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Review
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Achievements in Last Semester
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Recall that…

(Show Previous Results)
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Recall that…

Simulated horse betting on the 
time prediction result from the 
random forest model
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Recall that…
Explored different 
Bandit algorithms in
many constructs (e.g. 
action sets, reward functions)
On Horse betting
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Recall that…

Applied a tricky technique
to attempt to let  
bandit algorithm decide 
how much to bet
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Conclusion Q&A

Horse Racing 
Prediction

Data

Agenda
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Betting 
Strategies

Introduction

1
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Introduction

1

Objectives, Contribution
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Objectives (2nd Semester)
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● Improve accuracy and interpretation of 
time prediction model

● Explore new horse betting strategies using 
new bandit algorithms and other types of 
reinforcement learning algorithms

● Enable the agent bet with different amount 
of money

● Enhance the stability of horse betting 
strategies using model selecting with EXP3



WHAT’s 
NEW?
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WHAT’s NEW?
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1. Improved 
Random 
Forest Model

3. Applied More 
RL Algorithms
on Horse Betting

2. Explored
New Bandit
Algorithms

4. Model 
Selection 

using Bandit 
Algorithm



Contribution
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1. Reduced loss of random forest betting 
○ WIN bet

i. Reduced 87.162% loss
○ PLACE bet

i. Reduced 46.008% loss
2. Explored possible horse betting strategies generation (PLACE)

○ Neural Bandit / Neural UCB
○ Other reinforcement learning algorithms

3. Enhanced stability of horse betting strategies using model 
selection



Data

2

Descriptions, Analysis & Pre-processing
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Sources & Descriptions
● Data Sources

a. The Hong Kong Jockey Club
b. Data Guru
c. hkHorse

● Datasets
○ Ranged from 1979 to 2021
○ Tables:

■ Races data
■ Horses data
■ Horse-race data
■ Betting odds data
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Input Data for Training
● Features included

○ Races data
○ Horses data
○ Horse-race data
○ Additional features

● Drop unnecessary , irrelevant 
features 

● Split train and test data 
according to race season
○ Training data: 2008 - 2019
○ Testing data: 2019 - 2021 
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Horse Racing Prediction

3

Procedure, Evaluation & Performance
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A New 
Random 

Forest
17



Why Need This?
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● Some features are 
not influential

● Some features are 
correlated

● Improve accuracy
of the model

● Investigate the 
importance of 
features among 
the selected 
features



Features of New Model

● Features included
○ Horses data
○ Horse-race data

● Extract features with 7 highest 
importance

● Split train and test data 
according to race season
○ Training data: 2008 - 2019
○ Testing data: 2019 - 2021 
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Results and 
Analysis
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Evaluation Metrics
● Mean Squared Error (MSE)

○ Accuracy of the prediction
○ Closer to 0, the better performance
○ MSE of model: 1.7177 seconds

■ reduced by 24% with value of 0.5472
● Explained Variance Score

○ Discrepancy between the model and data
○ The closer to 1, the stronger association 
○ Explained Variance Score of model: 0.99547

■ increased by 0.00159
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Betting Accuracy
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● WIN Betting
○ Correctly predicted 24.331% of races

■ Decreased by 0.206% from old model
● PLACE Betting

○ Correctly predicted 47.108% of races
■ Decreased by 0.499% from old model



Partial Dependence Plot (Rating) 

● Rating has highest 
feature importance

● Race classes determined 
by rating 

● Inversely proportional to 
finishing time

● Clear intervals in PDP 
○ Matches race 

classes
● Race class 2 has the 

most varied results
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Partial Dependence Plot (Odds) 
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● Win odd regards as 
public intelligence 

● Greatly dropped at low 
win odds
○ Horses with low odd 

may not always win 
● Win odd rank shows clear 

intervals 
○ Rank 5 - 11 has a 

large step up



Error Range of Predictions

● Variance of predictions 
better than old model

● Average range of 
predictions: 0.851s
○ Reduced by 48.188%

from old model 
● 22.397% of predictions 

range > mean
○ Reduced by 4.08%

from old model
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Error Range of Predictions
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● Bet only predictions with 
small variance
○ Range < mean
○ Reduce loss 

● Change of number of correct 
predictions
○ WIN: Unchanged
○ PLACE:  -5.2%



Betting Simulation

1. Group all the horses by the race
2. Order the horses by the predicted finishing 

time in ascending order
3. Assign a predicted place to each horse 

according to the ranking
4. Start Betting!

27



Betting Simulation
1. Assume $10 would be used for each bet
2. Gain $10 * odds - 10 if correctly picked the 

horses
3. Lose $10 otherwise
4. PLACE betting would be simulated
5. Compare with different strategies

○ Based on lowest odds
○ Based on highest odds
○ Based on error range
○ Based on highest rating
○ Random 
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Betting Simulation
● Betting PLACE 
● Based on Highest 

odds is the worst 
● New model performs 

better (No error 
checking)

● Based on Error range 
is the best 
○ Old Model has 

39.873% accuracy
○ New Model has 

41.914% accuracy
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Horse Betting Strategies

4
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Bandit part 
Improvements
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Last Sem: Linear models 
Possible Problem: lower accuracy

Attempt:
Use more complex models: neural networks
● Neural UCB (Single neural network & UCB exploration)
● Neural Bandit (neural network committee & epsilon greedy exploration) 

Use better models
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Use better models
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Doesn’t show significant
Improvement in terms of 
Cash balance

However, the earn rate is 
8% higher than that of 
linUCB 



Bets on fewer options
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As top 5 horses occupy 
most out of all horses bet

Bet on only top 5
● Slight improvements 

but still losing



● Maintain its balance
But doesn’t earn

● Earn rate still grow 
overtime

● Lose rate reduces over time

Redoing previous approach with 
these improvement

35



Problems of directly using bandit algorithms on horse betting: 
● Not flexible 

○ unable to consider state information like remaining balance
○ Not easy to make variable amount of bet 

(Directly set as actions: Failed, always fall to safest option
which is $10 bet)

● Not work for very low odds and insufficient accuracy
○ Low expected return

Might be better to use more common RL algorithms

Concluding bandit parts
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Other 
Algorithms
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● Explore the possibility of finding horse betting 
strategies using different algorithms
○ Enhance the profitability
○ Able to bet with different amounts of 

money
● Evaluate the performance of multi-armed 

bandit by comparing all results

Why using other algorithms?
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● Selected from previous projects
○ Deep Q Network
○ Proximal Policy Optimization

● Other model-free, policy-based algorithms
○ Augmented Random Search
○ Cross Entropy Method

Algorithms used
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Type 1: only bet with $10
Type 2: bet with different amount of money ($10 - $50) 
Data to Use
● Split into train and test set with 707 records each

Features (for each horse):
● Last moment place odds
● Last 10 minutes EMA of odds
● Rankings (odds, predicted finishing time)
● Ratio of finishing time between each horse with the 

horse ranked 1 place ahead (finishing time)
● Confidence level related (error range, upper and lower 

bound)

Environments
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Action Set
● 14 horses (at most) ordered by predicted finishing time 

+ not to bet
Terminating State
● No more races
● Cash balance < 9000

Environments (Type 1)
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● R(Bet any of top 3 horses correctly and error range < 
mean) = (dollar bet * betting odd) * ((dollar bet / 10) + 0.5)

● R(Bet any of top 3 horses correctly) = dollar bet * betting 
odd of betted horse    

● R(Bet wrong and error range > mean) = -dollar bet * 
((dollar bet / 10) + 0.5)

● R(Bet wrong) = -dollar bet
● R(Not bet) = - 3 

Reward Functions (Type 1 & 2)
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Reward Convergence (Type 1) 
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● DQN has highest 
win rate

● ARS has highest 
loss rate

● Majority of 
selection are 
betting

Win Rate (Type 1) 
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● Only ARS bet on 
single option

● DQN & PPO has a 
safer strategy

● CEM’s strategy 
involves different 
risks

Actions Selected (Type 1) 
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● All losing money
● DQN perform 

significantly 
better than 
others

Profitability (Type 1)  
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Action Set
● 14 horses (at most) ordered by predicted finishing time 

+ not bet
● 5 different amount of dollar bets ($10, $20, $30, $40, $50)
● Total actions: 15 * 5 = 75

Terminating State
● No more races
● Cash balance < 8000

Environments (Type 2)
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Reward Convergence (Type 2) 
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● CEM has highest 
win rate

● ARS has highest 
loss rate

● Majority of 
selection are 
betting

Win Rate (Type 2)
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● Only ARS bet on 
single option

● DQN, PPO & CEM 
bet safer than 
before

Actions Selected (Type 2)
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● PPO & ARS only bet 
$50 

● CEM mostly bet 
with $10

● DQN bets with 
different amount

Money Actions Selected (Type 2)
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● All losing money
● CEM perform 

better than others
● PPO & ARS has 

great loss

Profitability (Type 2) 

52



Overall 
Comparison
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● Optimal: 
○ Place: top 3
○ Reward: top 3

● Sub-optimal: 
○ Place: top 3

● Non-optimal: 
○ otherwise

Optimal Actions Counts
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Optimal Sub-optimal Non-optimal

Neural Epsilon 53 (7.50%) 243 (34.37%) 411 (58.13%)

Neural UCB 65 (9.19%) 117 (16.55%) 525 (74.26%)

DQN 59 (8.35%) 205 (29.00%) 443 (62.66%)

PPO 63 (8.91%) 197 (27.86%) 447 (63.22%)

ARS 89 (12.59%) 127 (17.96%) 491 (69.45%)

CEM 59 (8.35%) 84 (11.88%) 564 (79.77%)



● Lowest odd > 1.5
outperform other

● DQN perform the 
best among all 
algorithms

Overall Comparison (Bet 1 option)
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Model 
Selection
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Model selection: selecting best suitable model at each time 
step
● No guarantee that a particular algorithm consistently 

performs well
● The best performing algorithm might be different over 

time
● Combining power of different algorithms

How?
We again use bandit algorithm (EXP3)

Why Model Selection
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EXP3 (Exponential-weight algorithm for Exploration and Exploitation)
● Adversarial Bandit (no assumption to make it work)
● Only update belief by reward (we don’t use contextual since it 

would be just trying to approximate other algorithms)
● sensitive to reward changes(exponential)

Suitable when the behavior of algorithms might constantly changing

Why EXP3 
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EXP3 picks one algorithm at a time and bet according to 
the decision of the chosen algorithm

Action Set
● Algorithms include DQN, PPO, ARS, CEM, neural 

bandit, neural UCB. 
● All run on the simplest setting (bet on 1 horse at a 

time with $10 bet)
Reward
● Reward of selected algorithm by betting on its 

decided horse

Procedure
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Result
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Using EXP3 to
do model selection 
outperforms any single 
algorithm!



Comparing algorithms by EXP3
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● DQN most selected 
overtime and follow by 
ARS and CEM

● Bandit is less selected 
which shows its weaker 
performance compared 
to others



Observing betting strategy 
from EXP3
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● Horse 5 is selected
the most. And followed 
by 7, 11, 4, 2

● Not bet is seldomly 
chosen

● Almost all are not safe 
options but EXP3 
doesn’t lose much at 
the end



Conclusion
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● Horse racing prediction model 
○ Enhanced interpretability of random forest

■ Showed how features affect the results
○ Acceptable betting strategy

■ Based on error range
■ Reduced loss without missing a lot profits

● Horse betting strategies
○ Bandit algorithms 

■ Not flexible (variable bet, unaware of state like cash 
balance, hardly profit for negative expected return) 

-> better use other algorithms
■ But can be used in other scenarios
■ Shown good performance in model selection

○ Other algorithms
■ Comparable accuracy and profits to the bandits

Conclusion
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Q&A Section

6
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The End
Thanks!
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