GestHome: User-defined Postures Detection for Smart Home

Christopher Albert Priatko Theodore Fabian Rudy

Supervisor: Prof. Michael R. Lyu
Computer Science and Engineering
The Chinese University of Hong Kong

May 22, 2023
Table of Contents

1. Introduction
2. Implementation
3. Evaluation
 - Stage 1
 - Stage 2
 - Back-end Framework
4. Demo
5. Conclusion
6. Q and A session
Introduction - Recap

From the last semester, with this project, we have managed to achieve these goals:

- Research different aspects of computer vision that is viable for the projects
- Compare the performance between those computer vision
- Implement a working prototype of action recognition with pre-determined gestures
This semester, we aim to improve the prototype we have made in the last semester in these ways:

- Combine stage 1 (Face Recognition for Login) and stage 2 (Action Recognition) together to create a seamless smart home system

- Improve the performance of our system by applying more refined models
Table of Contents

1 Introduction

2 Implementation

3 Evaluation
 - Stage 1
 - Stage 2
 - Back-end Framework

4 Demo

5 Conclusion

6 Q and A session
Literature Review

Face Detection
Dlib HOG, One-shot learning

Pose Estimation
PYSKL, ST-GCN++, etc

Backend Framework
Flask, MongoDB, Jinja, etc
Table of Contents

1 Introduction

2 Implementation

3 Evaluation
 ■ Stage 1
 ■ Stage 2
 ■ Back-end Framework

4 Demo

5 Conclusion

6 Q and A session
Stage 1 - Overview

Face Detection
Stage 1 - Face Recognition

Face Recognition using Dlib with Siamese Neural Network
Face Recognition using Siamese Neural Network

- Realized that Dlib’s face recognition accuracy is lower than expected
- Utilized Siamese Neural Network for face recognition
- Found that Siamese Neural Network is better than Dlib’s face recognition
Accuracy Comparison

Accuracy of Dlib’s Face Recognition (Left) vs Dlib with Siamese Neural Network (Right)
Stage 2 - Overview

Action Recognition
Stage 2 - Action recognition

Inference run using PYSKL
Stage 2 - Action recognition (cont.)

- We would like to use LSTM since we manage to make it work
- Problem encountered: LSTM does not provide satisfactory performance
- We wanted to do a few-shot recognition, which is not possible using LSTM
Candidate tools

- MotionBERT
- PYSKL (ST-GCN++) (selected)
- HyRSM
PYSKL (ST-GCN)

+
 - (very recently) Implemented a lightweight model for CPU user
 - State of the art in both 2D and 3D skeletal based action recognition
 - Helpful documentation

-
 - Is not supported in Windows (unless using WSL, but will need to experience some performance issue)
 - CPU version only support one hand gesture
Besides using more sophisticated action recognition, we have decided to map the actions to a predetermine function. These functions reflect the functions used in daily life (Weather, Air Quality, etc). There are 15 recognizable actions, which has been mapped to its’ respective function.
Stage 2 - Performance comparison

- Unlike LSTM where we build our own dataset, PYSKL (ST-GCN) is pretrained on HaGRID dataset
- 40 GB per move. Accuracy of detection is much better compared to what we have.
Action recognized

Figure: Gestures trained in PYSKL, according to HaGRID (Hand Gesture database)

Note: some movements are not able to be used, since Mediapipe is not able to determine inverse hand position
Back-end Framework
We realize that we need to build a back-end framework to combine both stages

We have decided to utilize Flask as the framework of our program

We have also included Jinja and MongoDB to build our framework
The Framework

System Architecture of GestHome
Flow of the program - Login/Register

User Input

Face, Name

Log in

Check if user is registered in the system
Match face with registered face in local

Local Face Database

Cloud Database

Status

Log in status message

Save the face record

Save the user record in cloud database

Confirmation of registration
Flow of the program - Action recognition
Screenshots of the program

Welcome to GestHome!

Welcome Page of GestHome
Screenshots of the program

Please enter your name:

Submit

Page for register a face
Screenshots of the program

Log in Page
Screenshots of the program

I am sorry, but I couldn't recognise you...

What would you like to do instead?

Log in again Register Back to Home

Page for Failed Log in
Screenshots of the program

Welcome Back, Albert!

What would you like to do?

Page for Successful Log in
Screenshots of the program

Please wait a moment while we are analysing your move...

Stop Detecting

Page for Motion Detection
Table of Contents

1 Introduction
2 Implementation
3 Evaluation
 ▪ Stage 1
 ▪ Stage 2
 ▪ Back-end Framework
4 Demo
5 Conclusion
6 Q and A session
Conclusion

During the past year, we have managed to:

- Researched and compared different computer vision related projects in terms of performance
- Implemented a working model of face recognition and action recognition in a single, streamlined system
- Improved the performance of the models by implementing more sophisticated models
Table of Contents

1. Introduction
2. Implementation
3. Evaluation
 - Stage 1
 - Stage 2
 - Back-end Framework
4. Demo
5. Conclusion
6. Q and A session
Q and A Session