Linear Stochastic Bandits with Heavy-Tailed Payoffs

Han Shao

Committee: Prof. ZHANG Shengyu Prof. KING Kuo Chin Irwin Prof. LYU Rong Tsong Michael Prof. CHAN Siu On Prof. YEUNG Dit-Yan

Department of Computer Science and Engineering The Chinese University of Hong Kong

MPhil Oral Defense, April 8, 2019

Outline

- Introduction
- A Survey of Bandits
- Linear Stochastic Bandits with Heavy-Tailed Payoffs
- Conclusions and Future Directions

Outline

Introduction

- A Survey of Bandits
- Linear Stochastic Bandits with Heavy-Tailed Payoffs
- Conclusions and Future Directions

- An agent has T rounds to play bandits
- > At each time, the agent pulls one arm and observes a reward
- There is an optimal arm

i

How to maximize cumulative rewards?

Problem definition

▶ Scenario: *K* arms

 Model: sequential decision making to maximize cumulative rewards

input: the arm set $\{1, \cdots, K\}$, and the number of rounds $T \ge K$ For time $t = 1, \cdots, T$, an agent selects an arm $I_t \in \{1, \cdots, K\}$ observes a stochastic reward $y_t(I_t) \sim v_{I_t}$ of the chosen arm I_t

• Remarks: for $y \sim v_i$, $\mathbb{E}[y] = u_i$ and $u_* \triangleq \max_{i=1,\dots,K} u_i$

Structured Bandits

Linear Stochastic Bandits (LSB)

Problem definition

- Scenario:
 - Arms are represented by *d*-dimensional vectors

Input: the number of rounds Tfor time $t = 1, \dots, T$, given the arm set $D_t \subseteq \mathbf{R}^d$, an agent selects an arm $x_t \in D_t$ observes a stochastic reward $y_t(x_t) = x_t^\top \theta_* + \eta_t$, where η_t is a stochastic noise

- Remarks:
 - Usually, η_t follows a sub-Gaussian distribution

Motivation

Personalized recommendations

News recommendation (Li et al., 2010)

Motivation

Portfolio managements

- Sequentially invest T units of money in d financial products
- At each round, select a weight $w \in [0,1]^d$
- Returns in the investment are rewards in LSB
- High-probability extreme returns exist in financial markets

Outline

- Introduction
- A Survey of Bandits
- Linear Stochastic Bandits with Heavy-Tailed Payoffs
- Conclusions and Future Directions

A Taxonomy

A Taxonomy

Goal and Metric

Regret minimization

 $\min \mathbf{R}(\mathcal{A},\mathit{T})$ (equivalent to rewards maximization)

$$\mathbf{R}(\mathcal{A}, T) \triangleq \max_{i=1, \cdots, K} \mathbb{E}\left[\sum_{t=1}^{T} y_t(i) - \sum_{t=1}^{T} y_t(I_t)\right] = Tu_* - \sum_{t=1}^{T} u_{I_t} \quad (1)$$

Goal and Metric

Pure exploration

Probability of error: $\mathbb{P}[x_T \neq \mathsf{Opt}] \leqslant \delta$

- x_T is the output of \mathcal{A} at time T and Opt is the optimal arm
- Two settings:
 - Fixed confidence: given δ , what is the smallest T?
 - Fixed budget: given T, what is the smallest δ ?

Heuristic Methods for Regret Minimization

Selecting the arm with largest empirical average

A four-armed	case	with	Bernoulli	distributions
True means:	$\{0.7,$	0.8, 0	$0.6, 0.5\}$	

round	arm 1	arm 2	arm 3	arm 4
1-4	$\frac{1}{1} = 1$	$\frac{0}{1} = 0$	$\frac{1}{1} = 1$	$\frac{1}{1} = 1$
5	$\frac{1+0}{2} = 0.5$	0	1	1
6	0.5	0	$\frac{1+0}{2} = 0.5$	1
7	0.5	0	0.5	$\frac{1+0}{2} = 0.5$
8	0.5	0	0.5	$\frac{1+0}{3} = 0.3$
:				

Heuristic Methods for Regret Minimization

Selecting the arm with largest empirical average + standard deviation

A four-armed case with Bernoulli distributions

True means: $\{0.7, 0.8, 0.6, 0.5\}$					
round	arm 1	arm 2	arm 3	arm 4	
1 - 4	$\frac{1}{1} + 1 = 2$	$\frac{0}{1} + 1 = 1$	$\tfrac{1}{1} + 1 = 2$	$\tfrac{1}{1} + 1 = 2$	
5	$\frac{1+0}{2} + 0.7 = 1.2$	1	2	2	
6	1.2	1	$\frac{1+0}{2} + 0.7 = 1.2$	2	
7	1.2	1	1.2	$\frac{1+0}{2} + 0.7 = 1.2$	
8	1.2	1	1.2	$\frac{1+0}{3} + 0.6 = 0.9$	
-					

(a --000007

:

Methodology for Stochastic Bandits

- Frequentist approach: Upper Confidence Bound (UCB)
 - Construct an estimate and confidence interval of u_i
 - Select the arm with the largest value among supremes of the confidence intervals

- Bayesian approach: Thompson sampling
 - Construct a posterior distribution of u_i
 - Sample from posterior distributions and select the arm with the largest sample value

Theoretical Developments of Regret Minimization in MAB

work	results	
(Thompson, 1933)	original formalization	
(Lai & Robbins, 1985)	the first theoretical analysis $\lim_{T \to \infty} \frac{\mathbf{R}(\mathcal{A}, T)}{\log(T)} \ge \sum_{\Delta_i > 0} \frac{\Delta_i}{KL(u_i, u_*)}$ $\lim_{T \to \infty} \frac{\mathbf{R}(UCB, T)}{\log(T)} \le \sum_{\Delta_i > 0} \frac{\Delta_i}{KL(u_i, u_*)}$	
(Agrawal, 1995)	a simpler algorithm $\lim_{T \to \infty} \frac{\mathbf{R}(SM, T)}{\log(T)} \leqslant \sum_{\Delta_i > 0} \frac{\Delta_i}{KL(u_i, u_*)}$	
(Auer et al., 2002)	finite-time analysis $\mathbf{R}(UCB1, T) = O\left(\sum_{\Delta_i > 0} \frac{\log(T)}{\Delta_i}\right)$ $\mathbf{R}(UCB1, T) = O\left(\sqrt{T}\right)$	
(Agrawal et al., 2012)	Bernoulli payoffs $\mathbf{R}(TS, T) = O\left(\left(\sum_{\Delta_i > 0} \frac{1}{\Delta_i}^2\right)^2 \log(T)\right)$	
(Kaufmann et al., 2012)	$\lim_{T \to \infty} \frac{\text{Bernoulli payoffs}}{\log(T)} \leqslant \sum_{\Delta_i > 0} \frac{\Delta_i}{\text{KL}(u_i, u_*)}$	
(Garivier et al., 2018)	$ \begin{array}{c c} \mbox{finite-time lower bound} \\ \mbox{small T: lower bound $\mathbf{R}(\mathcal{A}, T) \geqslant \sum_{\Delta_i > 0} \frac{\Delta_i T}{2K} \\ \mbox{large T: lower bound $\mathbf{R}(\mathcal{A}, T) = \Omega\left(\sum_{\Delta_i > 0} \frac{\Delta_i \log(t)}{2K}\right) \\ \end{array} $	

20/58

Theoretical Developments of Pure Exploration in MAB

work	results		
Work	i courto		
(Even-Dar et al., 2002)	bounded payoffs		
	$\left \mathbb{P}\left[T \ge \sum_{k=1}^{K} \Delta_k^{-2} \log\left(\frac{K}{\delta \Delta_k}\right)\right] \le \delta$		
	bounded payoffs		
(Audibert & Bubeck, 2010)	$\mathbb{P}[Out \neq Opt] \leqslant TK \exp\left(-\frac{T-K}{H_1}\right)$		
	bounded payoffs		
(Karnin et al., 2013)	$\mathbb{P}\left[T \ge \sum_{k=1}^{K} \Delta_k^{-2} \log\left(\frac{1}{\delta} \log\left(\frac{1}{\Delta_k}\right)\right)\right] \leqslant \delta$		
	$\mathbb{P}\left[Out\neqOpt\right]\leqslant\log(K)\exp\left(-\frac{T}{\log(K)H_2}\right)$		
(lamioson at al 2014)	sub-Gaussian noises		
	$\mathbb{P}\left[T \ge H_1 \log\left(\frac{1}{\delta}\right) + H_3\right] \le 4\sqrt{c\delta} + 4c\delta$		
	two-armed Gaussian bandits		
(Kaufmann et al., 2016)	$\lim_{\delta \to 0} \frac{\mathbb{E}[T]}{\log(\frac{1}{\delta})} \ge \frac{2(\sigma_1 + \sigma_2)^2}{(u_1 - u_2)^2}$		
	$\lim_{\delta \to 0} \frac{\mathbb{E}[T]}{\log(\frac{1}{\delta})} \leqslant \frac{2(\sigma_1 + \sigma_2)^2}{(u_1 - u_2)^2}$		
	$\lim_{T \to \infty} \sup -\frac{\log(\mathbb{P}[Out \neq Opt])}{T} \leqslant \frac{(u_1 - u_2)^2}{2(\sigma_1 + \sigma_2)^2}$		

A Taxonomy

Theoretical Developments of LSB

work	results
(Abe & Long, 1999; Auer, 2000)	original formalization
(Auer, 2002)	first theoretical analysis; K arms $\mathbf{R}(LinRel, T) = O\left(\sqrt{Td}\log^{\frac{3}{2}}(KT\log(T))\right)$
(Dani et al., 2008)	compact arm set; bounded payoffs $\mathbf{R}(\mathcal{A}, T) = \Omega\left(d\sqrt{T}\right)$ $\mathbf{R}(CB_2, T) = O\left(d\sqrt{T}\log^{\frac{3}{2}}(T)\right)$
(Abbasi-Yadkori et al., 2011)	compact arm set; sub-Gaussian noises $\mathbf{R}(OFUL, T) = O\left(d\sqrt{T}\log(T)\right)$
(Agrawal & Goyal, 2013)	K arms; sub-Gaussian noises $\mathbf{R}(TS, T) = O\left(d^2\sqrt{T}\log(dT)\right)$
(Lattimore & Szepesvari, 2017)	$ \begin{array}{l} K \text{ arms; Gaussian payoffs} \\ \lim_{T \to \infty} \frac{\mathbf{R}(\mathcal{A}, T)}{\log(T)} \ge c(\mathcal{A}, \theta) \\ \lim_{T \to \infty} \frac{\mathbf{R}(\mathbf{O}, T)}{\log(T)} \le c(\mathcal{A}, \theta) \end{array} $

Other Classes of Structured Bandits

- Lipschitz (Magureanu et al., 2014): continuum-armed bandit problems
- Convex (Agarwal et al., 2011): continuum-armed bandit problems
- Unimodal (Combes & Proutiere, 2014): single-peak preferences economics and voting theory
- ▶ Dueling (Yue et al., 2012): intranet-search systems
- General (Combes et al., 2017)

A Taxonomy

Some Important Variants of Bandits

- Agent
 - More than one agents \rightarrow multi-player bandits
 - Application: cognitive radio systems
- Feedback
 - \blacktriangleright Rewards are not stochastic \rightarrow adversarial bandits
 - $\blacktriangleright \ \ \mbox{Observe feedback about more arms} \rightarrow$
 - online learning with full information
 - online learning with semi-bandit feedback
 - \blacktriangleright Distributions of noises are non-sub-Gaussian \rightarrow bandits with heavy-tailed distributions

Outline

- Introduction
- A Survey of Bandits
- Linear Stochastic Bandits with Heavy-Tailed Payoffs
- Conclusions and Future Directions

What Is A Heavy-Tailed Distribution?

Practical scenarios

High-probability extreme returns in financial markets

- Many other real cases
 - 1. Delays in communication networks (Liebeherr et al., 2012)
 - 2. Analysis of biological data (Burnecki et al., 2015)
 - 3. ...

Heavy-Tailed Distributions

Intuition and definition

 A distribution with a "tail" that is "heavier" than an exponential

http://users.cms.caltech.edu/~adamw/papers/2013-SIGMETRICS-heavytails.pdf

Mathematically, a random variable X is said to be heavy-tailed if lim_{x→∞} e^{φx} P[|X| > x] = ∞ for all φ > 0

Heavy-Tailed Distributions in Bandits

Heavy-tailed distributions in bandits (Bubeck et al., 2013)

$$\mathbb{E}[X^p] < +\infty,\tag{2}$$

where X is a stochastic reward/noise, and $p \in (1, 2]$

- Remarks
 - ▶ Eq. (2) is a subcase of the general definition of heavy tails
 - ▶ p > 1 is necessary for bandits as the expected payoff of each arm should be finite
 - ► The bounded p-th moments with p ∈ (2, +∞) can reduce to the case of p = 2 (Jensen's inequality)
 - Payoffs with sub-Gaussian noises are light-tailed with finite 2-nd moment

Weaker Assumption: Bounded *p*-th Moments Examples

► Standard Student's t-Distribution with 3 degrees of freedom

- ▶ The 2-nd central moment is bounded by 3
- ▶ The 2-nd raw moment (with a constant shift a) is bounded by $3 + a^2$
- \blacktriangleright Pareto distribution with shape parameter α and scale parameter x_m
 - \blacktriangleright The p-th raw moments are bounded by $\alpha x_m^p/(\alpha-p),$ for all $p\in(1,\alpha)$
 - The p-th central moments are not directly available

LSB with Heavy-Tailed Payoffs

Problem definition

input: the arm set $\{D_t\}_{t=1}^T$, and the number of rounds TFor time $t = 1, \dots, T$, given the arm set $D_t \subseteq \mathbf{R}^d$, an agent selects an arm $x_t \in \mathbb{D}_t$ observes a stochastic reward $y_t = x_t^\top \theta + \eta_t$, where η_t is a stochastic noise

- Previous assumption (Abbasi-Yadkori et al., 2011): η_t is sub-Gaussian conditional on F_{t-1}
- Our assumption: y_t or η_t is heavy-tailed conditional on \mathcal{F}_{t-1}
 - Bounded raw moments
 - Bounded central moments

A connection in regret: $\widetilde{O}\left(\sqrt{T}\right)$ (sub-Gaussian) $\rightarrow \widetilde{O}\left(\sqrt{T}\right)$ (2-nd moment bounded)

<u>Lin</u>ear Stochastic <u>B</u>andits with H<u>e</u>avy-<u>T</u>ailed Payoffs (LinBET)

LinBET

Given a arm set D_t for time step $t = 1, \dots, T$, an algorithm \mathcal{A} , of which the goal is to maximize cumulative payoffs over T rounds, chooses an arm $x_t \in D_t$. With \mathcal{F}_{t-1} , the observed stochastic payoff $y_t(x_t)$ is conditionally heavy-tailed, i.e., $\mathbb{E}\left[|y_t|^p|\mathcal{F}_{t-1}\right] \leq b$ or $\mathbb{E}\left[|y_t - \langle x_t, \theta_* \rangle|^p|\mathcal{F}_{t-1}\right] \leq c$, where $p \in (1, 2]$, and $b, c \in (0, +\infty)$.

Challenges and Contributions

Challenges

- The lower bound of LinBET
- How to develop a robust estimator and bandit algorithms for LinBET
- Regret analysis for the proposed bandit algorithms

Contributions

- The first to provide the lower bound for LinBET
- Develop two novel bandit algorithms to solve LinBET
- Conduct experiments to demonstrate the effectiveness of the algorithms

Lower Bound of LinBET Results

Assume $d \ge 2$ is even. For $D_t \in \mathbf{R}^d$, we fix the arm set as $D_t = D_{(d)}$, where $D_{(d)} \triangleq \{(x_1, \cdots, x_d) \in \mathbf{R}^d_+ : x_1 + x_2 = \cdots = x_{d-1} + x_d = 1\}$. Let $S_d \triangleq \{(\theta_1, \cdots, \theta_d) : \forall i \in [d/2], (\theta_{2i-1}, \theta_{2i}) \in \{(2\Delta, \Delta), (\Delta, 2\Delta)\}\}$ with $\Delta \in (0, 1/d]$. Payoffs are in $\{0, (1/\Delta)^{\frac{1}{p-1}}\}$ such that, for every $x \in D_{(d)}$, the expected payoff is $\theta_*^\top x$.

Theorem 1. If θ_* is chosen uniformly at random from S_d , and the payoff for each $x \in D_{(d)}$ is in $\{0, (1/\Delta)^{\frac{1}{p-1}}\}$ with mean $\theta_*^{\top}x$, then for any algorithm \mathcal{A} and every $T \ge (d/12)^{\frac{p-1}{p}}$, we have

$$\mathbb{E}\left[R(\mathcal{A}, T)\right] \geqslant \frac{d}{192} T^{\frac{1}{p}}.$$

Lower Bound of LinBET

d=2 and $\mathbb{E}\left[|y_t|^p|\mathcal{F}_{t-1}\right]\leqslant d$ case

• Arm set:
$$D_{(2)} \triangleq \{(x_1, x_2) \in \mathbf{R}^2_+ : x_1 + x_2 = 1\}$$

- θ_* is chosen uniformly at random from $\{\mu_1, \mu_2\}$, where $\mu_1 = (2\Delta, \Delta)$ and $\mu_2 = (\Delta, 2\Delta)$
- \blacktriangleright Δ will be set as a small value dependent on T
- Change of measure (through $\mu_0 = (\Delta, \Delta)$)

Lower Bound of LinBET d = 2 and $\mathbb{E}[|y_t|^p | \mathcal{F}_{t-1}] \leq d$ case

Payoff distribution of x:

$$y(x) = \begin{cases} \left(\frac{1}{\Delta}\right)^{\frac{1}{p-1}} & \text{with a probability of } \Delta^{\frac{1}{p-1}} \theta_*^\top x, \\ 0 & \text{with a probability of } 1 - \Delta^{\frac{1}{p-1}} \theta_*^\top x \end{cases}$$

•
$$\mathbb{E}[y(x)^p] \leq 2$$

• $\mathbb{E}[y(x)^q] \geq \left(\frac{1}{\Delta}\right)^{\frac{p-q}{p-1}}, q < p$

An Algorithm for LSB

Optimism in face of uncertainty (OFU) (Abbasi-Yadkori et al., 2011)

- ► For sub-Gaussian case, LSE $\rightarrow \beta_t = \Theta\left(\sqrt{\log t}\right)$
- \blacktriangleright For heavy-tailed case, LSE $\rightarrow \beta_t$ is polynomial of t

Techniques for Designing Algorithms

Median of means and truncation (Bubeck et al., 2013)

Median of means

- sample drawn from the chosen arm
- sample after truncation

Previous Results

MoM and CRT by Medina & Yang (2016)

- Medina & Yang (2016) proposed two algorithms MoM (based on median of means) and CRT (based on truncation)
- Both achieved the regret of $\widetilde{O}(T^{\frac{3}{4}})$ when p=2
- ▶ Is it possible to design algorithms to achieve the regret of $\widetilde{O}(\sqrt{T})$ when p = 2?

Algorithms: <u>Me</u>dian of means under OFU (MENU)

Algorithm 1 MENU

1: input
$$d, c, p, \delta, \lambda, S, T, \{D_n\}_{n=1}^N$$

2: initialization: $k = \lceil 24 \log\left(\frac{eT}{\delta}\right) \rceil$, $N = \lfloor \frac{T}{k} \rfloor$, $V_0 = \lambda I_d$,
 $C_0 = \mathbb{B}(\mathbf{0}, S)$
3: for $n = 1, 2, \dots, N$ do
4: $(x_n, \tilde{\theta}_n) = \arg \max_{(x,\theta) \in D_n \times C_{n-1}} \langle x, \theta \rangle$
5: Play x_n for k times and observe payoffs $y_{n,1}, y_{n,2}, \dots, y_{n,k}$
6: $V_n = V_{n-1} + x_n x_n^\top$
7: For $j \in [k]$, $\hat{\theta}_{n,j} = V_n^{-1} \sum_{i=1}^n y_{i,j} x_i$
8: For $j \in [k]$, let r_j be the median of $\{ \| \hat{\theta}_{n,j} - \hat{\theta}_{n,s} \|_{V_n} : s \in [k] \setminus j \}$
9: $k^* = \arg \min_{j \in [k]} r_j$
10: $\beta_n = 3\left((9dc)^{\frac{1}{p}} n^{\frac{2-p}{2p}} + \lambda^{\frac{1}{2}} S \right)$
11: $C_n = \{\theta : \| \theta - \hat{\theta}_{n,k^*} \|_{V_n} \leq \beta_n \}$
12: end for

Understanding of MENU

Median of means over linear parameters by Hsu & Sabato (2014)

- For each estimate, compute the distances between the estimate and estimates of other groups
- Take the median of the distances as the index of the estimate
- Select the estimate with the smallest index

Understanding of MENU

Framework comparison with MoM by Medina & Yang (2016)

 $N = T^{\frac{2p-2}{3p-2}}$

Understanding of MENU

Result comparison with MoM by Medina & Yang (2016)

- ▶ For MoM by Medina & Yang (2016)
 - The regret is bounded by $\widetilde{O}\left(\max_{n=1,\dots,N}\beta_{n-1}k\sqrt{N}\right)$, where $\beta_n = \Theta\left(k^{-\frac{p-1}{p}}\sqrt{n}\right)$
 - ▶ The value of k and N is constrained by $\max_{n=1,\cdots,N} \beta_n = \Omega(1)$
 - The regret of the MoM algorithm is $\widetilde{O}(c^{\frac{1}{p}}dT^{\frac{2p-1}{3p-2}})$
- For our MENU
 - Make each group contain the same playing history to compute regret easily
 - $\blacktriangleright \ k = \Theta\left(\log(T)\right)$

$$\flat \ \beta_n = \Theta(n^{\frac{2-p}{2p}})$$

Upper Bound Analysis: MENU Results

Theorem 2. Assume that for all t and $x_t \in D_t$ with $||x_t||_2 \leq D$, $||\theta_*||_2 \leq S$, $|x_t^\top \theta_*| \leq L$ and $\mathbb{E}[|\eta_t|^p | \mathcal{F}_{t-1}] \leq c$. Then, with probability at least $1 - \delta$, for every $T \geq 256 + 24 \log (e/\delta)$, the regret of the MENU algorithm satisfies

 $R(\mathsf{MENU}, T) \leqslant \widetilde{O}(c^{\frac{1}{p}} d^{\frac{1}{2} + \frac{1}{p}} T^{\frac{1}{p}}).$

• The regret is $\widetilde{O}\left(\sqrt{T}\right)$ when p=2

Algorithms: <u>Truncation under OFU</u> (TOFU)

Algorithm 2 TOFU

1: input d, b, p,
$$\delta$$
, λ , T, $\{D_t\}_{t=1}^T$
2: initialization: $V_0 = \lambda I_d$, $C_0 = \mathbb{B}(\mathbf{0}, S)$
3: for $t = 1, 2, \cdots, T$ do
4: $b_t = \left(\frac{b}{\log(\frac{2T}{\delta})}\right)^{\frac{1}{p-1}} t^{\frac{2-p}{2p}}$
5: $(x_t, \tilde{\theta}_t) = \arg \max_{(x,\theta) \in D_t \times C_{t-1}} \langle x, \theta \rangle$
6: Play x_t and observe a payoff y_t
7: $V_t = V_{t-1} + x_t x_t^T$ and $X_t^T = [x_1, \cdots, x_t]$
8: $[u_1, \cdots, u_d]^T = V_t^{-1/2} X_t^T$
9: for $i = 1, \cdots, d$ do
10: $Y_i^{\dagger} = (y_1 \mathbb{1}_{u_{i,1}y_1 \leqslant b_t}, \cdots, y_t \mathbb{1}_{u_{i,t}y_t \leqslant b_t})$
11: end for
12: $\theta_t^{\dagger} = V_t^{-1/2} (u_1^T Y_1^{\dagger}, \cdots, u_d^T Y_d^{\dagger})$
13: $\beta_t = 4\sqrt{d}b^{\frac{1}{p}} (\log(\frac{2dT}{\delta}))^{\frac{p-1}{p}} t^{\frac{2-p}{2p}} + \lambda^{\frac{1}{2}}S$
14: Update $C_t = \{\theta : \|\theta - \theta_t^{\dagger}\|_{V_t} \leqslant \beta_t\}$
15: end for

Understanding of TOFU

Comparison with CRT by Medina & Yang (2016)

• For CRT, the payoff at time t is truncated by α_t

•
$$y_t^{\dagger} = y_t \mathbb{1}_{y_t \leqslant \alpha_t}$$

- The regret of the CRT algorithm is $\widetilde{O}(bdT^{\frac{1}{2}+\frac{1}{2p}})$
- ► For TOFU, at time t, all of the historical payoffs are truncated by bt for each ui

•
$$u_i$$
 is the *i*-th row of $V_t^{-\frac{1}{2}} X_t^{\top}$
• $Y_i^{\dagger} = (y_1 \mathbb{1}_{u_{i,1}y_1 \leqslant b_t}, \cdots, y_t \mathbb{1}_{u_{i,t}y_t \leqslant b_t})$
• $\theta_t^{\dagger} = V_t^{-\frac{1}{2}} (u_1^{\top} Y_1^{\dagger}, \cdots, u_d^{\top} Y_d^{\dagger})$

► A 2-d example

arms	(0,1)	(1,0)
#pulls	50	1

Upper Bound Analysis: TOFU Results

Theorem 3. Assume that for all t and $x_t \in D_t$ with $||x_t||_2 \leq D$, $||\theta_*||_2 \leq S$, $|x_t^\top \theta_*| \leq L$ and $\mathbb{E}[|y_t|^p | \mathcal{F}_{t-1}] \leq b$. Then, with probability at least $1 - \delta$, for every $T \geq 1$, the regret of the TOFU algorithm satisfies

 $R(\mathsf{TOFU}, T) \leqslant \widetilde{O}(b^{\frac{1}{p}} dT^{\frac{1}{p}}).$

• The regret is $\widetilde{O}\left(\sqrt{T}\right)$ when p=2

Datasets

- Four synthetic datasets
- Metric: Cumulative payoffs
- ▶ Baselines: MoM and CRT by Medina & Yang (2016)
- Setting
 - Run experiments in a personal computer with Intel CPU@3.70GHz and 16 GB memory
 - Run Independently ten times for each epoch
 - Show cumulative payoffs with one standard variance

Synthetic Datasets

dataset	{#arms,#dims}	distribution {parameters}	$\{p, b, c\}$	optimal arm
\$1	{20,10}	$\begin{array}{l} {\rm Student's} \\ {\it t-distribution} \ \{\nu = \\ 3, l_p = 0, s_p = 1\} \end{array}$	{2.00, NA, 3.00}	4.00
S2	{100,20}	Student's t-distribution { $\nu =$ $3, l_p = 0, s_p = 1$ }	{2.00, NA, 3.00}	7.40
S3	{20,10}	Pareto distribution $\{\alpha = 2, s_m = \frac{x_t^\top \theta_*}{2}\}$	{1.50, 7.72, NA}	3.10
S4	{100,20}	Pareto distribution $\{\alpha = 2, s_m = \frac{x_t^\top \theta_*}{2}\}$	{1.50, 54.37, NA}	11.39

Figure 1: Comparison of cumulative payoffs for synthetic datasets S1-S2 with four algorithms.

Observation

 For S1-S2, our algorithm MENU beats MoM by Medina & Yang (2016)

Figure 2: Comparison of cumulative payoffs for synthetic datasets S3-S4 with four algorithms.

 Observation
 For S3-S4, our algorithm TOFU beats CRT by Medina & Yang (2016)

Summary

Contributions

- Derive lower bound for LinBET
- Develop two almost optimal bandit algorithms MENU and TOFU to solve LinBET
- Theoretical analysis of two algorithms

Publication: "Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs" (NIPS 2018, Spotlight).

Discussions

- Efficiency of TOFU
- Problem-dependent bounds
- The impact of d

Outline

- Introduction
- A Survey of Bandits
- Linear Stochastic Bandits with Heavy-Tailed Payoffs
- Conclusions and Future Directions

Conclusions

- Introduce the problem of bandits
- Conduct a brief survey
- Introduce our results in LinBET

Publication

- 1 Han Shao, Xiaotian Yu, Irwin King and Michael R. Lyu. Almost optimal algorithms for linear stochastic bandits with heavy-tailed payoffs. In *Proceedings of Advances in Neural Information Processing Systems (NIPS)*, pages 8430–8439, 2018. Spotlight presentation.
- 2 Xiaotian Yu, **Han Shao**, Michael R. Lyu and Irwin King. Pure exploration of multi-armed bandits with heavy-tailed payoffs. In *Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI)*, pages 937–946, 2018.

Future Directions

- 1. Automatically learning in bandits
 - Setting: distributional parameter learning
 - Challenge: index learning and error control in distributional parameters
 - Motivation: unknown b or c information in real-world datasets
- 2. Removing forced exploration in structured bandits
 - Challenge: how to design an efficient adaptive learning framework
 - Motivation: the state-of-the-art algorithms use forced exploration

End

Comparison on Regret, Complexity and Storage of Four Algorithms

algorithm	MoM	MENU	CRT	TOFU
regret	$\left \widetilde{O}(T^{\frac{2p-1}{3p-2}}) \right $	$\widetilde{O}(T^{\frac{1}{p}})$	$\left \widetilde{O}(T^{\frac{1}{2}+\frac{1}{2p}}) \right $	$ \widetilde{O}(T^{\frac{1}{p}})$
complexity	O(T)	$O(T \log T)$	O(T)	$O(T^2)$
storage	O(1)	$O(\log T)$	O(1)	O(T)

Upper Bound Analysis: MENU Proof sketch

Lemma 1. [Confidence Ellipsoid of LSE] Let $\hat{\theta}_n$ denote the LSE of θ_* with the sequence of decisions x_1, \dots, x_n and observed payoffs y_1, \dots, y_n . Assume that for all $\tau \in [n]$ and all $x_\tau \in D_\tau \subseteq \mathbf{R}^d$, $\mathbb{E}[|\eta_\tau|^p | \mathcal{F}_{\tau-1}] \leq c$ and $\|\theta_*\|_2 \leq S$. Then $\hat{\theta}_n$ satisfies

$$\mathsf{Pr}\left(\|\hat{\theta}_n - \theta_*\|_{V_n} \leqslant (9dc)^{\frac{1}{p}} n^{\frac{2-p}{2p}} + \lambda^{\frac{1}{2}}S\right) \geqslant \frac{3}{4},$$

Lemma 2. Recall $\hat{\theta}_{n,j}$, $\hat{\theta}_{n,k^*}$ and V_n in MENU. If there exists a $\gamma > 0$ such that $\Pr\left(\|\hat{\theta}_{n,j} - \theta_*\|_{V_n} \leq \gamma\right) \geq \frac{3}{4}$ holds for all $j \in [k]$ with $k \geq 1$, then with probability at least $1 - e^{-\frac{k}{24}}$, $\|\hat{\theta}_{n,k^*} - \theta_*\|_{V_n} \leq 3\gamma$.

Upper Bound Analysis: MENU

Proof sketch of Lemma 1

- Let u_i denote the *i*-th row of $V_t^{-1/2} X_t^{\top}$
- $\|\hat{\theta}_n \theta_*\|_{V_n} \leqslant \sqrt{\sum_{i=1}^d \left(u_i^\top (Y_n X_n \theta_*)\right)^2} + \lambda \|\theta_*\|_{V_n^{-1}}$
- Union bound

$$\Pr\left(\sum_{i=1}^{d} \left(\sum_{\tau=1}^{n} u_{i,\tau} \eta_{\tau}\right)^{2} > \gamma^{2}\right)$$

$$\leq \Pr\left(\exists i, \tau, |u_{i,\tau} \eta_{\tau}| > \gamma\right) + \Pr\left(\sum_{i=1}^{d} \left(\sum_{\tau=1}^{n} u_{i,\tau} \eta_{\tau} \mathbb{1}_{|u_{i,\tau} \eta_{\tau}| \leq \gamma}\right)^{2} > \gamma^{2}\right),$$

where $\mathbbm{1}_{\{\cdot\}}$ is the indicator function

Both terms could be bounded by Markov's inequality

• Set
$$\gamma = (9dc)^{\frac{1}{p}} n^{\frac{2-p}{2p}}$$

Upper Bound Analysis: MENU

Proof sketch of Lemma 2

- ▶ By Azuma-Hoeffding's inequality, we have with prob. at least $1 e^{-\frac{k}{24}}$, more than 2/3 of $\{\hat{\theta}_{n,1}, \cdots, \hat{\theta}_{n,k}\}$ are contained in $\mathbb{B}_{V_n}(\theta_*, \gamma) \triangleq \{\theta : \|\theta \theta_*\|_{V_n} \leqslant \gamma\}$
- ▶ r_j be the median of $\{\|\hat{\theta}_{n,j} \hat{\theta}_{n,s}\|_{V_n} : s \in [k] \setminus j\}$
- Select arm $\arg\min_{j\in[k]} r_j$
 - ▶ If $\hat{\theta}_{n,j} \in \mathbb{B}_{V_n}(\theta_*, \gamma)$, $\|\hat{\theta}_{n,j} \hat{\theta}_{n,s}\|_{V_n} \leq 2\gamma$ for all $\hat{\theta}_{n,s} \in \mathbb{B}_{V_n}(\theta_*, \gamma)$ by triangle inequality. Therefore, $r_j \leq 2\gamma$
 - ▶ If $\hat{\theta}_{n,j} \notin \mathbb{B}_{V_n}(\theta_*, 3\gamma)$, $\|\hat{\theta}_{n,j} \hat{\theta}_{n,s}\|_{V_n} > 2\gamma$ for all $\hat{\theta}_{n,s} \in \mathbb{B}_{V_n}(\theta_*, \gamma)$ by triangle inequality. Therefore, $r_j > 2\gamma$

Upper Bound Analysis: TOFU Proof sketch

Lemma 3. [Confidence Ellipsoid of Truncated Estimate] With the sequence of decisions x_1, \dots, x_t , the truncated payoffs $\{Y_i^{\dagger}\}_{i=1}^d$ and the parameter estimate θ_t^{\dagger} are defined in TOFU (i.e., Algorithm 2). Assume that for all $\tau \in [t]$ and all $x_{\tau} \in D_{\tau} \subseteq \mathbf{R}^d$, $\mathbb{E}[|y_{\tau}|^p|\mathcal{F}_{\tau-1}] \leq b$ and $\|\theta_*\|_2 \leq S$. With probability at least $1 - \delta$, we have

$$\|\theta_t^{\dagger} - \theta_*\|_{V_t} \leqslant 4\sqrt{d}b^{\frac{1}{p}} \left(\log\left(\frac{2d}{\delta}\right)\right)^{\frac{p-1}{p}} t^{\frac{2-p}{2p}} + \lambda^{\frac{1}{2}}S, \quad (3)$$

where $\lambda > 0$ is a regularization parameter and $V_t = \lambda I_d + \sum_{\tau=1}^t x_\tau x_\tau^\top$.

Upper Bound Analysis: TOFU

Proof sketch of Lemma 3

Like before. $\|\theta_t^{\dagger} - \theta_*\|_{V_t} \leqslant \sqrt{\sum_{i=1}^d \left(u_i^{\top} (Y_i^{\dagger} - X_t \theta_*)\right)^2 + \lambda \|\theta_*\|_{V_n^{-1}}}$ \blacktriangleright For each *i* $u_i^{\top} \left(Y_i^{\dagger} - X_t \theta_* \right) = \sum_{i=1}^{t} u_{i,\tau} \left(Y_{i,\tau}^{\dagger} - \mathbb{E}[Y_{i,\tau} | \mathcal{F}_{\tau-1}] \right)$ $\leq \left| \sum_{i=1}^{t} u_{i,\tau} (Y_{i,\tau}^{\dagger} - \mathbb{E}[Y_{i,\tau}^{\dagger} | \mathcal{F}_{\tau-1}]) \right| + \left| \sum_{i=1}^{t} u_{i,\tau} \mathbb{E}[Y_{i,\tau} \mathbb{1}_{|u_{i,\tau}| > b_{t}} | \mathcal{F}_{\tau-1}] \right|$ The first term is bounded by Bernstein's inequality

• Set $b_t = (b/\log(2d/\delta))^{\frac{1}{p}} t^{\frac{2-p}{2p}}$