i+1

spawn Arrive at i

Leave  i



Failure and Recovery Scenarios

l We cover only cover stopping failures. 
(Byzantine failures do not exist)

l We handle most kinds of failures:
– Witness agent fails to receive “arrive at i” message
– Witness agent fails to receive “leave i” message
– Witness agent failures



Missing arrive message

l The reason may be:

1. message is lost
2. message arrives after timeout period
3. actual agent dies when it is ready to leave server i-1
4. actual agent dies when it has just arrive at server i, without 

logging.
5. actual agent dies when it has just arrive at server i, with 

logging.

Arrive at i

Zzz.
.

Next



Missing arrive message

l It is simple for the 1st and 2nd case.

Server i-1 Server i

Server logServer log

Arrive at i

probe

found log
retransmit
message

Back



Missing arrive message

l For the 3rd and 4th cases, recovery takes place.

Server i-1 Server i

Server log Server log

checkpoint
data

no log

retransmit
message

Back



Missing arrive message

l For the 5th case, it results in missing detection.
– since log appears in the server
– the consequence is that “leave i” message never 

arrives.

Back



Missing leave message

l The reason may be:

1. message is lost.
2. message arrives after timeout period
3. actual agent dies when it has just sent the “arrive 

at i” message
4. actual agent dies when it has just logged the 

message “leave i” message.

leave  i

Zzz.
.

Next



Missing leave message

l The 3rd case is the same as the previous 
missing detection case.

Server i-1 Server i

Server log Server log

checkpoint
data

no log

retransmit
message

Arrive at i



Missing leave message

l In this case, the recovery action is the same as 
the previous section.

– When failure happens, the agent should be 
performing computation.

– So, when server recovers, the agent’s computation 
has aborted.

Back



Missing leave message

l This results in missing detection again.

– This can be compensated by the 3rd case in the 
previous discussion.

– It is because the witness will never receive “arrive 
i+1”.



Witness Failure Scenarios

l There is a chain of witness agents leaves on 
the itinerary of the agent

– The latest witness monitors the actual agent.
– Other witnesses monitor the witness that is before it.

0 1 2 i-1 i

Witnessing dependency



Witness Failure Scenarios

Server i-2 Server i-1 Server i

recovery recovery



Simplification

l Assume that 2-server failure would not happen
– We can simplify our witnessing dependency

i-2 i-1 i



Simplification

l If failure strikes server i-1
– witness on server i-2 can recover witness on server 

i-1

l If failure strikes server i-2
– Will not recover it
– Because within a short period, no failure would 

happen



Analysis – Liveness proof

l Notations
– We define several timeouts

l T_recover: The timeout of waiting for a server to be recovered.
l T_arrive: the timeout of waiting for the arrive message.
l T_leave: the timeout of waiting for the leave message.
l T_alive: the timeout of waiting for the alive message.

– Also, define several constants
l r_s: the maximum time for a server to be recovered when 

detected.
l r_a: the maximum time for an actual agent to be recovered.
l a: the maximum agent traveling time between 2 servers.
l m: the maximum message traveling time between 2 servers.
l e: the maximum execution time for an agent.



Analysis – Liveness proof

l If the system is blocked forever, one of the three 
timeouts will reach infinity.

l The outline of the proof:
– derive the lower and the upper bounds of the timeouts
– Given that the itinerary of the agent is of finite length and 

infinite number of failures, if none of the timeouts approach 
infinity, the system is blocking-free.



Analysis – Liveness proof

l Level 1 FT analysis
– A failed server will eventually be recovered, the time 

bound is:

– In the worse case, all servers are stopped.
– Need to recover n servers.

serres nrTr ££ cov



Analysis – Liveness proof

l Level 2 FT analysis
– We derive the lower bounds for the timeouts

maT
eT

T

alive

leave

arrive

+³
³
³ 0



Analysis – Liveness proof

w

a

m

mm

T_arrive = 0

e

T_leave = e



Analysis – Liveness proof

l We define the failure inter-arrival time be 

l If the system is not blocked forever, 

– 2 cases are needed to be considered.
l Does the actual agent have enough time to migrate from one host 

to another?
l Also, does the witness agent have enough time to migrate?

t

¥££+ tea



Analysis- Liveness proof

l Assume that all failures are happening in S_i
– During the actual agent is migrating, there should be no 

failures
– So, the required time is a+e.

S_i-1 S_i S_i+1

error-prone



Analysis – Liveness proof

l Again, assume that all failures are happening in S_i
– The required time

= a + min(T_arrive) + min(T_leave)
= a + e

S_i-1 S_i S_i+1



Analysis – Liveness proof

l Useful results:

where
where  k is the number of failures

aerrearrive raTT ++££ cov0
mekraTkTe aerreleave 2)1()( cov +-+++££

maTTema errealive 22),max( cov ++££+

areaea ++££+ t



Analysis – Liveness proof

l By the above results, we conclude that:

– The system is blocked iff all failures is happening on 
one server, and 

– It follows from the upper and lower bounds of 
T_arrive, T_leave, and T_alive.

areaea ++££+ t



Simplification Analysis

l We define the following notation:

– Define      be the inter-arrival time of the failures 
throughout the system.

T

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

++
+
+

>T
maT

ma
ea

errecov

2max



Link Failure

l Link failure is beyond the control of mobile agents 
system.

l Assume that the actual agent is ready to leave server u
and migrate to v. Then, a link failure happens:
– before the agent leaves u.
– while the agent is traveling to v.
– after the agent has reached v.

l We propose solutions to remedy these problems.



Link Failure

l Failure happens before the agent leaves u:
– Problem:

l the agent cannot proceed.
l the agent waits in server u until the link is recovered.

– Solution:
l Travel to server v’ instead of v based on number of 

migration trials.
l Technical problem: Knowledge of the locations of the 

unvisited servers.



Link Failure

l If network partitioning happens:

v’

u v



Link Failure

l Failure happens while the agent is traveling to 
v:
– Problem:

l The agent is lost. Recovery is required.
l However, the witness agent cannot proceed to server v.

– Solution:
l The witness agent cannot recovery the actual agent in 

another server, say v’.
l Have to wait until the link is recovered.



Link Failure

l Failure happens after the agent has arrived at 
v:
– Problem:

l The actual agent survives.
l Messages between u and v cannot reach the destinations.
l Witness agent cannot follow the actual agent.



Link Failure

l Solution:
– The actual agent keeps on advancing until:

l It is lost in one of the servers.
– After the link failure is recovered, the probe can eventually 

find such a failure.

l It has reached the destination.
– The probe can finally catch up.



Reliability Evaluation

l The results are obtained by
– an agent system implementation using Concordia.
– simulation using Stochastic Petri Net.
– aim: to measure the percentage of successful round-trip-travel.

Home



Reliability Evaluation



Reliability Evaluation

about 60%

about 5%



Reliability Evaluation

about 800%



Reliability Evaluation

For
agent
failure
detection
only



Reliability Evaluation

100%

about 60%



Reliability Evaluation

about 70%



Reliability Evaluation

about 140%

# of original agent

# of recovered agent



Conclusion

l Categorize the fault-tolerance of mobile agent system.

l Designed a scheme for both server and agent failure 
detection and recovery.

l Analyzed most failure scenarios in mobile agent 
systems.

l Conducted performance evaluations which show
– Our scheme is a promising technique
– Trade-off between cost and levels of reliability



Future Work

l Model and perform simulations on Level 3 
fault-tolerant mechanism.

l More detailed analysis is required.

l Extended stopping failures to Byzantine 
failures.



THE END

Q & A Session


