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Introduction - Motivation
• Research around LLMs for coding tasks has emerged as a popular topic.
• LLMs for code have achieved remarkable results in code-related tasks.
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Introduction - Motivation

• Significant progress of research on the accuracy of LLMs in 
code generation.
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Introduction - Motivation

O(nlogn) O(n)

• A simple example to show that there is room for improvement in the 
efficiency of the generated code
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Introduction - Motivation
• Most current benchmarks for code only focus on the functional correctness of 

code generated by LLMs or their ability to understand text and code.



Introduction - TimeEval

                  Problem set of size 110

• Dataset         Canonical solution for each problem

                  Test cases for each question

• A framework for automated measurement of code efficiency
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Background

• Self-refinement:
 a framework aiming to imitate the process of human thinking



9

Background

• LLM-based Multi-Agents Collaboration

• In-context Learning
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Zero-shot

One-shot / Few-shot

Chain of Thought
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Dataset Processing & Benchmark Creation 
Dataset Processing

APPS
dataset

• 10,000 coding problem in total.

• The average number of test cases for each 
problem is 21.2.

• 232,444 ground truth solutions written by 
human.  
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Dataset Processing & Benchmark Creation 
Dataset Processing

APPS
dataset

TimeEval
dataset

• 110 High quality questions: 
The problem set comprises 110 
questions designed to assess the 
efficiency of generated code.

• Canonical solution for each 
problem: We provide an optimal 
solution for each problem.

• Test cases for each question:
We prepared ten test cases 
containing both small and large sizes 
for each question.



12

Dataset Processing & Benchmark Creation 
Dataset Processing

Dataset File 
Structure
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Dataset Processing & Benchmark Creation 
Dataset Processing

Question 0032 in 
our dataset

question.txt
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Dataset Processing & Benchmark Creation 
Dataset Processing

Question 0032 in 
our dataset

canonical_solution.py
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Dataset Processing & Benchmark Creation 
Dataset Processing

Question 0032 in 
our dataset

input_output.json

metadata.json
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Dataset Processing & Benchmark Creation 
Benchmark Creation

Execute code
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Dataset Processing & Benchmark Creation 
Benchmark Creation

Metrics

• Pass rate: Percentage of test cases that passed the 
test out of all test cases.

• Fail rate: Percentage of test cases that failed the test 
out of all test cases.

• Timeout rate: Percentage of timeout test cases out 
of all test cases.
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Dataset Processing & Benchmark Creation 
Benchmark Creation

Metrics

• Percent Optimized: %Opt  
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Dataset Processing & Benchmark Creation 
Benchmark Creation

Metrics

• Speedup: %Sp  
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Dataset Processing & Benchmark Creation 
Benchmark Creation

Baseline
Pass Rate Wrong Rate Timeout Rate %Opt %Sp

gpt-3.5-turbo 68.5 1.6 29.8 0.0 8.3
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Research Questions
• RQ1: Does self-refinement improve the efficiency of generated code?

• RQ2: How to enhance the refinement result when using the self-refinement technique.

• RQ3:Does the Multi-agent collaboration technique improve the efficiency of generated code?

• RQ4: How different assignments of roles to agents and different collaborative structures will affect results.

• RQ5: The impact of in-context learning on the efficiency of generated code.

• RQ6: The effect of other parameters or LLM types on the efficiency of generated code.
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Experiment: Self-Refinement
RQ1: Does self-refinement improve the efficiency of generated code?

When sample size is the same

Self-Refine 
VS 

Best of K
LLM

Original code

1st round code

2nd round code

VS

Best of them
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Experiment: Self-Refinement
RQ1: Does self-refinement improve the efficiency of generated code?

Self-Refine 
VS

Best of K

Round Pass Rate Wrong Rate Timeout Rate %Opt %Sp

0 68.5 1.6 29.8 0.0 8.3

1 61.3 17.0 21.6 20.0 32.5

2 67.8 5.2 27.0 4.5 12.9

3 66.6 6.7 26.6 3.6 12.6

K Pass Rate Wrong Rate Timeout Rate %Opt %Sp

1 68.5 1.6 29.8 0.0 8.3

2 67.8 3.4 28.8 0.9 9.7

3 67.7 3.3 29.0 1.8 10.0

4 66.9 4.3 28.7 3.6 14.3
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Experiment: Self-Refinement
RQ1: Does self-refinement improve the efficiency of generated code?

Self-Refine 
VS 

Best of K
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Experiment: Self-Refinement
RQ2: How to enhance the refinement result when using the self-
refinement technique.

Number of Round
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Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the 
efficiency of generated code?

Planner + Coder
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Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the 
efficiency of generated code?

Plan
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Experiment: Multi-Agent Collaboration
RQ3: Does the Multi-agent collaboration technique improve the 
efficiency of generated code?

Agents Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Coder 68.5 1.6 29.8 0.0 8.3

Planner + Coder 37.1 44.5 18.2 29.0 46.1
Planner + Coder
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Experiment: Multi-Agent Collaboration
RQ4: How different assignments of roles to agents and different 
collaborative structures will affect results.

Planner + Coder 
+Tester

while(!Tester.isCorrect(plan)):
        issue = Tester.generate(plan)
        Tester.send(issue, Planner)
        plan = Planner.generate(issue)
        Planner.send(plan, Tester)

while(!Tester.isCorrect(code)):
        issue = Tester.generate(code)
        Tester.send(issue, Coder)
        code = Coder.generate(issue)
        Coder.send(code, Tester)
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Experiment: Multi-Agent Collaboration
RQ4: How different assignments of roles to agents and different 
collaborative structures will affect results.

Planner + Coder 
+Tester

Agents Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Coder 68.5 1.6 29.8 0.0 8.3

Planner + Coder 37.1 44.5 18.2 29.0 46.1

Planner + Coder +Tester 55.6 26.6 17.7 29.1 46.9
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Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

Zero-shot

One-shot / Few-shot

Chain of Thought

In context Learning
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Prompt format:
Problem: problem from our dataset

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

Zero-shot
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Prompt format:
Problem: problem of the example;
Solution with poor time complexity;
Solution with good time complexity;

Problem: problem from our dataset:
Please provide a solution with good time complexity.

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

One-shot
example
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Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Zero-shot 67.0 1.6 31.4 1.8 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

Zero-shot  vs  One-shot

• %Opt and %Sp metrics improved
  --> the result of one-shot is closer  to the optimal solution than the zero-shot
• The accuracy decreased
   --> one-shot led the model to focus more on the time complexity of the code
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Self-refinement
+

One-shot

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

Prompt format:
Problem: problem of the example;
Original solution;
Solution with improved time complexity;

Problem: problem from our dataset;
Original solution: baseline solution;
Please provide a solution with improved time complexity.

example
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Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Zero-shot 67.0 1.6 31.4 1.8 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Self-refinement + One-shot 58.9 22 19.1 25.5 35.4

Self-refinement 
+ 

One-shot

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

• This experiment did not show a significant improvement over simple self-
refinement or one-shot learning alone

• The accuracy is the highest among three experiments, but both %Opt and 
%Sp metrics were at intermediate values



37

Thought process:
• What is the time complexity of the original solution?
• Is there a better algorithm in terms of time complexity?
• What is the time complexity of this algorithm?
• How to implement this algorithm?

Self-refinement
+

One-shot
+

CoT

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.
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Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Zero-shot 67.0 1.6 31.4 1.8 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Self-refinement + One-shot 58.9 22 19.1 25.5 35.4

Self-refinement + One-shot +CoT 35.8 55.4 8.8 60.0 84.8

Self-refinement
+

One-shot
+

CoT

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

• Significant improvements in both %Opt and %Sp metrics
• But also significant decrease in accuracy
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Self-refinement
+

One-shot
+

CoT
+

Test cases

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.
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Experiment Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Zero-shot 67.0 1.6 31.4 1.8 11.9

One-shot 56.6 23.4 20.0 22.7 37.2

Self-refinement + One-shot 58.9 22 19.1 25.5 35.4

Self-refinement + One-shot +CoT 35.8 55.4 8.8 60.0 84.8

Self-refinement + One-shot +CoT + Test cases 40.8 49.9 9.3 53.6 72.5

Self-refinement + One-shot
+

CoT + Test cases

Experiment: In-Context Learning
RQ5: The Impact of In-Context Learning on the Efficiency of Generated Code.

• There is indeed an improvement in accuracy, although it is still slightly lower 
compared to previous experiments

• Continue to explore how to further enhance accuracy in the future
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Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the 
efficiency of generated code.

Temperature

Temperature is a parameter provided by 

OpenAI for user adjustment. The choice of 

sampling temperature ranges from 0 to 2. 

Higher values like 0.8 will make the output 

more random, while lower values like 0.2 

will make it more focused and 

deterministic.[1]

[1]https://platform.openai.com/docs/guides/code
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Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the 
efficiency of generated code.

Temperature Pass Rate Wrong Rate Timeout Rate %Opt %Sp

0.0 68.5 1.6 29.8 0.0 8.3

0.1 67.6 5.3 27.1 5.4 16.3

0.2 65.3 10.2 24.5 10.0 20.3

0.3 65.5 9.4 25.2 9.1 18.0

0.4 60.3 13.3 26.5 11.8 18.4

0.5 59.5 14.5 26.0 10.9 22.3

0.6 58.7 15.9 25.4 13.6 20.5

0.7 54.5 20.8 24.6 20.9 28.9

0.8 55.7 18.4 25.9 17.3 26.5

0.9 53.1 25.3 21.6 18.2 31.8

1.0 46.9 31.4 21.7 23.6 41.8

Temperature in the 

range of [0,1]
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Experiment: Temperature
RQ6: The effect of other parameters or LLM types on the 
efficiency of generated code.

Temperature in the 

range of [0,1]
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Experiment: Comparison of Different LLMs
RQ6: The effect of other parameters or LLM types on the 
efficiency of generated code.

gpt-3.5-turbo
VS

gpt-4

Model Pass Rate Wrong Rate Timeout Rate %Opt %Sp

gpt-3.5-turbo 68.5 1.6 29.8 0.0 8.3

gpt-4 61.3 17.0 21.6 20.0 32.5
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Summary of Our Contributions

• Proposed timeEval benchmark.

• On our benchmark, we did empirical studies of the existing models or 
frameworks to test the efficiency of generated code.

• Proposed several frameworks to improve the efficiency of generated code.
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Future Works

• Continue to measure the different models as well as the framework on our 
benchmark.

• Try to create a more efficient framework.

• Begin an exploration of the space complexity of the generated code. 
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Q&A Session

Thank you


