
Department of Computer Science and Engineering

The Chinese University of Hong Kong

Final Year Project 2011-2012 (2nd Term)
LYU1103

Project Title: i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
Prepared by: Ng Ka Hung (1009615714) khng9@cse.cuhk.edu.hk
Supervisor: Professor Michael R. Lyu

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
2

< This is a blank page >

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
3

Abstract

This report covers details of our idea, design and implementation of our final year

project iDigi.T.able in year 2011 – 2012.

Our project goal is to implement an Augmented Reality (AR) game on iPad

which allows multi-users to share a gaming interface via network.

We first introduce the technologies we based on and some basic thoughts about

why we are doing this project in the Objective section.

We will then discuss about techniques we have investigate that could help and

methodologies we have used in the project. For the AR engine part, we will justify

the functionalities of different SDKs and analyze them in detail. The network

connection method will also be discussed.

Then we will cover the design of our system. In this part, we will present the

architecture and implementation plan for our project. Each module will be

discussed in detail.

 In the upcoming experiment part, we will focus on how we try out new

techniques to assist our work in the project. We also tested the tools and see

potential room of improve in that. Difficulties and challenges we are currently

facing will also be mentioned.

Finally, in the conclusion part, summary of work things learnt will be recorded.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
4

Contents

Abstract .. 3

Contents ... 4

Chapter 1. Introduction .. 6

1.1 Motivation .. 6

1.2 Background ... 9

1.3 Objective .. 12

1.4 Development Environment .. 12

1.5 Runtime Environment .. 14

Chapter 2. Augmented Reality ... 17

2.1 History .. 17

2.2 Types of AR ... 18

2.3 Applications ... 19

2.4 AR in game industry .. 20

2.5 Marker detection and recognition .. 21

Chapter 3 Qualcomm AR SDK ... 25

3.1 Introduction .. 25

3.2 System architecture ... 26

3.3 Trackables ... 28

3.4 Target management system .. 31

3.5 Development on iOS ... 36

3.6 Compare with String AR .. 37

Chapter 4. Networking ... 40

4.1 Network Socket ... 40

4.2 HTTP Request .. 41

4.3 Game center ... 42

4.4 Peer to Peer .. 42

4.5 JSON ... 43

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
5

Chapter 5. Design and Implementation .. 45

5.1 Idea .. 45

5.2 Settings .. 46

5.3 Modules ... 47

5.4 Game design ... 58

Chapter 6. Pong .. 60

6.1 Background ... 60

6.2 Overview .. 61

6.3 Definitions .. 62

6.4 General Flow ... 64

6.5 System Architect .. 67

6.5.4 User Control ... 113

Chapter 7. Experiment .. 114

7.1 Camera match-moving .. 114

7.2 Networking ... 120

Chapter 8. Contribution of work .. 123

Chapter 9. Conclusion .. 126

Chapter 10. Progress and difficulties ... 127

10.1 Difficulties and challenges ... 128

Chapter 11. Evaluation ... 130

Chapter 12. Acknowledgement ... 132

References ... 133

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
6

Chapter 1. Introduction
1.1 Motivation

The previous project i.Digi.T.able (supervised by Prof. R Michael Lyu)
implements a Digital Interactive Game Interface Table using plasma display

monitors and cameras to create a shared gaming platform over internet. The

previous version of i.Digi.T.able enables users to play chess games and mini

board games (e.g. Go chess, Chinese chess, Uno) in different place using real

chess/game setup. The video image of the chess board is recorded and sent

over the Internet. Hence creates a platform for users in different room to play in

the same game interacting with the real object.

Fig.1.1.1 Original project implemented by Plasmas and Overhead cameras

When we review the above project, we are inspired by how multi-user can

interact “within a same platform while they are in different place” . We also found

that the concept of “combining reality and computer graphics” to enhance user

experience in the Augment Reality projects very interesting. Hence, we came up

the raw idea of the project.

Augmented Reality (AR)

AR has been introduced to computer industry since 1950s. However, due

to limitation of hardware and low efficiency of related algorithm, its developmental

progress was so slow. Until recent years, AR becomes popular especially on

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
7

mobile devices and has a wide variety of application. Adding AR element to

games can easily enhance the realism and impressiveness.

Fig.1.1.2 Example - Hoops AR

There are some outstanding AR games available on the App Store. For example

the Hoops AR, it is a game played with a virtual basketball court superimposed

on the location of the predefined marker i.e. the ticket.

Fig.1.1.3 Example – Wikitude World Browser

Another example is Wikitude World Browser. It makes use of GPS,

accelerometer and digital compass. By detecting surroundings, users can access

information on the augmented layer instantly.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
8

Fig.1.1.4 Rock ‘Em sock ‘Em Robots is an AR game example

We observe that multi-player AR games are so rare on the market. One of the

real cases is the Rock ‘Em Sock ‘Em Robots made corporately by Mattel and

Qualcomm. However, this game has made not much difference from a single-

player game since it requires user to use the same piece of marker.

Our motivation
 We wish to depend on the relative position of device to the marker. In this way,

we can construct a virtual space between two devices. Each device can view

object respect to its relative position in the virtual space. It is also possible to view

another device’s virtual position and interact with it.

Fig.1.1.5 Our first idea of the i.Digi.T.able

Valid game area

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
9

1.2 Background

Despite the rise of AR applications, there are only a few mature software libraries

which provide well developed tool kit. Two of them are the Qualcom and String

AR SDKs. The Qualcom AR SDK is named Vuforia in February 2012.

The Qualcomm AR SDK (Vuforia) utilizes computer vision technology to tightly

align graphics with underlying objects and features support for image targets,

frame markers, virtual buttons and simple 3D objects. It is open-source and

available for both Android and iOS platforms. The String AR SDK provides less in

the aspect of functionality and its extendibility is very limited for free license.

Below is a brief comparison between two:

License Free Free for limited version

Platform iOS, Android iOS, Android (in progress)

Multiple markers Yes No

3-rd Party Integration Yes, Unity3D Yes, Unity3D

Detailed comparison on functionalities will be further discussed in later chapters.

AR applications have be deployed on different platforms, each platform has its

own characteristic.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
10

Here we have a brief comparison of AR application on different platforms:

Platform Advantage Disadvantage

PC 1. Large display screen
2. Higher computational power*

1. Lack of mobility
2. Need external

camera

Mobile 1. High market share
2. High mobility
3. Touch gesture control
4. Built-in camera

1. Smaller display
screen

2. Lower
computational
power

Tablet PC 1. High market share
2. High mobility
3. Touch gesture control
4. Large display screen
5. Built-in camera

1. Lower hardware
extendibility

* nowadays, the computational power of Tablet PC and mobile has already achieved a PC-standard

level, different between PC and mobile device in this aspect is not very significant.

Instead of the old i.Digi.T.able system design, we are going to design another

system to achieve the goal: creating a “space sharing” platform. We have

considered the special characteristic of our client device - iPad, hence we chose

to adapt a more fashionable and interesting design.

Such set up should make good use of the functionalities iPad naturally provides.

Possible impressive features we can consider to include:

1. The front cam can be used for video conferencing; players can

communicate with each other directly.

 However video conferencing function will use up lots of network traffic.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
11

2. The front cam can be used to track the user’s position towards to screen,

which potentially can be used to implement VPT (Visual Perception Technology)

if possible.

3. Players can interact with the game using the touch monitor other than only

moving the game objects around.

4. The game can be set up on any plane platform.

5. Game virtual objects can be displayed in a 3-D manner instead of top-view

only.

6. The GPS and accelerometer built in the iPad can help enhancing the

system.

1.2.1 accelerometer helps detect device orientation and rolling

7. Wireless network system enables iPad to go anywhere, however we may
need a server to host and process the data.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
12

1.3 Objective

In our Final Year Project, our group is trying to use iPad as the development

platform to implement an AR game.

The game should enable users using 2 different iPad clients having the

experience that they are sharing the same virtual space.

Main objectives of our project:

● Track the real-object mark and determine the camera’s position

● Display simple objects on virtual space depends on real space scenes

● Exchange position information between 2 iPad clients

● Implement a simple AR game on iOS platform (iPad)

1.4 Development Environment

Development Platform / tool Programming Language(s)
involved

Client program

Mac OS/ Xcode 4.0

Objective-C

Server (network) Linux / vim,pico PHP / Shell script / C / SQL

Most of the development processes are carried on Mac OS. It is an obligation for

iOS applications to be developed on MacOS.

Xcode
Xcode is an integrated IDE for developing MacOS and iOS

application. It includes a modified version of free software GNU

Compiler Collection, supporting several common programming

languages, such as C, C++, JAVA, Objective-C, Python, Ruby,etc. .Its package

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
13

comes with Cocoa and Cocoa Touch frameworks. The frameworks provide User

Interface, Gesture detection control and more necessary libraries for iOS devices.

The Xcode version we are currently using in our development is 4.0.2. This

version is released on March 2011.

We have chosen Xcode as our main development environment as many other

iOS application developers do. It is well-supported for syntax and library API

code auto completion. Moreover the debug and compiling tools have no better

replacement. It is smooth and handy to use Xcode to finish our client side

program.

PHP
For the server, we have chosen PHP (PHP: Hypertext

Preprocessor) to develop the server program. It is mainly

because of its powerfulness as a server side programming language.

PHP is a general-purpose scripting language mainly use for web development. It

is free software under PHP License. PHP can be set up on almost every

operating system.

PHP includes free and open source library on its build. It also embeds with

MySQL, SQLite as database server.

PHP programs can be deployed as web application or stand alone programs.

In our implementation, we use http requests as main technique to communicate

between machines. PHP is easy to write and provides various of good libraries to

support our work.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
14

 SQLite
SQLite is a C library that implements an

embeddable SQL database engine. PHP

programs can use SQL database service

without running a separate RDBMS process.

SQLite is not a client library used to connect to a big database server. The

SQLite library reads and writes directly to and from the database files on disk,

say info.db. The transaction of SQLite is atomic and consistent, which provides a

durable feature for safe database usage. Another promising advantage of SQLite

is zero-configuration. Setup is no needed before use.

SQLite can be used as application database for mobile apps. It can also be used

as a database for gadgets such as some hardware device (e.g. mp3, PDA etc.).

Some medium-size websites also use SQLite because of its easiness of setup.

Using SQLite is handy, we can insert SQL queries in PHP statements to invoke

database functions. Returning results can be used for future computation as

output.

1.5 Runtime Environment

For the development, we have chosen iPad as the platform. iPad is a trendy

tablet computing device nowadays. iOS is a mobile operation system developed

by Apple Inc. Originally it is designed for iPhone but now is extended onto other

Apple’s product such as iPad and iPod touch. The first iOS was released in 2007.

In year 2011, there are 500,000 Apps for the iOS platform. iOS has became a

popular platform on mobile. The iOS version for our runtime environment is

iOS4.3 running on iPad2.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
15

iOS4.3 runs on ARM family processor. For iPad2, it is using the Apple A5

processor and builds on top of a unix-like kernal. The abstract layering

architecture of iOS gives developer choices when developing their applications in

different layer.

Fig.1.5.1 iOS technology layer

The main reason iOS is adopted as our runtime platform is due to the User

Interface experience and portable feature of iPad. With a 9.7 inch multi-touch

sensible monitor, virtual world can be displayed realistically. We also take

advantage of the front/rear cameras built-in on iPad. The process of tracking real

object is done by analyzing the camera buffer.

There are also much API available since iOS is getting more popular, this would

help developers in coding on their project more efficiently.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
16

iOS simulator

Fig.1.5.2 iPad Screen on iOS simulator

Apple provides a debug tool for iOS application developers that let developers

need not compile the program to a designated hardware machine every time.

iOS simulator could simulate gestures on real device (such as drag and drop,

pinching). Orientation, networking and memory management can also be

simulated.

However for our project, camera tracking is an essential element that cannot be

simulated by iOS simulator. When we test and debug our work, we shall load the

program onto the machine directly.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
17

Chapter 2. Augmented Reality

2.1 History
In 1966 Professor Ivan Sutherland of Electrical Engineering at Harvard University

invented the first model of one of the most important devices used in AR today -

the head-mounted display. Although the model was experimental and unusable,

it was the first step in the development of AR.

Until 1999, AR remained unfamiliar to the consumer. It was because of the

requirement of bulky, expensive equipment and complicated software. However,

AR gained recognition in some sci-fi films. One instance was RoboCop (1987).

The big helmet on Murphy’s head gives a stream of data and information to

enhance his vision and understanding of what’s around.

Fig. 2.1.1 RoboCop Movie Screen Shot

In recent years, smart phones become so common and most are equipped with

camera, GPS, digital compass, etc. Therefore, the role of AR in application

becomes more significant. From geo-navigation to video gaming, AR enhances

the user experience and realism.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
18

2.2 Types of AR

2.2.1 Marker-less
Marker-less AR typically uses the GPS or digital compass feature of

mobile devices to locate and interact with surroundings. Sometimes,

camera is also used. AR information will be displayed on the video.

 Fig. 2.2.1.1 Marker-less AR example

2.2.2 Marker-based
Marker-based AR typically uses the camera feature of mobile devices to

analyze markers captured in video. QR codes are probably the most seem

application of this type. Besides, the pose information of the marker may

be useful sometimes. Users can move the device to view the virtual model

in different angle.

 Fig. 2.2.2.1 Marker-based AR example

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
19

2.3 Applications
There are some augmented reality apps for iPhone:

1. Geo-navigation e.g. SkyGlass
SkyGlass is an AR compass that display geo-information augmented to the real

scene on the screen. It also makes use of GPS tracker,

Fig. 2.3.1 SkyGlass

2. Informative e.g. Wikitude, Layer
Wikitude is an application that when user view a location with the camera,

additional and interactive information would be shown on the screen.

Fig. 2.3.2 Labeling information in Augmented Reality

3. Translation e.g. Word Lens
Word lens is an application used to translate words in the real world. The result

will be displayed directly on the same place and same location on the screen.

What the user see is the language is translated into their preferred one.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
20

Fig2.3.3 Word lens

4. Sampler e.g. The Sampler by Converse
This kind of applications usually is developed by product resellers. Customers

can view the virtual object on device. The device can be rotated and transposed

by moving the real marker in front of the camera. These applications bring new

experience to costumers and it is a quite attractive advertisement method.

2.4 AR in game industry
AR has its appearance on gaming consoles and mobile devices.

1. Consoles e.g EyePet
EyePet is a petting game on PS3. User can interact with the pet using marker

and gesture. This is a quite new idea on existing game console platform.

2. AR Defender
AR defender is a mobile AR game that involves tower and weapons. Tower

defender is a quite popular game on different platforms. User experience is

enhanced, user can move around with the device-in-hand as live viewer.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
21

Fig2.4.1 AR defender game interface

2.5 Marker detection and recognition
Marker detection and recognition process involves three stages:

2.5.1 Image conversion
The first step is to convert the captured frame from colored into binary

image. This process is called thresholding and it is the most basic form of

image segmentation.

Fig2.5.1.1 Image after threshold processing

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
22

The most basic thresholding of image is to choose a fixed threshold value

and then compare every pixel to that value. However, fixed thresholding is

very much affected by the illumination changes in image or video stream.

In order to solve the problem caused by variations in illumination, adaptive

thresholding is invented. The major difference between the two approach is

that a different threshold value is computed for each pixel instead.

Adaptive thresholding is more robust in this way.

Since the process is repeated over and over while camera capturing video

stream, the implementation should be kept as simple and fast as possible.

The pseudo code below demonstrates adaptive thresholding for input

image in, output binary image out, image width w and image height h.

function adaptive_threshold(in, out, w, h)

for i = 0 to w do
sum = 0
for j = 0 to h do

sum = sum + in[i, j]
if i = 0 then

intImg[i, j] = sum
else

intImg[i, j] = intImg[i − 1, j] + sum
end if

end for
end for
for i = 0 to w do
for j = 0 to h do

x1 = i − s/2
x2 = i + s/2
y1 = j − s/2
y2 = j + s/2
count = (x2 − x1) x (y2 − y1)
sum = intImg[x2,y2] − intImg[x2,y1 − 1] −

intImg[x1 − 1,y2] + intImg[x1 − 1,y1 −
1]

if (in[i, j] x count) ≤ (sum x (100 −t)/100)
then

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
23

out[i, j] = 0
else

out[i, j] = 255
end if

end for
end for
end function

2.5.2 Feature points computation
The next step is to compute the feature points on binary image. The

corners need to be detected accurately in order to have reliable camera

pose estimation.

 Fig. 2.5.2.1 Feature point example

2.5.3 Identification
The final step is to restore the effect of rotation, translation and

perspective transformation by solving a simple linear system.

Suppose we have found the positions of four corners by feature points

computation and the 3D coordinates in object space of the marker’s

corners are given by (xi, yi, 0) and the measured coordinates of the

corners in the image are given by (Xi, Yi). The z coordinate is set to 0

because the marker is planar. All we need to compute are 9 parameters

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
24

for rotation matrix R and 3 parameters for translation vector T. For

simplification, we can divide the numerator and denominator by tz and

rearrange to obtain:

Hence we can calculate for only 8 elements. Given the 3D coordinates and

2D image coordinates, we solve the linear system below:

The result vector of the linear system implies a normalized marker. By

using the result vector, the system can provide users the pose information

for drawing virtual 3D objects.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
25

Chapter 3 Qualcomm AR SDK
3.1 Introduction
Qualcomm AR SDK Vuforia (QCAR SDK in short) fetches live streaming from

the device camera. It then analyzes the video by marker detection and provides

the 3D spatial information of the detected marker via API. Programmers can use

such information to draw appropriate virtual 3D objects on the camera video. As

a result, the virtual objects are blended into real footage in real-time.

Fig. 3.1.1 A virtual 3D car is superimposed on top of live camera preview

Below is the overview of application development with the Qualcomm AR

Platform. The platform consists of two components:

1. Target Management System (hosted on QDevNet http://ar.qualcomm.at

Allows developers to upload input image for the markers to be tracked and then

download the corresponding target resources.

)

http://ar.qualcomm.at/�
http://ar.qualcomm.at/�
http://ar.qualcomm.at/�
http://ar.qualcomm.at/�
http://ar.qualcomm.at/�
http://ar.qualcomm.at/�
http://ar.qualcomm.at/�

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
26

2. QCAR SDK Vuforia
Provides developers to link their application to the static library i.e. libQCAR.a on

iOS or libQCAR.so on Android.

Fig. 3.1.2 QCAR SDK library

3.2 System architecture
The following are the core components of a QCAR-based application:

Camera

The camera class is a singleton. It gives captured camera frames to

the tracker for marker detection and recognition. Developers can

decide when to start and stop the camera capture.

Image Converter

The image converter class is a singleton. It converts captured

camera frames from the camera format YUV12 to the RGB565

format for OpenGL ES rendering and the luminance format for

marker tracking.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
27

Tracker

The tracker class is a singleton. It uses the computer vision

algorithms to detect and track real world objects in captured camera

frames. The target objects are evaluated and the results are stored

in a state object that is accessible from application code.

Renderer

The renderer class is a singleton. It renders captured camera frame

to the video background. Its performance is optimized for specific

devices.

Application Code

The application code must involve initialization of all the above

components. While the state object is updated for each processed

frame, the application code should also update the virtual object

location.

Target Resources

Target resources are generated by the Target Management System.

The output files from the system is a binary file storing the marker

features and an XML configuration file. They are bundled in the

application.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
28

Fig. 3.2.1 QCAR SDK System Architecture Overview

3.3 Trackables

Fig 3.3.1 QCAR Trackable Marker Samples

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
29

Definition
A trackable is any real world object that the QCAR SDK can track in six degrees-

of-freedom. A trackable has a name, an ID, status and pose information which

are stored in the state object. Image Targets is one kind of trackables. In the

following paragraph, we will only discuss Image Targets.

Parameters
 1. Trackable type

 UNKNOWN_TYPE: an unknown trackable

 IMAGE_TARGET: an Image Target trackable

 MULTI_TARGET: a MultiTarget trackable

 MARKER: a Marker trackable

 2. Trackable name

 A string which uniquely identifies the trackable from the database of

targets. It has 64 characters in maximum and only contains a-z, A-Z, 0-9, [-_.]

 3. Trackable status

UNKNOWN: the state of the trackable is unknown. Usually returned

before tracker initialization.

 UNDEFINED: the state of the trackable is not defined.

 NOT_FOUND: the trackable is not found in the database of targets

 DETECTED: the trackable is detected in this frame

 TRACKED: the trackable is tracked in this frame

 4. Trackable pose

A 3x4 matrix in row-major order which represents the pose

information of detected or tracked trackable.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
30

Coordinate Systems

Fig. 3.3.2 In the QCAR SDK, right-handed coordinate system is used.

Relevant API calls

virtual TYPE getType () const =0
 Returns the type of 3D object (e.g. MARKER)
virtual bool isOfType (TYPE type) const =0
 Returns true if the object is of or derived of the given type.
virtual STATUS getStatus () const =0
 Returns the tracking status.
virtual int getId () const =0
 Returns a unique id for all 3D trackable objects.
virtual const char * getName () const =0
 Returns the Trackable's name.
virtual const
Matrix34F & getPose () const =0
 Returns the current pose matrix in row-major order.

https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#ad13df9a880b4c976334467cd94375086�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#a85d87d96b772f39efd8060387264dd41�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#add12416f26185a52c2e24e46848d1fc2�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#ad13df9a880b4c976334467cd94375086�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#a89586d43b60fabe10193552b67779f3a�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#a315535ff3f4c5ba96332c55980165708�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#ac3ee0f98bcf2a3f3477b9902bf003d6c�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#a8d4577ee31212011fe65f672e61dec43�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/struct_q_c_a_r_1_1_matrix34_f.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/struct_q_c_a_r_1_1_matrix34_f.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/struct_q_c_a_r_1_1_matrix34_f.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html#adcbc36656a52af6bfb39d19d82214fcf�

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
31

Frame getFrame () const
 Returns the Frame object that is stored in the State.
int getNumTrackables () const
 Returns the number of Trackable objects currently known

to the SDK.
const Trackable * getTrackable (int idx) const
 Provides access to a specific Trackable.
int getNumActiveTrackables () const
 Returns the number of Trackable objects currently being

tracked.
const Trackable * getActiveTrackable (int idx) const
 Provides access to a specific Trackable object currently

being tracked.

3.4 Target management system
The Qualcomm Target Management System allows developers to upload input
image and generate feature dataset as target resources. Compiled with the target
resources, the application can match images in frame against the feature dataset.
To access the system, developer account is required.

Fig. 3.4.1 Marker management interface

https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_frame.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_state.html#a629b7e7d4ae0e156e5a26e96e4690b93�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_frame.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_state.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_state.html#ab9bb3084fdd52b148614a7943012da9e�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_state.html#abc55007c63bb5adbc6510080dd8696e2�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_state.html#a7437e0a2e5ec3f48ccc6ed663e853b9f�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_state.html#aac5bb1a92a339aeb8209c8c7520bbc6e�
https://ar.qualcomm.at/qdevnet/sites/default/files/docs/qcarsdk/class_q_c_a_r_1_1_trackable.html�

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
32

Workspace and Projects
Once the user is logged in, the server will show the workspace. The page has all

of the user’s projects. Given an input image, a target is computed by processing

its natural features. The feature sets used in the runtime application can have

more than one target. Projects having a set of targets can be combined to create

target resources for download. Only one target resource file is accepted in the

runtime application and it can have multiple targets to be detected and tracked by

the QCAR SDK. Typically, a new project is created for a new application. A

number of images will be uploaded to compute the target data sets. Once the

images to be included in target resource are decided, the user can pick those

targets and download the dataset of merged natural feature.

Target Resources

An XML configuration file is included in the target resource. It allows to configure

certain trackable features and a binary file which has the trackable database. The

user can download the target resource file which is named by the project.

Sample Targets
The SDK contains input images for the ImageTargets sample applications. The

official suggests developers to start by testing the target creation process with

these images before uploading their own. In the paragraph below, chips.jpg and

stones.jpg will be used for a more detailed explanation of this process. These

images are located in:

ANDROID:
<DEVELOPMENT_ROOT>\qcar-sdk-xx-yy-zz\samples\ImageTargets\media

iOS:
<DEVELOPMENT_ROOT>\qcar-sdk-ios-xx-yy-

zz\samples\ImageTargets\media

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
33

How to create an Image Target
First, choose “Create a trackable” and choose “Single Image” as Trackable Type.

Input a name for the result target. The name assigned will be used in the

application to identify the target during marker detection and tracking. For using

chips.jpg and stones.jpg, enter the trackable names “chips” and “stones”

respectively.

Fig.3.4.2 The dialog for creating trackable

The width value refers to the printed size of the trackable in millimeters. For

instance, the above input will generate a trackable with width 247 millimeters.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
34

Fig.3.4.3 Image Target trackable page

This step is to upload image for marker. Select the “Upload” on the right and
select appropriate image. The upload will start the target creation process. After
completing the process, a thumbnail of the uploaded image will be shown with
rating on a five-star scale. The rating implies the quality of the target for detection
and tracking.

Fig. 3.4.4 A Projects page showing two uploaded targets

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
35

When the above steps are done, the develoepr can download the trackable by
choosing “Download Trackable Data”. Alternatively, he can go back to the
projects page and click “Download the Target Resources”.

Chose of input images
There are some notes on choosing image to be high-quality marker

 1. Rich in detail

(for example, sport scenes, street scenes or a mixture of items)

 2. Good in contrast

(for example, both bright and dark regions are present on the image)

 3. No repeatitive patterns

 (for example, a checkerboard should not be used)

The image needs to be printed in high resolution (more than 200 to 300 dpi).

Fig. 3.4.5 High resolution printed image for creating target resource pipeline

To create target, the original image should be down-scaled to a resolution similar

to the live preview camera resolution on the mobile device. The aspect ratio of

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
36

the target image must kept the same on printed. Only 8- or 24-bit PNG and JPG

formats and less than 2MB size images are acceptable.

3.5 Development on iOS
The Qualcomm AR SDK has been tested successfully on Mac OS X 10.6 Snow

Leopard and 10.7 Lion. The downloaded installer has the following result

directory:

<DEVELOPMENT_ROOT>/

qcar-ios-xx-yy-zz/

build/ QUALCOMM Augmented Reality SDK

 include/ Commented header files

 lib/ Static link libraries

 licenses/ License Agreements

samples/ Sample applications with full source code

 Dominoes/ Dominoes game featuring dynamic virtual buttons,
sound and touch screen interactions

 ImageTargets/ Sample app that tracks two Image Targets

 FrameMarkers/ Sample app that tracks multiple Markers

 MultiTargets/ Sample app that tracks a Multi Target

 VirtualButtons/ Sample app that shows Virtual Button interactions

 assets/ Additional assets for the QCAR SDK

readme.txt Starting read-me document

The SDK is separated from developer applications to ensure easier updates to

the SDK while not affecting the application files.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
37

3.6 Compare with String AR
We want to compare Qualcomm AR SDK with String AR in terms of development,

performance and licensing.

Portability

Both Qualcomm AR SDK and String AR are available on iOS. They can be easily

integrated to iOS projects with a few lines of code and proper configuration for

linking library files. However, Qualcomm AR SDK does not provide project

templates and new developers need to start from the sample code.

Regarding the Android platform, only Qualcomm AR SDK has provided complete

support to developers. In fact, the SDK begins at Android earlier than iOS. On the

other hand, the Android version of String AR is still in progress of development

and unavailable to developers. Therefore, the Qualcomm AR SDK seems to be a

better option when considering porting our application to Android platform in the

future.

Flexibility

The Qualcomm AR SDK has an object-oriented structure. Most of its core

classes are singletons and some creates their own threads. The classes are also

interdependent. For example, the tracker class depends on the renderer class.

The strong coupling between components limits the freedom of developers to do

logic and integrate with other system such as rendering engines. We think that

the Qualcomm AR SDK is not flexible enough.

Since we do not have any experience with the String AR SDK, we have no

comment on the API’s flexiblity.

Documentation and reference

The Qualcomm AR SDK provides online documentation

at https://ar.qualcomm.at/qdevnet/api. Its search function is very easy to use. All

https://ar.qualcomm.at/qdevnet/api�

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
38

functions are properly described in text. Besides, sample projects are offered in

the download files of the SDK. Each sample project provides very good

beginning of using different features of the system. We appreciate the effort

made by Qualcomm officials for such complete, informative documentation and

reference.

Fig. 3.6.1 QCAR SDK class reference

The String AR SDK has no online documentation but some reference PDF files in

the download files. Sample projects are also provided. However, compared with

the Qualcomm AR SDK, its documentation needs to improve.

Community
The community of Qualcomm AR is open to public and growing.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
39

The following is the statistics about its online forum

(https://ar.qualcomm.at/qdevnet/forums):

Their moderators are quite responsible and quick in responding any questions

related to the SDK.

The String AR seems to not have a public online area for user feedback or

questions since we cannot find any linkage on their homepage.

Performance
For tracking a single marker (which is enough for our project), both Qualcomm

AR and String AR show promising results in performance. The programs

response instantly and smoothly to marker detection regardless how complex the

rendering objects are. The frame rate is always kept at 60 fps.

Licensing
The Qualcomm AR SDK is free for development and distribution. Therefore, it is

very suitable for doing research.

The String AR SDK, however, is only free for limited use. The limited version is

for demo and only one marker is trackable. Also, release on App Store is not

allowed. The minimum spending of String AR developer plans is USD $99 which

we think too expensive for our project. As there is a free option provided by

Qualcomm, that is the main reason why we have chosen Vuforia instead of

String.

Threads: 1,171
Posts: 5,267
Members: 15,017
Active Members: 1,704

https://ar.qualcomm.at/qdevnet/forums�

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
40

Chapter 4. Networking
4.1 Connection
As the objective of our project is to create a same virtual space for both users on

different iPad, clients have to exchange data through network connection. During

our early phrase, we investigated a few methods for implementing the network

connection part. This section covers our findings and justification.

4.1.1 Network Socket
 Network Socket is based on Internet-protocol to let computers

communicate and exchange data via a connected network, for example the

Internet. In such implementation, we need a known IP address and a designated

port number. Clients can connect to the server by setting up a socket connection.

There are different types of sockets commonly used:

Datagram sockets, which does not require a connection before sending data.

This kind of socket uses User datagram Protocol, in real life, DNS and many

online game uses UDP to transfer data.

Stream sockets , the most famous protocol stream sockets implement on is TCP.

Data should be sent after connection is established. Video service providers have

well-population of using such technique to stream videos over network.

Raw sockets, it is used by the router to pass though raw packets. ICMP (Internet

Control Message Protocol)

Implementing data exchange by socket is a very efficient way in terms of data

transfer. However it would be more difficult to set up.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
41

4.1.2 HTTP Request

 HTTP Request is based on the Representational state transfer (REST)

architecture, it is a commonly used software architecture for distributed

hypermedia systems. A typical RESTful architecture consists of clients and a

server. A request is sent from the client side, and the server receives and

processes the request. Response is then replied from the server to the client.

The REST Architecture has six main constraints:

Client-server
This model separates client and server apart. They can be replaced

independently since the server concerns with data storage and

management and client side concerns interface only.

Stateless
For each request to the server, there is no state different. The context or

state of client will not be stored in the server.

Cacheable
 Clients can cache response therefore reducing unnecessary bandwidth.

Layered system

Components in the system are grouped in a hierarchical arrangement.

Lower layers provide functions and service to higher layers. The layers are

there to enforce security policies.

Code on demand(optional)

Servers are able to transfer executable code to client on demand, such as

Javascript code or Java applets.

Uniform interface
 There is a uniform interface for messages to be sent over the

network. For example the server does not sends the database information in raw

format, but rather in XML or JSON.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
42

 By using HTTP Request, we transfer data through HTTP (Hypertext Transfer

Protocol). Each time, client request the server for updates, client also sends

server the most updated information (such as user input, location moved). Server

receives client information and log them down, then response with the updated

information from another client.

4.1.3 Game center

Game Center is an online multi-player social gaming network released by Apple.

The main functionalities of the Game Center are:

○ Users can invite friends to play a game
○ Match online with another user via game center
○ Authentication
○ Achievement tracking
○ Leaderboards

Game Center supports iOS version 4.1 or above.

There is no restriction on data format as stated in the Apple developer’s note.

4.1.4 Peer to Peer

iOS gamekit provides a few protocol for iOS device to connect with each other

locally. For example, the ad-hoc connection between two peer device via local

wireless network. Sessions are created and disclosed, then the devices are

connected to the network. Data can be sent through the data channel.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
43

However, peer picker controller only creates Bluetooth or Local wireless

connections. However, the Bluetooth is only a short-distance wireless connection

protocol, with the maximum range around 100m. We prefer a connection method

supports a larger range.

4.2 Data exchange
In this part, we are going to introduce what data is going to be transmitted in

order to be effective.

4.2.1 JSON

JSON , abbreviation of JavaScript Object Notation is a lightweight

data-interchange format. The most remarkable advantage is its

high writability and readability. A JSON string is derived from a

JavaScript language for representing simple daa structures and

associative arrays. It is language independent and there are quite a lot of parsers

to process them in different programming languages such as C, ASP, Python,

PHP, Java, Perl, Objective C etc.

To represent data efficiently, we encode our data into a JSON string and send

the encoded string over the Internet. The server receives and reconstructs it into

object with the JSON parser. That is one of the requirements of REST

Architecture – Uniform Interface.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
44

Another format commonly used in the past (and even now) is XML. It construct a

hierarchy data structure with tags. However we consider that JSON is more

compact in format and more user-friendly.

How JSON is used in our system

Client Server

For object Event, it include entities “clientToken”, “eventId” ,

“eventType” ,”coordination”. “coordination” has three sub-fields “x” , “y”

and “z” . The event object is created by client iPad after real time calculation.

The following fragment shows a sample JSON representation of data to be

transmitted.

Values with “” quotes are expected to be String type and otherwise as generic

types such as numbers or Boolean values.

{
 "clientToken": "btfpm7d3qj7pagirfarvur64b5lk56",
 "eventId": "2",
 "eventType": 3,
 "coordination": {
 "x": 20,
 "y": 30,
 "z": 0
 }
}

Event Object
- Coordination
- Event code
- Etc.

JSON
string

Event Object
- Coordination
- Event code
- Etc.

JSON
string

encode decode

Transmit over internet

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
45

Chapter 5. Design and Implementation
5.1 Idea
Our idea is to construct a virtual space for two connected players to interact with

each other. The game is played like dodge ball. To shoot a ball, the player has to

tap the screen. The player needs to move left and right in order to dodge balls

thrown from the opposite side.

First, both users need a trackable marker to start the game. User should use the

front camera to track the position of the marker. The program will analyze data

and generate client’s relative position. So that user can view the virtual world in

the iPad display screen directly in a first-person point of view.

After the relative position of a client is generated, client would communicate with

the server. Position information is updated to the remote server during the

communication. At the same time, server would notify the client if there is any

update from another client.

Fig. 5.1.1 Implementation of position tracking

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
46

5.2 Settings
The system contains client side and server side. In terms of implementation, we

sub-divide the components of this project into three main parts:

1. Marker tracking module
To analysis camera input, to identify and track the camera movement base on a

marker. Hence calculate the position and movement data for other modules.

2. Network connection module
This module provide interface for other modules to communicate with e server.

Data exchange via the network is through the network connection module.

3. Virtual world construction module
The virtual world construction module visualizes data and position information

generated by other modules. It is responsible for the computation of the screen

according to point of view.

4. Game engine
The game engine includes the AR SDK part and game rules computation module.

It reads inputs from other modules and processes it. Result will be output to

Virtual world construction module to display.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
47

Fig. 5.2.1 Overview of the system design

5.3 Modules

5.3.1 Marker Tracking Module

The Marker Tracking Module is the agent that directly communicates with

the Qualcomm AR SDK. It is a finite state machine with the following status:

APPSTATUS_UNINITED: the application and the QCAR component is

uninitialized

APPSTATUS_INIT_APP: the application is initialized

APPSTATUS_INIT_QCAR: the QCAR component is initialized

APPSTATUS_INIT_APP_AR: the video renderer is initialized

APPSTATUS_INIT_TRACKER: the tracker and target resources are initialized

APPSTATUS_INITED: the QCAR component is started

APPSTATUS_CAMERA_STOPPED: the camera is stopped capturing

APPSTATUS_CAMERA_RUNNING: the camera is capturing

APPSTATUS_ERROR: error occurs

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
48

Every time when the state is changed, the function

updateApplicationStatus:(status)newStatus is called. The parameter newStatus is

checked and do suitable actions.

When all initialization works are done, the QCAR SDK will call the method

renderFrameQCAR on a single background thread. The function is implemented

by the user like below:
- (void)renderFrameQCAR
{
 [self setFramebuffer];

 // Clear colour and depth buffers
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Render video background and retrieve tracking state
 QCAR::State state = QCAR::Renderer::getInstance().begin();

 if (QCAR::GL_11 & ARData.QCARFlags) {
 glEnable(GL_TEXTURE_2D);
 glDisable(GL_LIGHTING);
 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_NORMAL_ARRAY);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 }

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);

 ImageTargetsAppDelegate* delegate = (ImageTargetsAppDelegate
*)[[UIApplication sharedApplication] delegate];

 for (int i = 0; i < state.getNumActiveTrackables(); ++i) {
 // Get the trackable
 const QCAR::Trackable* trackable =
state.getActiveTrackable(i);
 QCAR::Matrix44F modelViewMatrix =
QCAR::Tool::convertPose2GLMatrix(trackable->getPose());

 if (RECSTATUS_RECORDING == delegate.recStatus) {
 QCAR::Matrix44F invModelViewMatrix;
 ShaderUtils::invertMatrix(&modelViewMatrix.data[0],
&invModelViewMatrix.data[0]);
 // Get the camera's position from the inverse matrix

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
49

 NSArray* camPos = [[NSArray alloc]
initWithObjects:[NSNumber
numberWithFloat:invModelViewMatrix.data[12]],[NSNumber
numberWithFloat:invModelViewMatrix.data[13]],[NSNumber
numberWithFloat:invModelViewMatrix.data[14]], nil];
 [delegate.objStates addObject:(id)camPos];
 break;
 } else if (RECSTATUS_PLAYING == delegate.recStatus ||
RECSTATUS_PAUSED == delegate.recStatus) {
 NSArray* tmpPos = [delegate.objStates
objectAtIndex:delegate.currentFrame];
 float x = [[tmpPos objectAtIndex:0] floatValue];
 float y = [[tmpPos objectAtIndex:1] floatValue];
 float z = [[tmpPos objectAtIndex:2] floatValue];

 // Choose the texture based on the target name
 int textureIndex = (!strcmp(trackable->getName(),
"stones")) ? 0 : 1;
 const Texture* const thisTexture = [ARData.textures
objectAtIndex:textureIndex];

 // Render using the appropriate version of OpenGL
 if (QCAR::GL_11 & ARData.QCARFlags) {
 // Load the projection matrix
 glMatrixMode(GL_PROJECTION);
 glLoadMatrixf(projectionMatrix.data);

 // Load the model-view matrix
 glMatrixMode(GL_MODELVIEW);
 glLoadMatrixf(modelViewMatrix.data);
 glTranslatef(x, y, z - kObjectScale);
 glScalef(kObjectScale/2, kObjectScale/2,
kObjectScale/2);

 // Draw object
 glBindTexture(GL_TEXTURE_2D, [thisTexture
textureID]);
 glTexCoordPointer(2, GL_FLOAT, 0, (const
GLvoid*)&teapotTexCoords[0]);
 glVertexPointer(3, GL_FLOAT, 0, (const GLvoid*)
&teapotVertices[0]);
 glNormalPointer(GL_FLOAT, 0, (const
GLvoid*)&teapotNormals[0]);
 glDrawElements(GL_TRIANGLES,
NUM_TEAPOT_OBJECT_INDEX, GL_UNSIGNED_SHORT, (const
GLvoid*)&teapotIndices[0]);
 }
 if (RECSTATUS_PLAYING == delegate.recStatus) {
 if (delegate.currentFrame <
delegate.objStates.count - 1) {

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
50

 delegate.currentFrame++;
 }
 }
 }
 }

 glDisable(GL_DEPTH_TEST);
 glDisable(GL_CULL_FACE);

 if (QCAR::GL_11 & ARData.QCARFlags) {
 glDisable(GL_TEXTURE_2D);
 glDisableClientState(GL_VERTEX_ARRAY);
 glDisableClientState(GL_NORMAL_ARRAY);
 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
 }

 QCAR::Renderer::getInstance().end();
 [self presentFramebuffer];
}

The most important part of the previous code is:

The function call state.getNumActiveTrackables() returns the total number

of markers detected and tracked in the current camera frame. In our case, it

always returns at most 1 because we only want to track one marker. Then a

reference to the trackable object is obtained from the state object. By using the

helper functions provided in the SDK, we can get the pose information and draw

virtual 3D objects based on them. The workflow is illustrated as below:

 for (int i = 0; i < state.getNumActiveTrackables(); ++i) {
 const QCAR::Trackable* trackable =
state.getActiveTrackable(i);
 QCAR::Matrix44F modelViewMatrix =
QCAR::Tool::convertPose2GLMatrix(trackable->getPose());

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
51

 Fig. 5.3.1 Marker tracking based on QCAR SDK

5.3.2 Network Connection Module

We have discussed some prototypes about how should we exchange data

via the Internet.

Here are the criteria we came up when we design the methodology for the

network connection module.

1. Data size
 The data to be sent over the Internet should be kept in a smaller packet

size. Only critical and important information should be exchanged. The

format of how the data is represented is also a critical factor.

2. Network load
 As our system depends quite a lot on real time data exchange, the design

of the network streaming protocol should minimize the network load in

order to simulate a real time environment on different clients smoothly.

3. Accessibility
 The server should be accessible when needed. However, after we have

investigate the servers that can be set up in the CSE department. Some

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
52

ports are not opened to outside world. For stability, we found hosting the

server program on web server a fairly good choice.

Connection Protocol
For the network connection methodology, we decided to set up a web

server. The server acts as the middle-man and remembering information

needed by the clients. The server is also responsible for recognizing clients

and redirect correct update information for each side.

Connection register phase
A client sends a request to register its identity the server.

Since the Server-client model is stateless, we have to make sure the

server recognize different kinds (and possibly incorrect connections)

correctly; a 32-digit random token string is generated when server replies

the connection request initiated by client.

Fig.5.3.2.1 connection established

Server then saves down the token string as a connection reference.

Data update phase
Client connects to server presenting the token previous assigned. Server

checks if the token refers to a registered machine. If server could identify

the request from client, it updates information in server and sends most

updated data to client if it has been modified.

Since object detail (shapes, colours, etc.) has been stored locally on client

machines, data of exact object image is not sent in order to minimize

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
53

network traffic. In our design, information is sent in a notification message

form.

There are two types of information should be transmit to the server. Then

the server will process them and forward to the designated receiving client.

Position information generally represents relative position of client, it

should be updated frequently to achieve a real-time effect.

An Event update is generated on demand. For example, user touches the

monitor, ball is hit, user enter/ quit game. Each event is sent with a

predefined event type code. Server and the opposite client will decide what

to do according to event received.

Summary of information to be transmitted

Advantages
The previous version we came up is the server distinguish clients depends

on their IP address. However we found that it may not work all the time.

 Some problems are:

1. Client IP may change due to dynamic IP allocation

2. Machine behind gateway may share a common IP address, so that

server could not identify between the devices

Moreover, current method ensures connection session persists even after

network re-connection.

Types of information Position Event
Update frequency On time Interval On change

Information included Client id, Event id , type,
 coordination Coordination(if needed)

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
54

This implementation is inspired by Session management on web browsers.

Web browser holds a special session key for a particular website. When a

web requires an identity authentication, client presents the key recorded in

server database to finish the checking procedure. With this method of

implementation, server can manage different client connection easily:

 - Server can handle connections without knowing IP address

 -Server can timeout expired key on demand

In the upgraded server side program, we have used SQLite to manage he

data. A persistent file handler is opened to reference the database. It can

minimize the I/O overhead in order to improve the performance.

5.3.3 Virtual world construction module - Graphics and UI

The graphics in the game is mainly created using openGL ES library.

The openGL ES (OpenGL for Embedded Systems) edition is a subset of

the OPENGL library, it is specially designed for embedded systems,such

as phones, tablets etc.

OPENGL is a famous 2D/3D graphics library that can create computer

graphics with easy logic commands. It provides a low-level applications

programming interface (API) between software applications and hardware

or software graphics engines.

openGL ES is a lighter version that removes glBegin/glEnd for primitive

objects, GL_QUADS ,GL_POLYGONS and other non-essential elements.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
55

The main advantage of openGL ES is its low power consumption

compared to the standard OPENGL.

Version we are currently using in our project is openGL ES 1.1.

The virtual world construction module is responsible for generating the

virtual scenes on augmented to the reality. It takes input arguments from

the Marker Tracking module, Network connection module and Game

engine. Corresponding view is then generated according to the input.

 Fig 5.3.3.1 Input and output of the Virtual World Construction Module

5.3.4 Game Engine
The game engine computes game logic part. Rule and game method is

defined. The game engine process inputs according to the rules.

 The game engine’s design is quite dependent on the game itself.

For our sample game dodge ball, game engine takes consideration of

user tap input and device position regarding to the marker.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
56

 This is the overview of the game engine:

 Fig 5.3.4.1 Game engine system overview

 The input listener is an abstract layer for catching user input to the

device. It will do callback functions defined by the user when respective

events have been fired. The event object has information about the event

such as the position where the user tap on the screen and the gesture of

user motion. In the callback functions, the user can reference the game

director for game objects.

 The design of the input listener process matches with that of iOS. A

responder chain is created for event delivery.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
57

 The below is an example of responder chain:

 Fig 5.3.4.2 Responder chain in iOS

 An event object is first delivery to the base view and then its

inherited views.

 The game director is a centralized class responsible for manage the

game world. It is the agent for object creation and deletion. The game

director provides a callback function to the user to write their own game

logic. Before this callback, the director prepares everything such as

initializing the video buffer. After this callback, the director finalize

everything such as redrawing the updated video buffer. In the callback,

the user can access the game object reference and get or update their

information such as the x, y, z position in the virtual 3D world.

Every game object is treated as a node. Each node can have child nodes.

The relation tree is like below:

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
58

Fig 5.3.4.3 Sample relationship of game objects
Operations upon a node will have same effect on its child nodes. Just like

a robot can be a node and its body parts are the child nodes of itself.

When the robot moves, its body parts also move.

5.4 Game design
Here we try to illustrate the game that we implemented to demonstration AR

effect. The game is a 2-player version Dodge ball game.

Set Up

An A4 Marker should be set up on the wall. Each user is advised to stand at a

place a few meters away the marker. The camera should be able to view the

marker clearly.

Clients then should select which player they want to be. For example Player A.

User then should use hold up the iPad pointing to the marker in order to set up

the initial location.

If the connection is successful, each side should see another player in the virtual

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
59

world on screen. User can now try to move the iPad to around, see if the

perspective of view changes according to the view.

Fig. 5.4.1 Game interface illustration

Start the game

After connection on both sides are established, user can then start the game.

The game rule is simple, user can move around in the virtual world by moving

iPad they hold. The aim for this game is to hit the opponent with ball as many

time as you can; at the same time keep clear from balls thrown by remote user.

Control
As mentioned, moving the device is equivalent to moving in the game. To throw a

ball, just tap the screen, then a ball will be thrown to the other side.

Winning criteria

Player A wins a game if:
 Number of times that Player B is hit by ball > Number of times that Player A is hit by ball

The game ties if

Number of times that Player B is hit by ball = Number of times that Player A is hit by ball
 or

 No one is hit.

:

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
60

Chapter 6. Pong
6.1 Background

Pong is a two-dimensional sports game

played by two players against each other. It

is similar to table-tennis although the game

has a pretty much simpler rule.

Since released by Atari Inc. in 1972, it was

one of the most popular video games once.

It was also a commercial success and it

and led to the development of consumer video games. Many companies started

to copy its gameplay and produced new types of the game. Until now, the game

has existence on many different platforms such as arcade machines, home

consoles and mobiles.

The game is constructed by two

paddles, one ball and two walls. In a

new round, one player serves the ball

and the opponent needs to return the

ball by hitting it with his paddle.

Otherwise, one point will be given to

the player but serve the ball in the

next round. The first player who

scores 11 points will win the game.

In our semester two, we would like to incorporate augmented reality into Pong.

Pong is good choice because its rule is simple and it requires player control

which can be achieved by camera tracking.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
61

6.2 Overview
This section describes how to add augmented reality element to Pong. First, we

need to consider the requirement of playing Pong. To play Pong, there must be a

two-dimensional square area. As the game arena, the players will focus on this

area. Thus, we can add that arena in our augmented reality view by laying it on

the marker.

Fig 6.2.1 iPad screen when marker detected

Second, we need to consider how the paddles are controlled. In Pong, the

movement of paddles is very limited as they can only move up and down along

the ends of arena. Therefore, as a control of the paddle, the player needs only to

move the iPad up and down.

Fig 6.2.2 Control paddle with iPad movement

MARKER

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
62

In addition, the view-angle should be correct that the player can see another

player. This is quite different from the previous game Dodge ball which only

requires the player to view the marker through iPad in horizontal. Rather, Pong

requires the player to view the marker in oblique angle such that he can see how

the other player control the paddle to move.

Last, the network part is required to be responsive as Pong is a real-time action

game. Every changes of iPad movement by the player need to be tracked and

synchronized so that the game can run smoothly.

6.3 Definitions
The definitions of game entities are listed below:

Paddle
A long rectangular racket which is controlled by the player to hit the ball. They

cannot rotate and can only translate along one direction. Also, they are bounded

by the walls.

Ball
A square or circle shaped object which bounces in the area between two walls. It

can be hit by a paddle. It always bounces off with 45 degree angle. It moves

faster and faster in one round.

Wall
There are two walls in the arena. They are rigid and unmovable. When the ball

hits them, the ball will bounce off.

Arena
The main stage for running this game. If the ball goes outside the , the game will

start over with a new round.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
63

Fig 6.3.1 Arena layout

Arena

Wall

Wall

Ball

Paddle

Paddle

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
64

6.4 General Flow

The splash screen is the first view of our application. It shows the title of our

project. When the application first loads, this screen will appear.

Splash screen

The menu is shown after splash screen. It shows four buttons which the user can

click to perform different actions.

Menu

Fig 6.4.1 Game start menu

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
65

Play Solo: clicking this button navigates the user to the single player mode.

Play Online: clicking this button navigates the user to the multi-player mode.

Help: clicking this button shows the user a help page.

Credits: clicking this button shows the user developers information and

acknowledgement.

To feature that our game is based on augmented reality, the background is the

camera view and showing a demo which has two bot players playing against

each other.

The difficulty selection menu allows users to select the level of difficulty for single

player game. There are basically three levels: easy, normal and hard.

Difficulty Selection Screen

Fig 6.4.2 Difficulty selection

For the easy mode, the response time of bot player is long and the prediction

error is large.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
66

For the normal mode, the criterion of bot player is adjusted to simulate human

level.

For the hard mode, bot player has very short response time and small prediction

error.

After selecting a difficulty level, the player will enter the in-game screen and start

a new game immediately.

This screen let the user to prepare for a multiplayer game.

Multiplayer Pre-game Screen

Fig 6.4.3 Network game start manual

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
67

6.5 System Architect

6.5.1 Introduction
 This part discusses about the architecture of the whole game.

Although this is a simple game, the system behind has a robust design

and allow further extension.

Encapsulation is highly emphasized in our system design since this is a

group project and we only want to show meaningful contractual interface

functions. Once encapsulation is achieved, our Pong game can be

changed in play style easily.

For example, it may allow 4 players in total and extra blocks inside the

arena.

Practically, we provide basic functions of a object management system

such as creation, retrieve and update functions.

Taking the functions related to paddle as example, we have the following

to interact with a logical entity of paddle:

int addPaddle(int* id);

int getPaddle(int id, Paddle* _paddle);

int setPaddleGameId(int id, int gameId);

int setPaddleArea(int id, Area area);

int setPaddlePosition(int id, float x, float y);

int setPaddleDirection(int id, float dy);

int movePaddleUp(int id);

int movePaddleDown(int id);

int stopPaddleUp(int id);

int stopPaddleDown(int id);

int updatePaddle(int id, float dt);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
68

addPaddle(int* id) registers a new paddle in the system. The user

does not need to know how it is created or how memory is allocated but

remember the object id returned by the function.

getPaddle(int id, Paddle* _paddle) retrieves a copy of the

paddle with provide object id. The mutable copy _paddle contains all

information of the selected paddle such as positions and dimensions.

The setter functions i.e. setPaddleGameId, setPaddleArea,

setPaddlePosition, setPaddleDirection let users to set some

attributes of a paddle. It ensures that users do not have a direct way to

interact with the instance copy of a paddle as it is a dangerous practice.

Values supplied to function calls are checked before they are actually

written to the object memory. Also, some attributes such as paddle width,

height, movement speed are not allowed to change as they are

considered constant. Therefore, there is not setter functions for them.

Other functions such as movePaddleUp, movePaddleDown,

stopPaddleUp, stopPaddleDown, updatePaddle are some utility

functions which make the program logic clear.

Apart from encapsulation, we need also consider the RESTfulness of our

application since it will communicates through the HTTP protocol.

Our application will send current states to the PHP links and perform

actions based on the returning states.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
69

Fig. 6.5.1 Update states to the server and gets update

Since Pong is a real-time action game, every event needs to be taken

into account. Especially for the paddles’ positions which are controlled by

different players, the properties are sent to the server in real-time and

then processed and sent back to other players.

Delay must be minimized as a small latency can lead to different

consequences. For example, if they movement of paddle not tracked up-

to-time, the ball may pass it and lead to a score while the other player

see the ball bounces off the paddle.

Synchronization is very important in our application. To achieve that, we

divide the functions as small as possible. Each function sends signal to

the server as soon as their job is done. In this way, the server can

receive up-to-date information from individual devices.

6.5.2 Objects and States
 The system uses a number of objects to construct the game world.

Each object has unique functionalities and is independent of other objects.

The objects are referenced by their unique object id.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
70

Basically, the system objects can be divided into three categories: core,

logic and presentation.

 Fig 6.5.2.1 System objects

There is only one type of object for the core part. It is the Object:

Core Part

Object has only one attribute – id. This is what uniquely identifies all

system objects as they inherit from this class.

Usually, when user needs to interact with a system object, the object’s id

must be provided for calling functions.

typedef struct _Object {

 int id;

} Object;

CORE

LOGIC

PRESENTATION

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
71

The logic part is the major part of the system. All game logic related

objects are involved in this part. Below is the list of the objects:

Logic Part

Game: represents a Pong game.

Player: represents a game player

Bot: represents a computer controlled entity

Paddle: represents the rectangular block for hitting the ball

Ball: represents a block that bounces between players

Court: represents the game arena

Motion: represents the ball’s motion states

Contact: represents the contact point made by the ball and paddles

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
72

The Game object defines a Pong game. It acts as the container for storing

ids of component object and game states for one game session.

typedef struct _Game : Object {

 int playerCount;

 int playerId[2];

 int botCount;

 int botId[2];

 int paddleCount;

 int paddleId[2];

 int ballCount;

 int ballId[1];

 int courtCount;

 int courtId[1];

 GameState state;

 GameMode mode;

 GameDifficulty difficulty;

 int winningScore;

} Game;

The playerId array stores ids of the two players. This can be extended to

3 or 4 to support more players. There are always 2 player ids regardless of

the game mode being whether single-player or multiplayer or demo.

The botId array stores ids of bot players. If it is a demo game, two bot ids

are used. If it is a single-player game, one bot id is used.

The paddleId array stores ids of paddles. There are always 2 paddle id for

a normal Pong game.

The ballId array stores id of the ball. Normally, there is only one ball in

game but it certainly can extend to more balls.

The courtId array stores id of the court. There is only one court per game.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
73

The state attribute defines the current state of a game object. It can be one

of the following:

typedef enum _GameState {

 Ready,

 Running,

 Paused,

 Finished

} GameState;

For Ready state, the game is ready to play. However, all drawable objects

are not presented in screen and the game will not be updated in main loop.

For Running state, the game running and presented in screen.

For Paused state, the game is and will not be updated in main loop.

However, all drawable objects are still presented in screen.

For Finished state, the game has just finished and the final result is ready

to be shown. In this state, the game is not updated but objects are shown

in addition of the scoreboard.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
74

The mode attribute defines the game mode of a game object.

typedef enum _GameMode {

 Solo,

 Online,

 Demo

} GameMode;

For Solo mode, one human-controlled paddle against one bot-controlled

paddle.

For Online mode, two human-controlled paddles against each other via

network connection.

For Demo mode, two bot-controlled paddles against each other.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
75

The difficulty attribute defines the level of difficulty for single-player mdoe.

typedef enum _GameDifficulty {

 Easy,

 Normal,

 Hard

} GameDifficulty;

For Easy, the bot player’s AI is weak. It will have long response time and a

large prediction error.

For Normal, the bot player’s AI is average as human. It will have medium

response time and prediction error.

For Hard, the bot player’s AI is quite strong. It will have very short

response time and very small prediction error.

The winningScore defines the number of points that a player needs to get

in order to win the match.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
76

The Player object stores a player’s profile. It is the logical representation of

a player being controlled by either human or bot.

typedef struct _Player : Object {

 int gameId;

 int score;

} Player;

The gameId refers to which game this player is involved. It is set once the

game is created.

The score records the player’s current score.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
77

Bot object stores attributes for AI-driven player.

typedef struct _Bot : Object {

 int gameId;

 int aiLevel;

 float reaction;

 int error;

 int paddleId;

 int ballId;

 int predictedAction; // do nothing: 0, should move: 1

 float predictedSince;

 float predictedBallX, predictedBallY;

 float predictedBallDx, predictedBallDy;

} Bot;

gameId refers to the game object from which this bot is created.

aiLevel indicates how intelligent the bot is. The lower it is, the more

intelligent the bot is. It determines the values for reaction and error.

reaction is the reaction or response time of the bot taken when the ball is

returning to its side. The bot makes prediction for every period of reaction

time passes.

error is the positional error of the bot’s prediction for the returning ball’s

final position.

paddleId refers to the paddle that is controlled by this bot. Each bot can

only control exactly one paddle.

ballId refers to the ball that the bot calculate prediction for.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
78

predictedAction indicates whether the bot should do nothing or should

move according to its prediction.

predictedSince is the time past since last prediction is made.

predictedBallX and predictedBallY are the predicted position of the

target ball object.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
79

Paddle object stores the position, movement and dimension information for

a paddle.

typedef struct _Paddle : Object {

 int gameId;

 int modelId;

 Area area;

 float width, height;

 float minY, maxY;

 float speed;

 float x, y;

 float left, right, top, bottom;

 float up, down;

} Paddle;

gameId refers to the game from which this paddle is created from.

modelId refers to the model which draws this paddle.

area tells on which region this paddle is. Normally, it is either North or

South. For 4-player game, it can even be West or East.

width and height define the dimensions of the paddle.

minY and maxY bounds the vertical movement of the paddle.

speed is the translational speed of the paddle.

x and y define the position of the paddle.

left, right, top, bottom define the four corners of the paddle.

up and down determines whether the paddle is moving up or down.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
80

Ball object stores the position, movement and dimension information for a

ball.

typedef struct _Ball : Object {

 int gameId;

 int modelId;

 Area area;

 float radius;

 float minX, minY, maxX, maxY;

 float speed;

 float accel;

 float x, y;

 float left, right, top, bottom;

 float dx, dy;

} Ball;

gameId refers to the game from which this ball is created from.

modelId refers to the model which draws this ball.

area tells on which region this ball is fired. Normally, it is either North or

South. For 4-player game, it can even be West or East.

radius determines how big the ball is.

minx, minY, maxX, maxY bounds the ball movement.

speed determines how fast the ball moves.

accel is the acceleration of the ball.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
81

x and y define the position of the ball.

left, right, top, bottom define the four corners of the ball.

dx, dy are the change in position of the ball.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
82

Court object defines a court in a Pong game.

typedef struct _Court : Object {

 int gameId;

 int modelId;

 float width, height;

 float wallWidth;

} Court;

gameId refers to the game from which this ball is created from.

modelId refers to the model which draws this ball.

width and height define the dimension of the court.

wallWidth determines the width of the walls.

 Fig 6.5.2.2 court object defines how a court looks like

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
83

Motion object is a temporary object for determining the motion of a ball.

typedef struct _Motion {

 float nx, ny;

 float x, y;

 float dx, dy;

} Motion;

nx and ny define the next position of the object.

x and y define the current position of the object.

dx and dy are the change in position of the object.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
84

Contact object is a temporary object to record a contact point between

paddle and ball.

typedef struct _Contact {

 float x, y;

 int d; // right: 1, left: 2, bottom: 3, top: 4

} Contact;

x and y define the contact point’s position.

d represents the direction of the contact point.

Fig 6.5.2.3 Ball and paddle contact

(x , y) : contact point

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
85

The presentation part is highly connected with the OpenGL library as it is

about how to draw things on the screen.

Presentation Part

Most of the game objects such as the paddles, the ball and the arena need

to be shown on the screen. Hence, they are associated with models for

presentation. The model class is defined as below:

typedef struct _Model : Object {

 int parentId;

 bool hidden;

 QCAR::Vec3F position;

 QCAR::Vec3F scale;

 QCAR::Matrix44F transform;

} Model;

parented is the id of another model object which is the parent of this

model. The system employs a hierarchical structure for models. Positional

or rotational changes to a model will affect its child models accordingly.

Also, hiding a model would hide its child models as well.

Fig 6.5.2.4 hierarchical structure of model object

hidden

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
86

Hidden determines whether this model will be rendered or not.

Position defines the three-dimensional position of the model.

Scale defines the relative size of the model.

Transform is the transformation matrix state of the model.

6.5.3 Implementation

The application is developed with the iOS framework and the

Vuforia AR SDK. Using the project template provided by Vuforia AR SDK,

we could start development very quickly. The application is mainly

written in C and Objective-C.

For source control, we have Pong.h and Pong.mm. Pong.h contains the

interface code for users. Pong.mm contains the implementation code.

There are three categories for the implementation codes: application

codes, game logic codes, object management codes and utility codes.

The application codes are responsible for connecting the game to the

view controllers defined by Vuforia AR SDK. Also, they make calls to the

OpenGL library to draw related models.

The game logic codes are responsible for how the game performs. For

instance, it updates the ball’s position by its speed and receive user input

to control the paddle.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
87

The object management codes are internal codes for managing the

allocation and modification of system objects. They also determine how

to interact with the server.

The utility codes are mostly mathematical and physical calculation for

collision detection. They are used to detect whether the ball would hit

another object and how it bounces off.

Application Codes

setTexture set the array of textures to be used.

void setTextures(NSArray* t) { textures = t; }

startDemo, stopDemo,startSolo,stopSolo are used to control the game

on the main menu.

void

startDemo()

{

 setGameState(demoGameId, Running);

}

void

stopDemo()

{

 setGameState(demoGameId, Ready);

}

void

startSolo(GameDifficulty difficulty)

{

 setGameDifficulty(soloGameId, difficulty);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
88

 setGameState(soloGameId, Running);

}

void

stopSolo()

{

 setGameState(soloGameId, Ready);

}

initAll initialize all variables and reset object system to

zero.

void

initAll()

{

 // Initialize the globals

 // Note: the GL context is not set up at this point

 gameCount = 0;

 nextGameId = 1;

 modelCount = 0;

 nextModelId = 1;

 playerCount = 0;

 nextPlayerId = 1;

 botCount = 0;

 nextBotId = 1;

 paddleCount = 0;

 nextPaddleId = 1;

 ballCount = 0;

 nextBallId = 1;

 courtCount = 0;

 nextCourtId = 1;

 lastSystemTime = getCurrentTimeMS();

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
89

 initSoundEffect();

 addGame(&soloGameId);

 setGameState(soloGameId, Ready);

 setGameMode(soloGameId, Solo);

 setGameDifficulty(soloGameId, Normal);

 addGame(&demoGameId);

 setGameState(demoGameId, Ready);

 setGameMode(demoGameId, Demo);

 startDemo();

}

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
90

renderAll prepare a openGL frame to draw and get trackable markers

transformation from the AR library. Then it updates the augmentation and
render the models.

void

renderAll()

{

 // Get the time delta since the last frame

 unsigned long currentSystemTime = getCurrentTimeMS();

 float dt = (currentSystemTime - lastSystemTime)

/ 1000.0f;

 // Clear the color and depth buffers

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Render the video background

 QCAR::State state =

QCAR::Renderer::getInstance().begin();

 QCAR::Renderer::getInstance().drawVideoBackground();

 // Did we find any trackables this frame?

 if (state.getNumActiveTrackables() > 0) {

 // Get the first trackable

 const QCAR::Trackable* trackable =

state.getActiveTrackable(0);

 // Get the model view matrix

 modelViewMatrix =

QCAR::Tool::convertPose2GLMatrix(trackable->getPose());

 // Update the augmentation

 updateAugmentation(trackable, dt);

 // Render the augmentation

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
91

 renderAugmentation(trackable);

 }

 QCAR::Renderer::getInstance().end();

 // Store the current time

 lastSystemTime = currentSystemTime;

}

initSoundEffect and playSoundEffect are responsible for play sound

effects.

void

initSoundEffect()

{

 NSString* path = [[NSBundle mainBundle]

pathForResource:@"Pong_tap" ofType:@"wav"];

 NSURL* filePath = [NSURL fileURLWithPath:path

isDirectory:NO];

 AudioServicesCreateSystemSoundID((CFURLRef) filePath,

&soundID);

}

void

playSoundEffect()

{

 AudioServicesPlaySystemSound(soundID);

}

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
92

updateAugmentation updates all running games with the change in time dt.

void

updateAugmentation(const QCAR::Trackable*

trackable, float dt)

{

 Game* game;

 for (int i = 0; i < gameCount; i++) {

 game = &gameArray[i];

 if (game->state == Running) {

 updateGame(game->id, dt);

 }

 }

}

renderAugmentation prepares the openGL environment and render all

visible models. The models are rendered in box form by calling the function
renderCube.

void

renderAugmentation(const QCAR::Trackable* trackable)

{

 //const Texture* const modelTexture = [textures

objectAtIndex:0];

#ifdef USE_OPENGL1

 // Set GL11 flags

 glEnableClientState(GL_VERTEX_ARRAY);

 glEnableClientState(GL_NORMAL_ARRAY);

 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
93

 glTexCoordPointer(2, GL_FLOAT, 0, (const GLvoid*)

&cubeTexCoords[0]);

 glVertexPointer(3, GL_FLOAT, 0, (const GLvoid*)

&cubeVertices[0]);

 glNormalPointer(GL_FLOAT, 0, (const GLvoid*)

&cubeNormals[0]);

 //glEnable(GL_TEXTURE_2D);

 //glDisable(GL_LIGHTING);

 // Create light components

 GLfloat ambientLight[] = { 0.0f, 0.0f, 0.0f, 1.0f };

 GLfloat diffuseLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

 GLfloat specularLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

 GLfloat position[] = { 1.0f, 1.0f, 10.0f, 1.0f };

 // Assign created components to GL_LIGHT0

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);

 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);

 glLightfv(GL_LIGHT0, GL_SPECULAR, specularLight);

 glLightfv(GL_LIGHT0, GL_POSITION, position);

 glEnable(GL_LIGHTING);

 glEnable(GL_LIGHT0);

 glEnable(GL_COLOR_MATERIAL);

 // Load projection matrix

 glMatrixMode(GL_PROJECTION);

 glLoadMatrixf([QCARutils

getInstance].projectionMatrix.data);

 // Load model view matrix

 glMatrixMode(GL_MODELVIEW);

 glLoadMatrixf(modelViewMatrix.data);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
94

 glScalef(0.40f, 0.40f, 0.40f);

 glTranslatef(-kWidth / 2.0f, -kHeight / 2.0f, 0.0f);

#else

 // Do nothing for OpenGL 2.0

#endif

 glEnable(GL_DEPTH_TEST);

 // Render the Model

 //glBindTexture(GL_TEXTURE_2D, modelTexture.textureID);>)

 for (int i = 0; i < modelCount; i++) {

 Model* Model = &modelArray[i];

 if (Model->hidden == 0) {

 renderCube(&Model->transform.data[0]);

 }

 }

 ShaderUtils::checkGlError("Model renderFrame");

 glDisable(GL_DEPTH_TEST);

#ifdef USE_OPENGL1

 //glDisable(GL_TEXTURE_2D);

 glDisableClientState(GL_VERTEX_ARRAY);

 glDisableClientState(GL_NORMAL_ARRAY);

 glDisableClientState(GL_TEXTURE_COORD_ARRAY);

#else

 // Do nothing for OpenGL 2.0

#endif

}

void

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
95

renderCube(float* transform)

{

 // Render a cube with the given transform

 // Assumes prior GL setup

#ifdef USE_OPENGL1

 glPushMatrix();

 glColor4f(0.5, 0.7, 0.2, 1.0);

 glMultMatrixf(transform);

 glScalef(0.5f, 0.5f, 0.5f);

 glDrawElements(GL_TRIANGLES, NUM_CUBE_INDEX,

GL_UNSIGNED_SHORT, (const GLvoid*) &cubeIndices[0]);

 glPopMatrix();

#else

 // Do nothing for OpenGL 2.0

#endif

}

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
96

Game Logic Codes

updateGame is the main part of game logic.

It first checks the user input by calculating how is his line of sight deviated
from the x-axis.

Next, it updates all game objects such as the bots, paddles and the balls
based on the change of time dt.

Finally, it validates game objects’ positional information against the
dimension of the arena.

int

updateGame(int id, float dt)

{

 Game* game = getGame(id);

 if (game == NULL) {

 return 0;

 }

 if ((game->mode == Solo || game->mode == Online) &&

game->difficulty == Easy) {

 // Determine user input

 QCAR::Matrix44F inverse =

SampleMath::Matrix44FInverse(modelViewMatrix);

 static float lastY = 0;

 static const float threshold = 0.5f;

 float y = inverse.data[7];

 if (y - lastY > threshold) {

 setPaddleDirection(game->paddleId[0], 1);

 //setPaddleDirection(1, 1);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
97

 } else if (lastY - y > threshold) {

 setPaddleDirection(game->paddleId[0], -1);

 //setPaddleDirection(1, -1);

 } else {

 setPaddleDirection(game->paddleId[0], 0);

 //setPaddleDirection(1, 0);

 }

 lastY = y;

 }

 if ((game->mode == Solo || game->mode == Online) &&

(game->difficulty == Normal || game->difficulty == Hard)) {

 // Determine user input

 QCAR::Matrix44F inverse =

SampleMath::Matrix44FInverse(modelViewMatrix);

 float pan_angle = atan2(inverse.data[7], -

inverse.data[3]) * (180/M_PI);

 float displacement = kHeight/2.0f + (kHeight/2.0f) *

(pan_angle/15.0f);

 if (displacement > kHeight - kPaddleHeight -

kWallWidth) {

 displacement = kHeight - kPaddleHeight -

kWallWidth;

 } else if (displacement < kWallWidth) {

 displacement = kWallWidth;

 }

 Paddle paddle;

 getPaddle(game->paddleId[0], &paddle);

 setPaddlePosition(game->paddleId[0], paddle.x,

displacement);

 }

 if (game->mode == Solo) {

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
98

 updateBot(game->botId[0], dt);

 } else if (game->mode == Demo) {

 updateBot(game->botId[0], dt);

 updateBot(game->botId[1], dt);

 }

 updatePaddle(game->paddleId[0], dt);

 updatePaddle(game->paddleId[1], dt);

 updateBall(game->ballId[0], dt);

 Ball ball;

 getBall(game->ballId[0], &ball);

 if (ball.left > kWidth) {

 addPlayerScore(game->playerId[0], 1);

 setBallArea(game->ballId[0], North);

 } else if (ball.right < 0) {

 addPlayerScore(game->playerId[1], 1);

 setBallArea(game->ballId[0], South);

 }

 return 1;

}

updateModelTransform updates model’s matrix transform state by

multiplying its position matrix with scale matrix.

int

updateModelTransform(int id)

{

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
99

 Model* model = getModel(id);

 if (model == NULL) {

 return 0;

 }

 // Reset the Pong transform to the identity matrix

 model->transform = SampleMath::Matrix44FIdentity();

 float* transformPtr = &model->transform.data[0];

 // The following transformations happen in reverse order

 // We want to scale the Pong, tip the Pong (on its

leading edge), pivot and then position the Pong

 ShaderUtils::translatePoseMatrix(model->position.data[0],

model->position.data[1], 0.0f, transformPtr);

 ShaderUtils::scalePoseMatrix(model->scale.data[0],

model->scale.data[1], model->scale.data[2], transformPtr);

 return 1;

}

updateBot updates the bot’s action as the time advanced with dt. It calls

the updateBotPrediction to determine whether it needs to move up or

down.

updateBotPrediction updates the bot’s prediction. It will calculate the

ball’s new position by its speed and acceleration.

int

updateBot(int id, float dt)

{

 Bot* bot = getBot(id);

 if (bot == NULL) {

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
100

 return 0;

 }

 Ball ball;

 getBall(bot->ballId, &ball);

 Paddle paddle;

 getPaddle(bot->paddleId, &paddle);

 if (((ball.x < paddle.left) && (ball.dx < 0)) ||

 ((ball.x > paddle.right) && (ball.dx > 0))) {

 stopPaddleUp(paddle.id);

 stopPaddleDown(paddle.id);

 return 1;

 }

 updateBotPrediction(id, dt);

 if (bot->predictedAction == 1) {

 if (bot->predictedBallY < (paddle.top +

paddle.height/2 - 5)) {

 movePaddleUp(paddle.id);

 stopPaddleDown(paddle.id);

 } else if (bot->predictedBallY > (paddle.bottom -

paddle.height/2 + 5)) {

 stopPaddleUp(paddle.id);

 movePaddleDown(paddle.id);

 } else {

 stopPaddleUp(paddle.id);

 stopPaddleDown(paddle.id);

 }

 }

 return 2;

}

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
101

int

updateBotPrediction(int id, float dt)

{

 Bot* bot = getBot(id);

 if (bot == NULL) {

 return 0;

 }

 Ball ball;

 getBall(bot->ballId, &ball);

 Paddle paddle;

 getPaddle(bot->paddleId, &paddle);

 // only re-predict if the ball changed direction, or its

been some amount of time since last prediction

 if ((bot->predictedAction == 1) &&

 ((bot->predictedBallDx * ball.dx) > 0) &&

 ((bot->predictedBallDy * ball.dy) > 0) &&

 (bot->predictedSince < bot->reaction)) {

 bot->predictedSince += dt;

 return 1;

 }

 Paddle* tmp_paddle = new Paddle;

 tmp_paddle->left = paddle.left;

 tmp_paddle->right = paddle.right;

 tmp_paddle->top = -10000;

 tmp_paddle->bottom = 10000;

 Contact* pt = findBallPaddleIntercept(&ball, tmp_paddle,

ball.dx * 10, ball.dy * 10);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
102

 delete tmp_paddle;

 if (pt) {

 float t = paddle.minY + ball.radius;

 float b = paddle.maxY + paddle.height - ball.radius;

 while ((pt->y < t) || (pt->y > b)) {

 if (pt->y < t) {

 pt->y = t + (t - pt->y);

 }

 else if (pt->y > b) {

 pt->y = t + (b - t) - (pt->y - b);

 }

 }

 bot->predictedAction = 1;

 bot->predictedSince = 0;

 bot->predictedBallX = pt->x;

 bot->predictedBallY = pt->y;

 bot->predictedBallDx = ball.dx;

 bot->predictedBallDy = ball.dy;

 float closeness = (ball.dx < 0 ? ball.x -

paddle.right : paddle.left - ball.x) / kWidth;

 int error = bot->error * closeness;

 bot->predictedBallY = bot->predictedBallY +

(float)(-error + rand()%(2*error));

 } else {

 bot->predictedAction = 0;

 }

 return 2;

}

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
103

updatePaddle updates the paddle position with time advanced with dt. Also,

it will update the position of associated model.

int

updatePaddle(int id, float dt)

{

 Paddle* paddle = getPaddle(id);

 if (paddle == NULL) {

 return 0;

 }

 float amount = paddle->down - paddle->up;

 if (amount != 0) {

 float y = paddle->y + (amount * dt * paddle->speed);

 if (y < paddle->minY) {

 y = paddle->minY;

 } else if (y > paddle->maxY) {

 y = paddle->maxY;

 }

 setPaddlePosition(id, paddle->x, y);

 }

 setModelPosition(paddle->modelId, QCAR::Vec3F(paddle->x

+ paddle->width / 2.0f, paddle->y + paddle->height

/ 2.0f,1.0f));

 updateModelTransform(paddle->modelId);

 return 1;

}

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
104

updateBall updates the ball’s new position by its current position, speed,

acceleration and change in time dt.
It checks for collision detection with paddles. If any collision is detected, it
will calculate the new direction such that the ball would bounce off.

int

updateBall(int id, float dt)

{

 Ball* ball = getBall(id);

 if (ball == NULL) {

 return 0;

 }

 Motion* pos = accelerate(ball->x, ball->y, ball->dx,

ball->dy, ball->accel, dt);

 if ((pos->dy > 0) && (pos->y > ball->maxY)) {

 pos->y = ball->maxY;

 pos->dy = -pos->dy;

 }

 else if ((pos->dy < 0) && (pos->y < ball->minY)) {

 pos->y = ball->minY;

 pos->dy = -pos->dy;

 }

 Game game;

 getGame(ball->gameId, &game);

 int paddleId = (pos->dx < 0) ? game.paddleId[0] :

game.paddleId[1];

 Paddle paddle;

 getPaddle(paddleId, &paddle);

 Contact* pt = findBallPaddleIntercept(ball, &paddle,

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
105

pos->nx, pos->ny);

 if (pt) {

 switch(pt->d) {

 case 1:

 case 2:

 pos->x = pt->x;

 pos->dx = -pos->dx;

 break;

 case 3:

 case 4:

 pos->y = pt->y;

 pos->dy = -pos->dy;

 break;

 }

 // add/remove spin based on paddle direction

 if (paddle.up) {

 pos->dy = pos->dy * (pos->dy < 0 ? 0.5 : 1.5);

 } else if (paddle.down) {

 pos->dy = pos->dy * (pos->dy > 0 ? 0.5 : 1.5);

 }

 delete pt;

 }

 setBallPosition(id, pos->x, pos->y);

 setBallDirection(id, pos->dx, pos->dy);

 delete pos;

 setModelPosition(ball->modelId, QCAR::Vec3F(ball->x,

ball->y, 1.0f));

 updateModelTransform(ball->modelId);

 return 1;

}

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
106

Object Management Codes

The object management codes are about how a new game object is created
or modified or deleted.

The following are the arrays for storing the game object data. Also, there
are get functions for internal use.

Game gameArray[MAX_GAMES];

int gameCount;

int nextGameId;

Game* getGame(int id);

void clearGames();

Model modelArray[MAX_MODELS];

int modelCount;

int nextModelId;

Model* getModel(int id);

void clearModels();

Player playerArray[MAX_PLAYERS];

int playerCount;

int nextPlayerId;

Player* getPlayer(int id);

void clearPlayers();

Bot botArray[MAX_BOTS];

int botCount;

int nextBotId;

Bot* getBot(int id);

void clearBots();

Paddle paddleArray[MAX_PADDLES];

int paddleCount;

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
107

int nextPaddleId;

Paddle* getPaddle(int id);

void clearPaddles();

Ball ballArray[MAX_BALLS];

int ballCount;

int nextBallId;

Ball* getBall(int id);

void clearBalls();

Court courtArray[MAX_COURTS];

int courtCount;

int nextCourtId;

Court* getCourt(int id);

void clearCourts();

int addGame(int* id);

int getGame(int id, Game* game);

int resetGame(int id);

int setGameState(int id, GameState state);

int setGameMode(int id, GameMode mode);

int setGameDifficulty(int id, GameDifficulty

difficulty);

int addModel(int* id);

int getModel(int id, Model* model);

int setModelParentId(int id, int parentId);

int setModelHidden(int id, bool hidden);

int setModelPosition(int id, QCAR::Vec3F

position);

int setModelScale(int id, QCAR::Vec3F scale);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
108

int addPlayer(int* id);

int getPlayer(int id, Player* _player);

int setPlayerGameId(int id, int gameId);

int setPlayerScore(int id, int score);

int addPlayerScore(int id, int score);

int addBot(int* id);

int getBot(int id, Bot* _bot);

int setBotGameId(int id, int gameId);

int setBotAiLevel(int id, int aiLevel);

int setBotPaddleId(int id, int paddleId);

int setBotBallId(int id, int ballId);

int addPaddle(int* id);

int getPaddle(int id, Paddle* _paddle);

int setPaddleGameId(int id, int gameId);

int setPaddleArea(int id, Area area);

int setPaddlePosition(int id, float x, float y);

int setPaddleDirection(int id, float dy);

int movePaddleUp(int id);

int movePaddleDown(int id);

int stopPaddleUp(int id);

int stopPaddleDown(int id);

int addBall(int* id);

int getBall(int id, Ball* _ball);

int setBallGameId(int id, int gameId);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
109

int setBallArea(int id, Area area);

int setBallPosition(int id, float x, float y);

int setBallDirection(int id, float dx, float dy);

int addCourt(int* id);

int getCourt(int id, Court* _court);

int setCourtGameId(int id, int gameId);

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
110

The utility codes are some time functions and collision detection functions.
They are used in other part of codes so that the program looks clearer.

Utility Codes

unsigned long

getCurrentTimeMS() {

 struct timeval tv;

 gettimeofday(&tv, NULL);

 unsigned long s = tv.tv_sec * 1000;

 unsigned long us = tv.tv_usec / 1000;

 return s + us;

}

accelerate calculates and returns the positional states of the ball during the
time interval dt.

Motion*

accelerate(float x, float y, float dx, float dy, float accel

, float dt)

{

 float x2 = x + (dt * dx) + (accel * dt * dt * 0.5);

 float y2 = y + (dt * dy) + (accel * dt * dt * 0.5);

 float dx2 = dx + (accel * dt) * (dx > 0 ? 1 : -1);

 float dy2 = dy + (accel * dt) * (dy > 0 ? 1 : -1);

 Motion* motion = new Motion;

 motion->nx = x2 - x;

 motion->ny = y2 - y;

 motion->x = x2;

 motion->y = y2;

 motion->dx = dx2;

 motion->dy = dy2;

 return motion;

}

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
111

Intercept accurately detects whether the ball would intercept with a paddle
during the time interval dt.

The ball moves from (x1, y1) to (x2, y2) during the time interval (dt) and the

paddle edge stretches from (x3, y3) to (x4, y4). We need to see if these line

segments intersect.

We want to see if the ball intercepts the side of the racket.

If the ball is moving left, check the right edge of player 1’s racket.

If the ball is moving right, check the left edge of player 2’s racket.

Contact*

intercept(float x1, float y1, float x2, float y2, float x3, float

y3, float x4, float y4, int d)

{

 float denom = ((y4-y3) * (x2-x1)) - ((x4-x3) * (y2-y1));

 if (denom != 0) {

 float ua = (((x4-x3) * (y1-y3)) - ((y4-y3) * (x1-x3))) /

denom;

 if ((ua >= 0) && (ua <= 1)) {

 float ub = (((x2-x1) * (y1-y3)) - ((y2-y1) * (x1-x3)))

/ denom;

 if ((ub >= 0) && (ub <= 1)) {

 float x = x1 + (ua * (x2-x1));

 float y = y1 + (ua * (y2-y1));

 Contact* contact = new Contact;

 contact->x = x;

 contact->y = y;

 contact->d = d;

 return contact;

 }

 }

 }

 return NULL;

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
112

}

Contact*

findBallPaddleIntercept(Ball* ball, Paddle*

paddle, float nx, float ny)

{

 Contact* contact;

 if (nx < 0) {

 contact = intercept(ball->x, ball->y, ball->x + nx, ball-

>y + ny,

 paddle->right + ball->radius,

 paddle->top - ball->radius,

 paddle->right + ball->radius,

 paddle->bottom + ball->radius,

 1); // 1: right

 }

 else if (nx > 0) {

 contact = intercept(ball->x, ball->y, ball->x + nx, ball-

>y + ny,

 paddle->left - ball->radius,

 paddle->top - ball->radius,

 paddle->left - ball->radius,

 paddle->bottom + ball->radius,

 2); // 2: left

 }

 if (!contact) {

 if (ny < 0) {

 contact = intercept(ball->x, ball->y, ball->x + nx,

ball->y + ny,

 paddle->left - ball->radius,

 paddle->bottom + ball->radius,

 paddle->right + ball->radius,

 paddle->bottom + ball->radius,

 3); // 3: bottom

 }

 else if (ny > 0) {

contact = intercept(ball->x, ball->y, ball->x + nx, ball->y + ny,

 paddle->left - ball->radius,

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
113

 paddle->top - ball->radius,

 paddle->right + ball->radius,

 paddle->top - ball->radius,

 4); // 4: top

 }

 }

 return contact;

}

6.5.4 User Control
There are two types of user control: relative positioning and absolute positioning.

Both use the information of the transformation data of tracked marker but in

different ways.

Relative positioning detects the direction of device movement. User needs to

keep moving device in the same direction in order to move the paddle. Previous

positional information is not recorded.

Fig 6.5.4.1 iPad moves to control the paddle

Absolute positioning detects the deviated angle of the device from the x-axis.

Since the detected difference is absolute, the paddle’s position represents the

device’s position

After several testing, we find that absolute positioning gives stable user control.

Therefore, the absolute positioning method is better.

Comparison

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
114

Chapter 7. Experiment
7.1 Camera match-moving

Definition
Camera match-moving is the process of analyzing a video clip or film shot to

determine the location of 3D camera. It is the method that we use to find out the

relative position of player with respect to their markers. Therefore, a stable

camera match-moving is very important for our project.

Objective
Since the algorithm and computation are provided by the QCAR SDK as internal

code, we cannot change or even view it. We can only investigate the effect of

external criteria. In this experiement, we are going to investigate the effect of

marker’s properties e.g. size, number of features on the stability of camera

match-moving.

Setup
The experiment setup is shown as above. An iPad is placed near the edge of

table such that its front camera can capture the paper surface underneath. The

paper is printed with a marker for each control. We have created an application to

record the position of iPad itself by camera match-moving. When the application

starts to record, the paper is pushed forward steadily. Having moved 10cm, the

recording ends. The application can replay the movement of iPad by representing

it as a 3D model. By observing the replay and position data, we can determine

the stability of camera match-moving.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
115

Fig. 7.1.1 Setup of the experiment

Controls
We will have 4 set of setups. Each one has different size and number of features

of marker. For different number of features, we prepared two markers as below:

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
116

Original images

With features shown

The CUHK logo has less number of features than the stones image. Below is the

description from Qualcomm AR Online Management System:

CUHK Logo
This image will track in most conditions but may not be robust to

occlusions. If your application demands the best tracking performance then

please consider improving the image based by Increasing total number of

features in the image by adding more visual detail to the whole scene.

Stones
This image provides excellent tracking performance

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
117

The 4 different markers (all A4-sized) are the following:

Control A (less feature and small size)

Control B (more feature and small size)

Control C (less feature and large size)

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
118

Control D (more feature and large size)

Results
For the detailed result, Please see appendix.

Observations
For all controls, the z value keeps constant. It is because the marker is always on

the same level of horizon. Hence, we can ignore the z value from our evaluation.

For control A and control B, the x value changes regularly. However, the change

differences are not constant for successive frames. Also, the y value should be

unchanged since the movement of the paper is aligned to the camera capture

area. However, the y value oscillates regularly.

For control C and control D, the x value changes regularly. In addition, the

change differences are constant and small for successive frames. Also, the y

value remains constant throughout the experiment.

Evaluation
The best stability of camera match-moving is given by control C and control D. In

the controls, the x value changes smoothly and the y value remains unchanged.

In their replays, the movement of 3D model matches the camera movement.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
119

Both control A and control B give unstable camera match-moving results. They

are too sensitive to a small change in relative movement between the camera

and the marker. In their replays, the 3D model seems to teleport from one place

to another and the movement is obviously not smooth. This is an implication of

bad camera match-moving.

Conclusion
We found that the relative size of the marker is crucial to the stability of camera

match-moving. A large marker gives more stable result than a small large marker.

The marker size also outweighs that the number of features of the marker.

We think that a full-sized marker on A4 paper has the best result in camera
match-moving.

Apart from the stability of camera match-moving, we are also interested in other

factors.

Movement of the iPad
The movement of users’ iPads is very limited because it must have the marker

detected in the field of camera view. Hence, we have to allow as more freedom

as possible to the device by change the property of the marker.

We found that a larger marker give the device more space to move around. Like

the previous result, we think that the best size is full A4 size.

Camera shake
It is unavoidable that the camera shakes when user holds the device with hand.

When the tracker detects minor shaking, triggers the Virtual world construction

module to recalculate the objects’ location in the virtual world frequently. Also

information will be updated to the server. The displayed world would be shaky,

which gives a worse experience to user.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
120

We can apply algorithm to detect and compromise with minor camera shaking

action. The algorithm should distinguish between “shaking” and “moving” track of

the camera, so that the object display would stay more static in user’s point of

view.

7.2 Networking
After we have set up the server, the protocol proposed in design section is tested.

 Objective
Since we will have to send data over the network very frequently, the

stability and reliability of the network medium and protocol is important.

Therefore it is necessary to test out the implementation.

Setup
 Server program set up on web server of the department.

2 iPad clients and 2 identical markers.

Installed experimental program which can register device on server and

send marker location information to server

Instead of a 3D coordination, we send a 2D coordination to the remote

client and test on a 2D plane only.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
121

Fig. 6.2.1 Program interface

On this network testing client program, user can see ME and YOU label on

the screen. To connect, press “I’m A” / “I’m B” on top of the menu bar.

Fig. 7.2.2 Connecting to the server

If it is connected successfully, a message will be printed out.

 “(IP) Connected as Device (1/2)”
Fig. 7.2.3 Message if connection succeed

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
122

Procedure
For the testing procedure, we try to drag and drop the “ME” label, it will

move according to the finger gesture.

The relative coordination is recorded and send to the server immediately.

During this process, the client will obtain updated coordination from

another client and use this coordination to update the “YOU” label.

Fig. 7.2.4 Drag and drop the “ME” label

Results
The observation result : the response is instant but the tracking of “YOU”

label is a bit lag.

 Evaluation

The frequency of getting updated information should be raised. But that

may need to a huge amount of requests from the client. One of the

possible solution is to investigate a motion tweening algorithm on client

side, so as to reduce the number of updates needed and hence reduce

the use of network bandwidth.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
123

Chapter 8. Contribution of work

This part summarizes my contribution towards the project and experience gained

from the journey of finishing this project.

Summer 2011
 After our group has chosen i.Digi.T.able as the final year project topic last

summer, my partner and I had to study the background information and previous

implementation of this topic.

 General ideas were generated after several private discussions among our

team; we have came to a different approach on how to implement the idea

“digital interactive game interface table” on iPad. Then I started to draft a

proposal on using Augmented Reality technology in our project. Later, research

has been done on AR-related topic.

 As I had an intern job during summer 2011, I only could take limited time

to learn and get familiar with iOS programming with Objective-C. This helps to

develope an application on iOS faster in later stages.

1st Semester
 As the school term kicked stared, we started our regular meeting on FYP

with Prof. Lyu and the VIEW Lab team. First we presented our idea on the

modified topic – using AR to implement instead of using an external camera.

Then we have to design a game to illustrate our implementation.

 The main aim of our topic is to share a platform over internet. We started

searching for suitable tools and libraries to assist our work. Meanwhile, how data

can be exchanged is also another important issue. Therefore, I started to

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
124

investigate how to connect two iPad using the Internet. Experiments had been

performed to test the usability and effectiveness of the proposed protocol.

 Limited by time, a simple server is set up to accept requests from two

clients and forward them to respective clients in order to enable communication

between two iPads.

 After the first prototype has been built, we assemble client part and

network part together to launch our sample program in 1st term.

2nd Semester
 In the 2nd semester, we evaluated our product in 1st term. We want to

improve the experience of “feeling in the same space” therefore we proposed a

new game.

 We also include a newer version of AR library to improve the performance

of tracker detection. Our main time has been spent on programming the new

game and fine-tuning it. As we are not expert in OPENGL, we spent quite a lot of

time figuring out about 3D graphics.

 As the Pong game also includes a network-based mode, the server is also

enhanced in the 2nd term. In this version, data is sent in JSON format. SQLite is

also used for handling data.

 After finishing both parts, we merged the components together and apply

beautification on the interface. I helped designing graphics and interface in the

app.

Conclusion
 Having finishing this final year project, I gained experiences in iOS

programming and learnt a new language Objective-C. Secondly, I have

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
125

understanding on how data can be exchanged through internet in a real time

manner.

 Moreover, in a one-year-long project, collaboration and communication is

important. I think I have room of improvement in this part. The project gives us a

little bit taste of a small-scale Software development – from designing to

implementing and launching. During the development, I also learnt that user

experience is an important issue in designing software.

 It is very valuable to me as I might have chance to face even more complex

situations in the future. The journey working on this project has equipped me with

much precious experience and fruitful knowledge in this field.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
126

Chapter 9. Conclusion

To conclude, we have achieved the followings in our final year project:

- Track the real-object mark and determine the camera’s position

- Display simple objects on virtual space depends on real space scenes

- Exchange position information between 2 iPad clients

- Implement a simple AR game on iOS platform (iPad)

In the 1st semester, we mainly focused on tracking AR marker and analysis

positional data for the device with the QCAR SDK. We also investigated how to

exchange data via the network.

To demonstrate the progress, we designed a simple game, which let two users

play Dodge ball over the network.

In 2nd term, we tried to enhance the AR marker’s preciseness and the networking

protocol. We also developed another game to demonstrate the Augmented

Reality concept.

We can see Augmented Reality an interesting and exiting field to develop. It is a

new experience implementing this technology on iPad. By using AR technology

in gaming industry, level of interactive between players and computer graphics

can be enhanced.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
127

Chapter 10. Progress and difficulties
Here listed our work and progress during the first semester:

Period Progress

Summer 2011 Research on topic
Refine on topic
Learn basic iOS development skill
Hands on Objective-C language

September 2011 Search for suitable SDK
Test SDK and modify them
Test on iOS device
Draft game design
Server set up

October 2011 Hands on openGL on iOS
Server and network part testing
Build prototype

November 2011 Integrate client and server part together
Modify program prototype
Refining final design
Prepare for 1st term report

December 2011 Evaluate first semester product
Draft design

January 2012 Update SDK and continue coding

February 2012 Network part modification
New game - Pong development

March 2012 Interface design and modification
Game development

April 2012 Refining final product
Prepare for 2nd term report

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
128

10.1 Difficulties and challenges

Learning Objective-C language and iOS programming
Objective-C is the main language for developing applications on iOS. It is a

reflective, object-oriented programming language. It also adds some smalltalk

style syntax which makes it confusing. It also requires much effort to learn iOS

programming before we would actually start our working on project. There are

much API documentation needed to be gone through for real understanding the

mechanism behind.

Therefore we spent quite much time learning and digging into the details of iOS

programming.

Searching and testing SDKs
At the beginning, we have searched a few AR libraries. Since we are

inexperienced with the AR field, we have no idea which one is most suitable for

us. Finally, we have chosen the Qualcomm AR SDK because it has most

features that we want to have in our project. However, the SDK is quite

complicated at first sight and we do not understand how it works. We tried to

compiled the sample files and solved a number of errors such as linking error.

Simple trials and testings on iPad
The two iPads used in this project are the first Apple product we had ever

touched. We were impressed by the user-friendliness of Apple devices. But

before we can run our first app, we must install developer profile files to

development. The whole process is not a simple task and we had spent some

time on it.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
129

Server set up
We was planning to set up a server on CSE Department server, but during the

process we found that it requests CSE VPN for outside world to connecting to

servers with the department. However there is no support for SSL or CISCO VPN

on iPad, so that we cannot connect our iPad to the department machine deriectly.

Game design and implementation
The hardest part of this project is to implement a real game with the idea of

remote augmented reality multiple users’ interaction. In the second term, we have

designed a new Pong game to demonstrate how AR can be applied on game

design. We could not think about a highly creative idea but sme general ones

which can demonstrate the effect.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
130

Chapter 11. Evaluation
We have some review and reflection on the product and progress of our Final

Year Project throughout the year. Here we summarize them below:

 11.1 Stabilized marker tracking

As mentioned in experiment part, the marker tracking algorithm is yet to be

stabilized. Effort has been put into improving the accuracy of the marker

tracking. The newer version of AR SDK has also paid an important role in

stabilizing the marker detection process.

 11.2 Network connection

The network connect is now using HTTP requests technique, which

requires a connection each time. Server’s ability on handling data has

been improved.

11.3 User Interface
Apple Inc. emphasises much on UI design and user experience much. As

we are now developing an application on iPad, it is nice to enhance user

experience by improving the UI.

11.4 Assist with Ipad accessories
There are some assistant devices on iPad which we may also consider

using in order to take advantage in the project, such as gyroscope,

assisted GPS, ambient light sensor ,etc. We think these are great

opportunity to extend our project to a better level if we try to make good

use of these devices.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
131

11.5 More on Game design
Due to our limited techniques on 3D graphics, there is much room for

improvement. For example a more complex 3D game like snooker or

Jenga which may demonstrate the technique better.

 11.6 Investigate possibility for more clients
The system is now designed to support two clients only. However it would

seems more interesting to support more users at the same time. The

server architecture is really for multiple users, but some code should be

upgraded in order to achieve this.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
132

Chapter 12. Acknowledgement

Heartfelt thanks must be expressed to our final year project supervisor:

Professor Michael Lyu for his resources provided and valuable advices on our

project. Professor Lyu has given us guidance and reminders though out the

project process.

Besides, we would also like to thank the research staff team - Mr.Edward Yau

and Mr. Un Tze Lung in VIEW Lab for their very helpful assistance on setting up

facilities for our project. We also thank for their brilliant ideas which really gave us

some insights and inspirations.

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
133

References
List of references:

[1] Daniel Chun-Ming Leung, Pak-Shing Au, Irwin King, and Edward Hon-

Hei Yau. 2007. Remote augmented reality for multiple players over

network. In Proceedings of the international conference on Advances in

computer entertainment technology (ACE '07). ACM, New York, NY,

USA, 220-223.

DOI=10.1145/1255047.1255094 http://doi.acm.org/10.1145/1255047.12

55094

[2] R. Azuma, "A Survey of Augmented Reality," Presence: Teleoperators

and Virtual Environments. vol. 6, no. 4, Aug. 1997, pp. 355-385.

[3] J.P. Rolland, L.D. Davis and Y. Baillot, "A Survey of Tracking

Technologies for Virtual Environments," Fundamentals of Wearable

Computers and Augmented Reality, W. Barfield and T. Caudell, eds.,

Lawrence Erlbaum, Mahwah, N.J.,2001, pp. 67-112.

[4] Taehee Lee, Hollerer, T., "Multithreaded Hybrid Feature Tracking for

Markerless Augmented Reality", Visualization and Computer Graphics,

IEEE Transactions on, On page(s): 355 - 368, Volume: 15 Issue: 3,

May-June 2009

[5] FIALA, M.. ARTag, a fiducial marker system using digital techniques. In Proc.

of Computer Vision and Pattern Recognition, vol. 2, 590–596 , 2005

[6] PINTARIC, T. 2003. An adaptive thresholding algorithm for the augmented

reality toolkit. In IEEE Int. Augmented Reality Toolkit Workshop. ,2003

http://doi.acm.org/10.1145/1255047.1255094�
http://doi.acm.org/10.1145/1255047.1255094�

Department of Computer Science and Engineering Final Year Project 2011-2012 [2nd Term]
LYU 1103

i.Digi.T.able - Digital Interactive Game Interface Table Apps for iPad
134

[7] Woohun Lee, Jun Park “Augmented foam: touchable and graspable

augmented reality for product design simulation” Bulletin of Japanese

Society for the Design Science (2006)

[8] “Apple developer tool” http://developer.apple.com/technologies/tools/

[9] “Apple press info” 2010

 http://www.apple.com/pr/library/2010/09/01Apple-Introduces-New-

iPod-touch.html

[10] Fielding, Roy Thomas. Architectural Styles and the Design of Network-

based Software Architectures. Doctoral dissertation, University of

California, Irvine, 2000.

[11] “openGL ES” http://www.khronos.org/opengles/

[12] “SQLite” http://sqlite.org/

http://developer.apple.com/technologies/tools/�
http://www.apple.com/pr/library/2010/09/01Apple-Introduces-New-iPod-touch.html�
http://www.apple.com/pr/library/2010/09/01Apple-Introduces-New-iPod-touch.html�
http://www.khronos.org/opengles/�
http://sqlite.org/�

	Abstract
	Contents
	Chapter 1. Introduction
	1.1 Motivation
	Our motivation
	1.2 Background
	1.3 Objective
	1.4 Development Environment
	1.5 Runtime Environment

	Chapter 2. Augmented Reality
	2.1 History
	2.2 Types of AR
	2.2.1 Marker-less
	2.2.2 Marker-based

	2.3 Applications
	2.4 AR in game industry
	2.5 Marker detection and recognition
	2.5.1 Image conversion
	2.5.2 Feature points computation
	2.5.3 Identification

	Chapter 3 Qualcomm AR SDK
	3.1 Introduction
	3.2 System architecture
	Camera
	Image Converter
	Tracker
	Renderer
	Application Code
	Target Resources

	3.3 Trackables
	/
	3.4 Target management system
	3.5 Development on iOS
	3.6 Compare with String AR

	Chapter 4. Networking
	4.1 Connection
	4.1.1 Network Socket
	4.1.2 HTTP Request
	4.1.3 Game center
	4.1.4 Peer to Peer

	4.2 Data exchange
	4.2.1 JSON
	/

	Chapter 5. Design and Implementation
	5.1 Idea
	5.2 Settings
	5.3 Modules
	5.3.1 Marker Tracking Module
	5.3.2 Network Connection Module
	5.3.3 Virtual world construction module - Graphics and UI
	5.3.4 Game Engine

	5.4 Game design

	Chapter 6. Pong
	6.1 Background
	6.2 Overview
	6.3 Definitions
	6.4 General Flow
	6.5 System Architect
	6.5.1 Introduction
	6.5.2 Objects and States
	6.5.3 Implementation

	6.5.4 User Control

	Chapter 7. Experiment
	7.1 Camera match-moving
	/
	/

	7.2 Networking
	Objective
	Setup
	Results

	Chapter 8. Contribution of work
	Chapter 9. Conclusion
	Chapter 10. Progress and difficulties
	10.1 Difficulties and challenges

	Chapter 11. Evaluation
	Chapter 12. Acknowledgement
	References

