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Multi-Armed Bandits (MAB)

▶ An agent has T rounds to play bandits
▶ At each time, the agent pulls one arm and observes a reward
▶ There is an optimal arm
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Multi-Armed Bandits (MAB)

...
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Multi-Armed Bandits (MAB)

How to maximize cumulative rewards?
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Multi-Armed Bandits (MAB)
Problem definition

▶ Scenario: K arms

· · ·v1 v2 v3 vK
▶ Model: sequential decision making to maximize cumulative

rewards

input: the arm set {1, · · · ,K}, and the number of rounds T ⩾ K
For time t = 1, · · · ,T,

an agent selects an arm It ∈ {1, · · · ,K}
observes a stochastic reward yt(It) ∼ vIt of the chosen arm It

▶ Remarks: for y ∼ vi, E[y] = ui and u∗ ≜ maxi=1,··· ,K ui
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Structured Bandits

classical unimodal

Lipschitz linear
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Linear Stochastic Bandits (LSB)
Problem definition

▶ Scenario:
▶ Arms are represented by d-dimensional vectors

· · ·
a 2-d case: (1, 0) (0.1, 0.5) (0.8, 0.2) (0.5, 0.5) · · ·

Input: the number of rounds T
for time t = 1, · · · ,T,

given the arm set Dt ⊆ Rd, an agent selects an arm xt ∈ Dt
observes a stochastic reward yt(xt) = x⊤t θ∗ + ηt, where ηt is

a stochastic noise

▶ Remarks:
▶ Usually, ηt follows a sub-Gaussian distribution



10/58

Motivation
Personalized recommendations

News recommendation (Li et al., 2010)
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Motivation
Portfolio managements

▶ Sequentially invest T units of money in d financial products
▶ At each round, select a weight w ∈ [0, 1]d

▶ Returns in the investment are rewards in LSB
▶ High-probability extreme returns exist in financial markets

Gaussian

Nasdaq
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A Taxonomy
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Goal and Metric
Regret minimization

min R(A,T) (equivalent to rewards maximization)

R(A,T) ≜ max
i=1,··· ,K

E

[ T∑
t=1

yt(i)−
T∑

t=1

yt(It)

]
= Tu∗ −

T∑
t=1

uIt (1)

Exploration Exploitation

True
Optimal

Empirically
Optimal at t
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Goal and Metric
Pure exploration

Probability of error: P[xT ̸= Opt] ⩽ δ

▶ xT is the output of A at time T and Opt is the optimal arm
▶ Two settings:

▶ Fixed confidence: given δ, what is the smallest T?
▶ Fixed budget: given T, what is the smallest δ?

Optimal
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Heuristic Methods for Regret Minimization
Selecting the arm with largest empirical average

A four-armed case with Bernoulli distributions
True means: {0.7, 0.8, 0.6, 0.5}

round arm 1 arm 2 arm 3 arm 4

1− 4 1
1
= 1 0

1
= 0 1

1
= 1 1

1
= 1

5 1+0
2

= 0.5 0 1 1

6 0.5 0 1+0
2

= 0.5 1

7 0.5 0 0.5 1+0
2

= 0.5

8 0.5 0 0.5 1+0
3

= 0.3

...
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Heuristic Methods for Regret Minimization
Selecting the arm with largest empirical average + standard deviation

A four-armed case with Bernoulli distributions
True means: {0.7, 0.8, 0.6, 0.5}

round arm 1 arm 2 arm 3 arm 4

1− 4 1
1
+ 1 = 2 0

1
+ 1 = 1 1

1
+ 1 = 2 1

1
+ 1 = 2

5 1+0
2

+ 0.7 = 1.2 1 2 2

6 1.2 1 1+0
2

+ 0.7 = 1.2 2

7 1.2 1 1.2 1+0
2

+ 0.7 = 1.2

8 1.2 1 1.2 1+0
3

+ 0.6 = 0.9

...
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Methodology for Stochastic Bandits
▶ Frequentist approach: Upper Confidence Bound (UCB)

▶ Construct an estimate and confidence interval of ui
▶ Select the arm with the largest value among supremes of the

confidence intervals

▶ Bayesian approach: Thompson sampling
▶ Construct a posterior distribution of ui
▶ Sample from posterior distributions and select the arm with

the largest sample value
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Theoretical Developments of Regret Minimization in MAB
work results

(Thompson, 1933) original formalization

(Lai & Robbins, 1985)
the first theoretical analysis

limT→∞
R(A,T)
log(T)

⩾
∑

∆i>0
∆i

KL(ui,u∗)

limT→∞
R(UCB,T)

log(T)
⩽
∑

∆i>0
∆i

KL(ui,u∗)

(Agrawal, 1995) a simpler algorithm
limT→∞

R(SM,T)
log(T)

⩽
∑

∆i>0
∆i

KL(ui,u∗)

(Auer et al., 2002)
finite-time analysis

R(UCB1,T) = O
(∑

∆i>0
log(T)
∆i

)
R(UCB1,T) = O

(√
T
)

(Agrawal et al., 2012) Bernoulli payoffs
R(TS,T) = O

((∑
∆i>0

1
∆i

2
)2

log(T)

)
(Kaufmann et al., 2012) Bernoulli payoffs

limT→∞
R(TS,T)

log(T)
⩽
∑

∆i>0
∆i

KL(ui,u∗)

(Garivier et al., 2018)
finite-time lower bound

small T: lower bound R(A,T) ⩾
∑

∆i>0
∆iT
2K

large T: lower bound R(A,T) = Ω
(∑

∆i>0
∆i log(T)
KL(ui,u∗)

)
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Theoretical Developments of Pure Exploration in MAB

work results

(Even-Dar et al., 2002) bounded payoffs
P
[
T ⩾

∑K
k=1 ∆

−2
k log

(
K

δ∆k

)]
⩽ δ

(Audibert & Bubeck, 2010)
bounded payoffs

P[Out ̸= Opt] ⩽ TK exp
(
−T−K

H1

)
(Karnin et al., 2013)

bounded payoffs
P
[
T ⩾

∑K
k=1 ∆

−2
k log

(
1
δ

log
(

1
∆k

))]
⩽ δ

P [Out ̸= Opt] ⩽ log(K) exp
(
− T

log(K)H2

)
(Jamieson et al., 2014) sub-Gaussian noises

P
[
T ⩾ H1 log

(
1
δ

)
+ H3

]
⩽ 4

√
cδ + 4cδ

(Kaufmann et al., 2016)
two-armed Gaussian bandits
limδ→0

E[T]

log( 1
δ )

⩾ 2(σ1+σ2)
2

(u1−u2)2

limδ→0
E[T]

log( 1
δ )

⩽ 2(σ1+σ2)
2

(u1−u2)2

limT→∞ sup− log(P[Out̸=Opt])
T ⩽ (u1−u2)

2

2(σ1+σ2)2
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Theoretical Developments of LSB
work results

(Abe & Long, 1999; Auer, 2000) original formalization

(Auer, 2002) first theoretical analysis; K arms
R(LinRel,T) = O

(√
Td log

3
2 (KT log(T))

)
(Dani et al., 2008)

compact arm set; bounded payoffs
R(A,T) = Ω

(
d
√

T
)

R(CB2,T) = O
(

d
√

T log
3
2 (T)

)
(Abbasi-Yadkori et al., 2011) compact arm set; sub-Gaussian noises

R(OFUL,T) = O
(

d
√

T log(T)
)

(Agrawal & Goyal, 2013) K arms; sub-Gaussian noises
R(TS,T) = O

(
d2

√
T log(dT)

)
(Lattimore & Szepesvari, 2017)

K arms; Gaussian payoffs
limT→∞

R(A,T)
log(T)

⩾ c(A, θ)

limT→∞
R(OA,T)

log(T)
⩽ c(A, θ)
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Other Classes of Structured Bandits

▶ Lipschitz (Magureanu et al., 2014): continuum-armed
bandit problems

▶ Convex (Agarwal et al., 2011): continuum-armed bandit
problems

▶ Unimodal (Combes & Proutiere, 2014): single-peak
preferences economics and voting theory

▶ Dueling (Yue et al., 2012): intranet-search systems
▶ General (Combes et al., 2017)
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Some Important Variants of Bandits
▶ Agent

▶ More than one agents → multi-player bandits
▶ Application: cognitive radio systems

▶ Feedback
▶ Rewards are not stochastic → adversarial bandits
▶ Observe feedback about more arms →

▶ online learning with full information
▶ online learning with semi-bandit feedback

▶ Distributions of noises are non-sub-Gaussian → bandits with
heavy-tailed distributions
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What Is A Heavy-Tailed Distribution?
Practical scenarios

▶ High-probability extreme returns in financial markets

Gaussian

Nasdaq

▶ Many other real cases
1. Delays in communication networks (Liebeherr et al., 2012)
2. Analysis of biological data (Burnecki et al., 2015)
3. ...
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Heavy-Tailed Distributions
Intuition and definition

▶ A distribution with a “tail” that is “heavier” than an
exponential

http://users.cms.caltech.edu/~adamw/papers/2013-SIGMETRICS-heavytails.pdf

▶ Mathematically, a random variable X is said to be heavy-tailed
if limx→∞ eϕxP[|X| > x] = ∞ for all ϕ > 0

http://users.cms.caltech.edu/~adamw/papers/2013-SIGMETRICS-heavytails.pdf
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Heavy-Tailed Distributions in Bandits

▶ Heavy-tailed distributions in bandits (Bubeck et al., 2013)

E[Xp] < +∞, (2)

where X is a stochastic reward/noise, and p ∈ (1, 2]

▶ Remarks
▶ Eq. (2) is a subcase of the general definition of heavy tails
▶ p > 1 is necessary for bandits as the expected payoff of each

arm should be finite
▶ The bounded p-th moments with p ∈ (2,+∞) can reduce to

the case of p = 2 (Jensen’s inequality)
▶ Payoffs with sub-Gaussian noises are light-tailed with finite

2-nd moment
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Weaker Assumption: Bounded p-th Moments
Examples

▶ Standard Student’s t-Distribution with 3 degrees of freedom
▶ The 2-nd central moment is bounded by 3
▶ The 2-nd raw moment (with a constant shift a) is bounded by

3 + a2

▶ Pareto distribution with shape parameter α and scale
parameter xm

▶ The p-th raw moments are bounded by αxp
m/(α− p), for all

p ∈ (1, α)
▶ The p-th central moments are not directly available
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LSB with Heavy-Tailed Payoffs
Problem definition

input: the arm set {Dt}T
t=1, and the number of rounds T

For time t = 1, · · · ,T,
given the arm set Dt ⊆ Rd, an agent selects an arm xt ∈ Dt
observes a stochastic reward yt = x⊤t θ + ηt, where ηt is a

stochastic noise
▶ Previous assumption (Abbasi-Yadkori et al., 2011): ηt is

sub-Gaussian conditional on Ft−1

▶ Our assumption: yt or ηt is heavy-tailed conditional on Ft−1

▶ Bounded raw moments
▶ Bounded central moments

▶ A connection in regret:
Õ
(√

T
)

(sub-Gaussian) → Õ
(√

T
)

(2-nd moment
bounded)
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Linear Stochastic Bandits with Heavy-Tailed Payoffs
(LinBET)

LinBET
Given a arm set Dt for time step t = 1, · · · ,T, an algo-
rithm A, of which the goal is to maximize cumulative pay-
offs over T rounds, chooses an arm xt ∈ Dt. With Ft−1, the
observed stochastic payoff yt(xt) is conditionally heavy-tailed,
i.e., E [|yt|p|Ft−1] ⩽ b or E [|yt − ⟨xt, θ∗⟩|p|Ft−1] ⩽ c, where
p ∈ (1, 2], and b, c ∈ (0,+∞).
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Challenges and Contributions

Challenges
▶ The lower bound of LinBET
▶ How to develop a robust estimator and bandit algorithms for

LinBET
▶ Regret analysis for the proposed bandit algorithms

Contributions
▶ The first to provide the lower bound for LinBET
▶ Develop two novel bandit algorithms to solve LinBET
▶ Conduct experiments to demonstrate the effectiveness of the

algorithms
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Lower Bound of LinBET
Results

Assume d ⩾ 2 is even. For Dt ∈ Rd, we fix the arm set as
Dt = D(d), where D(d) ≜ {(x1, · · · , xd) ∈ Rd

+ : x1 + x2 =

· · · = xd−1 + xd = 1}. Let Sd ≜ {(θ1, · · · , θd) : ∀i ∈
[d/2] , (θ2i−1, θ2i) ∈ {(2∆,∆), (∆, 2∆)}} with ∆ ∈ (0, 1/d].
Payoffs are in {0, (1/∆)

1
p−1 } such that, for every x ∈ D(d), the

expected payoff is θ⊤∗ x.

Theorem 1. If θ∗ is chosen uniformly at random from Sd, and
the payoff for each x ∈ D(d) is in {0, (1/∆)

1
p−1 } with mean

θ⊤∗ x, then for any algorithm A and every T ⩾ (d/12)
p−1

p , we
have

E [R(A,T)] ⩾ d
192

T
1
p .
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Lower Bound of LinBET
d = 2 and E [|yt|p|Ft−1] ⩽ d case

▶ Arm set: D(2) ≜ {(x1, x2) ∈ R2
+ : x1 + x2 = 1}

▶ θ∗ is chosen uniformly at random from {µ1, µ2}, where
µ1 = (2∆,∆) and µ2 = (∆, 2∆)

▶ ∆ will be set as a small value dependent on T
▶ Change of measure (through µ0 = (∆,∆))

𝑥"

𝑥#

1

1

optimal arm for 𝜇"

optimal arm for 𝜇#

0
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Lower Bound of LinBET
d = 2 and E [|yt|p|Ft−1] ⩽ d case

▶ Payoff distribution of x:

y(x) =
{(

1
∆

) 1
p−1 with a probability of ∆

1
p−1 θ⊤∗ x,

0 with a probability of 1−∆
1

p−1 θ⊤∗ x

▶ E [y(x)p] ⩽ 2

▶ E [y(x)q] ⩾
(

1
∆

) p−q
p−1 , q < p
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An Algorithm for LSB
Optimism in face of uncertainty (OFU) (Abbasi-Yadkori et al., 2011)

𝑑"

𝑑#

𝜃∗ 𝜃&

𝜃": optimal for arm (0,1)
𝜃#: optimal for arm (0.5,0.5)

𝜃.: optimal for arm (1,0)

▶ At time t, select arm xt by
▶ (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1

⟨x, θ⟩
▶ Ct = {θ : ∥θ − θ̂t,k∗∥Vt ⩽ βt}, Vt = λI +

∑t
τ=1 xτx⊤τ

▶ The regret is bounded by Õ
(

maxt∈[T] βt−1

√
T
)

▶ For sub-Gaussian case, LSE → βt = Θ
(√

log t
)

▶ For heavy-tailed case, LSE → βt is polynomial of t
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Techniques for Designing Algorithms
Median of means and truncation (Bubeck et al., 2013)

▶ Median of means

mean mean mean

median

▶ Truncation

t = 1 t = 2 t = 3 t = 4

sample drawn from the chosen arm
sample after truncation
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Previous Results
MoM and CRT by Medina & Yang (2016)

▶ Medina & Yang (2016) proposed two algorithms MoM (based
on median of means) and CRT (based on truncation)

▶ Both achieved the regret of Õ(T 3
4 ) when p = 2

▶ Is it possible to design algorithms to achieve the regret of
Õ(

√
T) when p = 2?
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Algorithms: Median of means under OFU (MENU)
Algorithm 1 MENU
1: input d, c, p, δ, λ, S, T, {Dn}N

n=1

2: initialization: k = ⌈24 log
( eT

δ

)
⌉, N = ⌊T

k ⌋, V0 = λId,
C0 = B(0,S)

3: for n = 1, 2, · · · ,N do
4: (xn, θ̃n) = arg max(x,θ)∈Dn×Cn−1

⟨x, θ⟩
5: Play xn for k times and observe payoffs yn,1, yn,2, · · · , yn,k
6: Vn = Vn−1 + xnx⊤n
7: For j ∈ [k], θ̂n,j = V−1

n
∑n

i=1 yi,jxi
8: For j ∈ [k], let rj be the median of {∥θ̂n,j − θ̂n,s∥Vn : s ∈

[k]\j}
9: k∗ = arg minj∈[k] rj

10: βn = 3
(
(9dc)

1
p n

2−p
2p + λ

1
2 S

)
11: Cn = {θ : ∥θ − θ̂n,k∗∥Vn ⩽ βn}
12: end for
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Understanding of MENU
Median of means over linear parameters by Hsu & Sabato (2014)

𝑑"

𝑑#

𝜃%"

𝜃%#

𝜃%&
𝜃%'

𝜃%(

𝜃%)
𝜃%*

𝜃%+

𝜃

▶ For each estimate, compute the distances between the
estimate and estimates of other groups

▶ Take the median of the distances as the index of the estimate
▶ Select the estimate with the smallest index
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Understanding of MENU
Framework comparison with MoM by Medina & Yang (2016)

MENU

θ̂n,k∗

calculate k LSEs with payoffs on {xi}
n
i=1

take median of means of {θ̂n,j}
k
j=1

· · ·

...
...

...
...

...
...

...

x1

x1

x2

x2

x3

x3

· · ·

· · ·

xn

xn

· · ·

· · ·

xN

xN

k = ⌈24 log
(

eT
δ

)

⌉

N = ⌊T
k
⌋

θ̂n,1 θ̂n,k

MoM

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

...
...

...
...

...
...

x1

x1

x1

xn

xn

xn

xN

xN

xN

N = T
2p−2

3p−2

k = T
p

3p−2

calculate LSE with {l̃i}
n
i=1

of payoffs on {xi}
k, i ∈ [n]

take median of means

θ̂n

l̃1 l̃n
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Understanding of MENU
Result comparison with MoM by Medina & Yang (2016)

▶ For MoM by Medina & Yang (2016)
▶ The regret is bounded by Õ

(
maxn=1,··· ,N βn−1k

√
N
)

, where

βn = Θ
(

k−
p−1

p
√

n
)

▶ The value of k and N is constrained by maxn=1,··· ,N βn = Ω(1)

▶ The regret of the MoM algorithm is Õ(c
1
p dT

2p−1
3p−2 )

▶ For our MENU
▶ Make each group contain the same playing history to compute

regret easily
▶ k = Θ(log(T))

▶ βn = Θ(n
2−p
2p )
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Upper Bound Analysis: MENU
Results

Theorem 2. Assume that for all t and xt ∈ Dt with ∥xt∥2 ⩽ D,
∥θ∗∥2 ⩽ S, |x⊤t θ∗| ⩽ L and E[|ηt|p|Ft−1] ⩽ c. Then, with
probability at least 1− δ, for every T ⩾ 256+24 log (e/δ), the
regret of the MENU algorithm satisfies

R(MENU,T) ⩽ Õ(c
1
p d

1
2+

1
p T

1
p ).

▶ The regret is Õ
(√

T
)

when p = 2
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Algorithms: Truncation under OFU (TOFU)
Algorithm 2 TOFU
1: input d, b, p, δ, λ, T, {Dt}T

t=1

2: initialization: V0 = λId, C0 = B(0,S)
3: for t = 1, 2, · · · ,T do

4: bt =

(
b

log( 2T
δ )

) 1
p−1

t
2−p
2p

5: (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1
⟨x, θ⟩

6: Play xt and observe a payoff yt
7: Vt = Vt−1 + xtx⊤t and X⊤

t = [x1, · · · , xt]

8: [u1, · · · , ud]
⊤
= V−1/2

t X⊤
t

9: for i = 1, · · · , d do
10: Y†

i = (y11ui,1y1⩽bt , · · · , yt1ui,tyt⩽bt)
11: end for
12: θ†t = V−1/2

t (u⊤
1 Y†

1, · · · , u⊤
d Y†

d)

13: βt = 4
√

db
1
p
(
log

(
2dT
δ

)) p−1
p t

2−p
2p + λ

1
2 S

14: Update Ct = {θ : ∥θ − θ†t ∥Vt ⩽ βt}
15: end for
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Understanding of TOFU
Comparison with CRT by Medina & Yang (2016)

▶ For CRT, the payoff at time t is truncated by αt
▶ y†t = yt1yt⩽αt

▶ The regret of the CRT algorithm is Õ(bdT
1
2+

1
2p )

▶ For TOFU, at time t, all of the historical payoffs are truncated
by bt for each ui

▶ ui is the i-th row of V− 1
2

t X⊤
t

▶ Y†
i = (y11ui,1y1⩽bt , · · · , yt1ui,tyt⩽bt)

▶ θ†t = V− 1
2

t (u⊤
1 Y†

1, · · · , u⊤
d Y†

d)

▶ A 2-d example
arms (0, 1) (1, 0)

#pulls 50 1
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Upper Bound Analysis: TOFU
Results

Theorem 3. Assume that for all t and xt ∈ Dt with ∥xt∥2 ⩽ D,
∥θ∗∥2 ⩽ S, |x⊤t θ∗| ⩽ L and E[|yt|p|Ft−1] ⩽ b. Then, with
probability at least 1 − δ, for every T ⩾ 1, the regret of the
TOFU algorithm satisfies

R(TOFU,T) ⩽ Õ(b
1
p dT

1
p ).

▶ The regret is Õ
(√

T
)

when p = 2
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Experimental Results

▶ Datasets
▶ Four synthetic datasets
▶ Metric: Cumulative payoffs
▶ Baselines: MoM and CRT by Medina & Yang (2016)

▶ Setting
▶ Run experiments in a personal computer with Intel

CPU@3.70GHz and 16 GB memory
▶ Run Independently ten times for each epoch
▶ Show cumulative payoffs with one standard variance
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Experimental Results
Synthetic Datasets

dataset {#arms,#dims} distribution
{parameters}

{p, b, c} optimal
arm

S1 {20,10} Student’s
t-distribution {ν =
3, lp = 0, sp = 1}

{2.00, NA, 3.00} 4.00

S2 {100,20} Student’s
t-distribution {ν =
3, lp = 0, sp = 1}

{2.00, NA, 3.00} 7.40

S3 {20,10} Pareto distribution
{α = 2, sm =

x⊤t θ∗
2

}
{1.50, 7.72, NA} 3.10

S4 {100,20} Pareto distribution
{α = 2, sm =

x⊤t θ∗
2

}
{1.50, 54.37,

NA}
11.39
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Experimental Results
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Figure 1: Comparison of cumulative payoffs for synthetic datasets
S1-S2 with four algorithms.

Observation
▶ For S1-S2, our algorithm MENU beats MoM by Medina

& Yang (2016)
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Experimental Results
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Figure 2: Comparison of cumulative payoffs for synthetic datasets
S3-S4 with four algorithms.

Observation
▶ For S3-S4, our algorithm TOFU beats CRT by Medina &

Yang (2016)
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Summary

Contributions
▶ Derive lower bound for LinBET
▶ Develop two almost optimal bandit algorithms MENU

and TOFU to solve LinBET
▶ Theoretical analysis of two algorithms

Publication: “Almost Optimal Algorithms for Linear Stochastic Bandits with
Heavy-Tailed Payoffs” (NIPS 2018, Spotlight).

Discussions
▶ Efficiency of TOFU
▶ Problem-dependent bounds
▶ The impact of d
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Outline

▶ Introduction

▶ A Survey of Bandits

▶ Linear Stochastic Bandits with Heavy-Tailed Payoffs

▶ Conclusions and Future Directions
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Conclusions

▶ Introduce the problem of bandits
▶ Conduct a brief survey
▶ Introduce our results in LinBET
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Publication

1 Han Shao, Xiaotian Yu, Irwin King and Michael R. Lyu. Almost
optimal algorithms for linear stochastic bandits with heavy-tailed
payoffs. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), pages 8430–8439, 2018. Spotlight
presentation.

2 Xiaotian Yu, Han Shao, Michael R. Lyu and Irwin King. Pure
exploration of multi-armed bandits with heavy-tailed payoffs. In
Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence (UAI), pages 937–946, 2018.
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Future Directions

1. Automatically learning in bandits
▶ Setting: distributional parameter learning
▶ Challenge: index learning and error control in distributional

parameters
▶ Motivation: unknown b or c information in real-world datasets

2. Removing forced exploration in structured bandits
▶ Challenge: how to design an efficient adaptive learning

framework
▶ Motivation: the state-of-the-art algorithms use forced

exploration
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End
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Comparison on Regret, Complexity and Storage of Four
Algorithms

algorithm MoM MENU CRT TOFU

regret Õ(T
2p−1
3p−2 ) Õ(T

1
p ) Õ(T

1
2
+ 1

2p ) Õ(T
1
p )

complexity O(T) O(T log T) O(T) O(T2)

storage O(1) O(log T) O(1) O(T)
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Upper Bound Analysis: MENU
Proof sketch

Lemma 1. [Confidence Ellipsoid of LSE] Let θ̂n denote the LSE
of θ∗ with the sequence of decisions x1, · · · , xn and observed
payoffs y1, · · · , yn. Assume that for all τ ∈ [n] and all xτ ∈
Dτ ⊆ Rd, E[|ητ |p|Fτ−1] ⩽ c and ∥θ∗∥2 ⩽ S. Then θ̂n satisfies

Pr
(
∥θ̂n − θ∗∥Vn ⩽ (9dc)

1
p n

2−p
2p + λ

1
2 S

)
⩾ 3

4
,

Lemma 2. Recall θ̂n,j, θ̂n,k∗ and Vn in MENU. If there exists
a γ > 0 such that Pr

(
∥θ̂n,j − θ∗∥Vn ⩽ γ

)
⩾ 3

4 holds for all
j ∈ [k] with k ⩾ 1, then with probability at least 1 − e− k

24 ,
∥θ̂n,k∗ − θ∗∥Vn ⩽ 3γ.
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Upper Bound Analysis: MENU
Proof sketch of Lemma 1

▶ Let ui denote the i-th row of V−1/2
t X⊤

t

▶ ∥θ̂n − θ∗∥Vn ⩽
√∑d

i=1

(
u⊤

i (Yn − Xnθ∗)
)2

+ λ∥θ∗∥V−1
n

▶ Union bound

Pr

 d∑
i=1

( n∑
τ=1

ui,τητ

)2

> γ2


⩽ Pr (∃i, τ, |ui,τητ | > γ) + Pr

 d∑
i=1

( n∑
τ=1

ui,τητ1|ui,τητ |⩽γ

)2

> γ2

 ,

where 1{·} is the indicator function
▶ Both terms could be bounded by Markov’s inequality
▶ Set γ = (9dc)

1
p n

2−p
2p
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Upper Bound Analysis: MENU
Proof sketch of Lemma 2

▶ By Azuma-Hoeffding’s inequality, we have with prob. at
least 1− e− k

24 , more than 2/3 of {θ̂n,1, · · · , θ̂n,k} are
contained in BVn(θ∗, γ) ≜ {θ : ∥θ − θ∗∥Vn ⩽ γ}

▶ rj be the median of {∥θ̂n,j − θ̂n,s∥Vn : s ∈ [k]\j}
▶ Select arm arg minj∈[k] rj

▶ If θ̂n,j ∈ BVn(θ∗, γ), ∥θ̂n,j − θ̂n,s∥Vn ⩽ 2γ for all
θ̂n,s ∈ BVn(θ∗, γ) by triangle inequality. Therefore,
rj ⩽ 2γ

▶ If θ̂n,j /∈ BVn(θ∗, 3γ), ∥θ̂n,j − θ̂n,s∥Vn > 2γ for all
θ̂n,s ∈ BVn(θ∗, γ) by triangle inequality. Therefore,
rj > 2γ
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Upper Bound Analysis: TOFU
Proof sketch

Lemma 3. [Confidence Ellipsoid of Truncated Estimate] With
the sequence of decisions x1, · · · , xt, the truncated payoffs
{Y†

i }d
i=1 and the parameter estimate θ†t are defined in TOFU

(i.e., Algorithm 2). Assume that for all τ ∈ [t] and all
xτ ∈ Dτ ⊆ Rd, E[|yτ |p|Fτ−1] ⩽ b and ∥θ∗∥2 ⩽ S. With
probability at least 1− δ, we have

∥θ†t − θ∗∥Vt ⩽ 4
√

db
1
p

(
log

(
2d
δ

)) p−1
p

t
2−p
2p + λ

1
2 S, (3)

where λ > 0 is a regularization parameter and Vt = λId +∑t
τ=1 xτx⊤τ .
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Upper Bound Analysis: TOFU
Proof sketch of Lemma 3

▶ Like before,

∥θ†t − θ∗∥Vt ⩽

√√√√ d∑
i=1

(
u⊤

i (Y†
i − Xtθ∗)

)2
+ λ∥θ∗∥V−1

n

▶ For each i

u⊤
i

(
Y†

i − Xtθ∗
)
=

t∑
τ=1

ui,τ
(

Y†
i,τ − E[Yi,τ |Fτ−1]

)

⩽
∣∣∣∣∣

t∑
τ=1

ui,τ (Y†
i,τ − E[Y†

i,τ |Fτ−1])

∣∣∣∣∣+
∣∣∣∣∣

t∑
τ=1

ui,τE[Yi,τ1|ui,τ Yi,τ |>bt |Fτ−1]

∣∣∣∣∣
▶ The first term is bounded by Bernstein’s inequality
▶ Set bt = (b/ log(2d/δ))

1
p t

2−p
2p


