Predicting handicap result of Soccer using betting odds via Machine Learning

LYU 2005

Sun Ka Ho, 1155098418

Chan Cheong, 1155100189

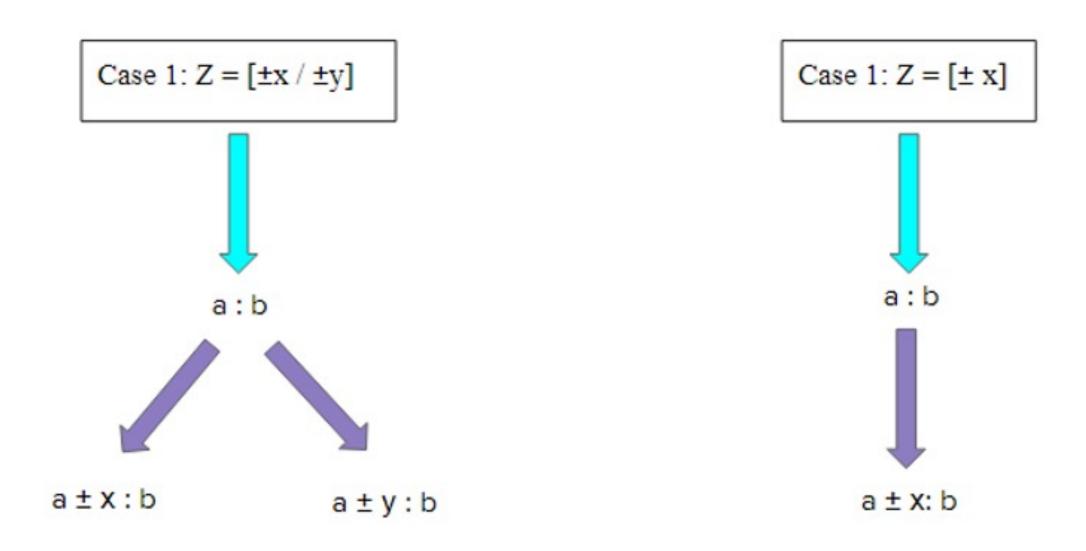
Agenda

- Objective
- Data Introduction
- Data pre-processing & Feature engineering
- Project workflow pipeline
- Model Introduction
- Evaluation
- Extra experiments
- Conclusion & Future work

Objective

- Semester 1
 - All useful data will be collected and cleaned.
 - Finalize the model pipeline and choose the baseline model.
 - Different models for comparison will be deployed.
- Overview
 - Profitable model

What is handicap?



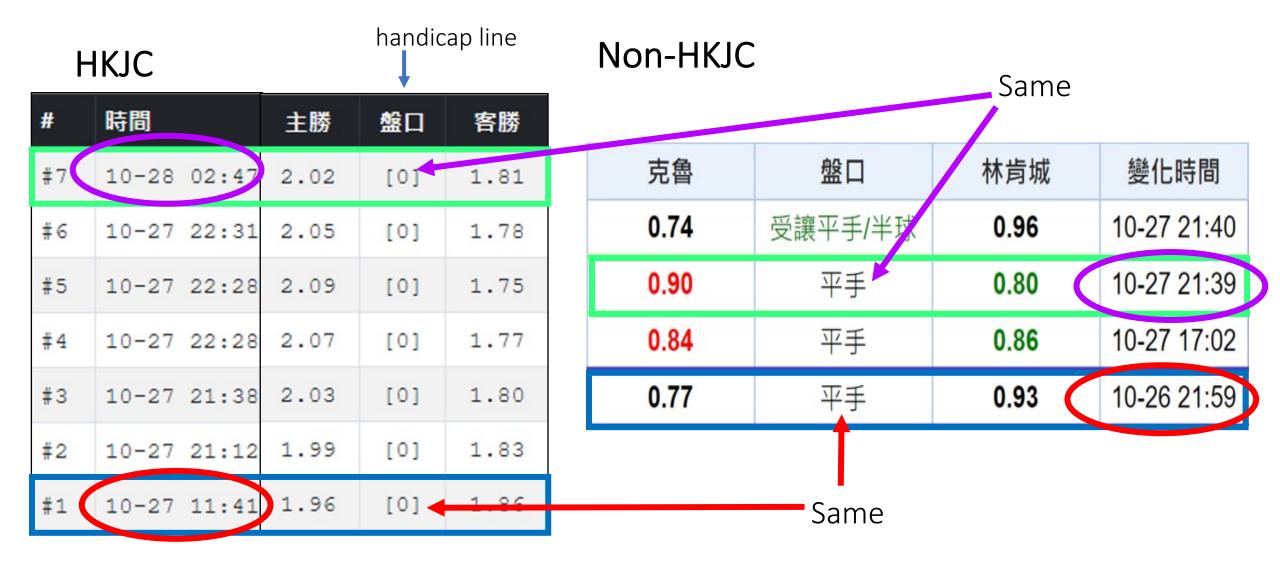
What is handicap?

Date	Home Team	Away Team	Match score	Handicap Line (Home Team)
23/11/2020	А	В	3:3	0/-0.5
3/11/2020	С	D	1:4	+2

Dataset

- 1. Home field indicator
- 2. Handicap odds
 - 1. HKJC
 - 2. Non-HKJC
- 3. Past 10 records
 - 1. Home(H)/Away(A): A vs _ , _ vs A , H vs _ , _vs H
 - 2. Encounter: A vs H , H vs A
- 4. Statistics of teams
- 5. Player Score
 - [weight/height/age/value/hit/power/potential_power]
- 6. FIFA Team Score
 - ATT/MID/DEF/power/rating
- 7. Lineup
- 8. Weather
- 9. Temperature

Feature Engineering - HKJC time relative odds



Feature Engineering - Past 10 record

							 	. ⊥ ≟/—).75 : ∶	> -0.7 1	5				
李斯特	城				近 10 🗸 均	易 🗌 同客		core =						
類型	日期	主場	比分 (半場)	角球	客場	Be 主	t365 💙 初盘 				·盤 ~ 客	正 人	全場 ∨	
英超	18-12-29	李斯特城	<mark>0-1</mark> (0-0)	10-4	卡迪夫城	0.85	半/一	客 1.05	主 1.54	和 3.92	各 7.10	勝负 負	讓球 輸	大小小
 英超	18-12-26	李斯特城	2-1 (1-1)	3-7	曼城 <mark>1</mark>	0.90	*球半	1.00	9.21	5.36	1.33	勝	贏	走
英超	18-12-22	車路士	<mark>0-1</mark> (0-0)	9-5	李斯特城	1.00	球半	0.90	1.32	5.18	9.92	勝	贏	小
英聯盃	18-12-19	李斯特城	1-1(0-1)	4-7	曼城	1.09	*一球	0.81	7.47	4.63	1.41	平	贏	小
英超	18-12-15	水晶宮	<mark>1-0</mark> (1-0)	4-4	李斯特城	0.85	平手	1.05	2.69	3.10	2.83	負	輸	小
英超	18-12-09	李斯特城	<mark>0-2</mark> (0-1)	6-5	熱刺	0.99	*平/半	0.91	4.02	3.48	1.95	負	輸	小
英超	18-12-06	富咸	1-1(1-0)	10-8	李斯特城	1.10	平手	0.80	2.78	3.31	2.59	平	走	小
英超	18-12-01	李斯特城	<mark>2-0</mark> (2-0)	4-8	屈福特 1	0.97	半球	0.93	2.26	3.26	3.35	勝	贏	小
英聯盃	18-11-28	李斯特城	<mark>0-0</mark> (0-0)	6-6	修咸頓	1.05	半/一	0.85	1.98	3.41	3.75	平	輸	小
英超	18-11-24	白禮頓	1-1(1-0)	6-1	李斯特城 <mark>1</mark>	0.85	平手	1.05	2.85	3.12	2.64	平	走	小

0:1

Data analysis

Is our project workable?

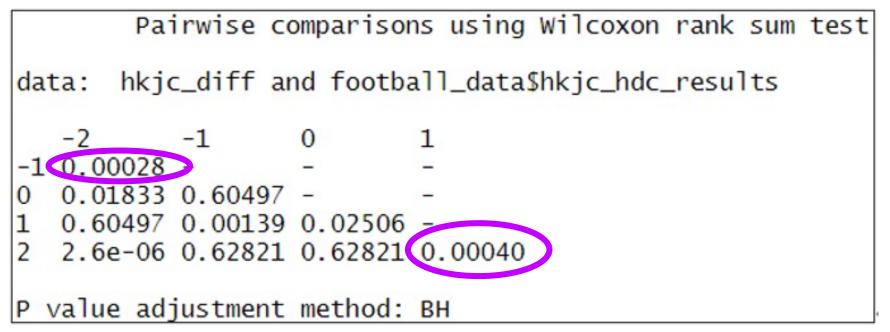
Kruskal-Wallis H Test

	p-valu	p-value							
	Initiated odd difference	Last odd difference							
нкјс	3.27E-08	1.329E-02							
Bet365	5.85E-05	1.096E-02							
Crown	9.12E-04	3.302E-03							
Macau	5.04E-06	1.617E-02							

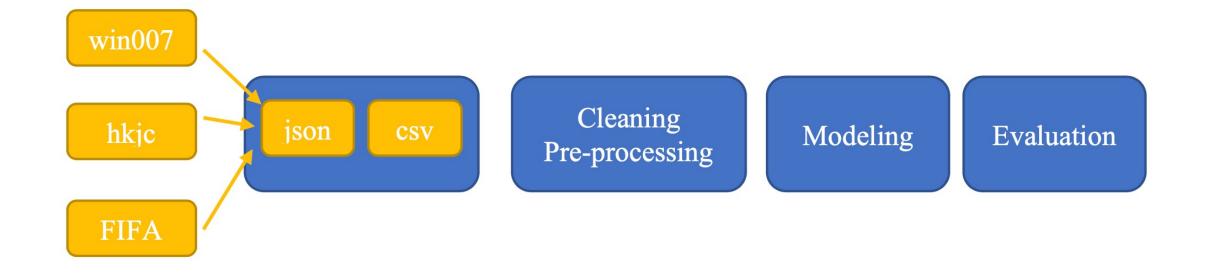
Data analysis

- Handicap result
 - 3 classes (+1, 0, -1)
 - 5 classes (+2, +1, 0, -1, +2)

Pairwise Wilcoxon Rank Sum Test



Pipeline

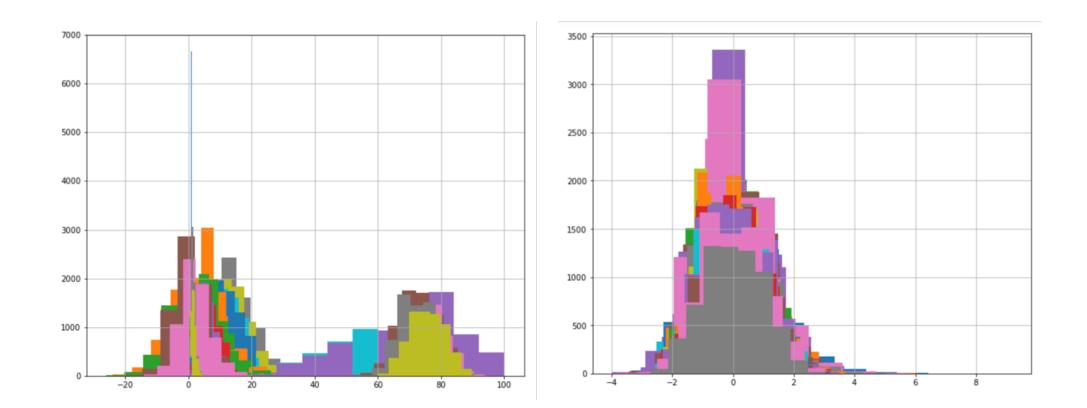


Pre-processing and Modeling

- Standardization
 - Zero mean and standard deviation equal to 1
- Imputation
 - KNN imputer
- Dimension reduction
 - PCA, autoencoders
- Models
 - Four statistical models, three neural network models
- Feature selection
 - AIC/BIC, RFE-SVM, FNN-FS

Standardization

• No standardization on One-hot values



Imputation

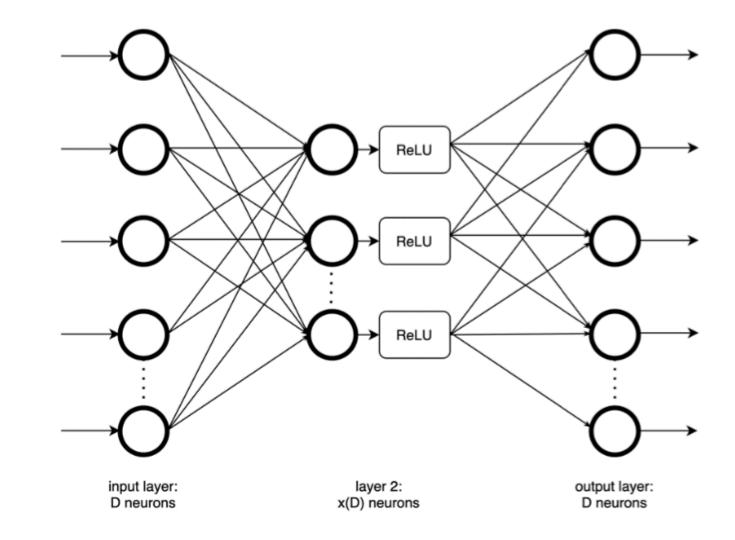
- Fill in the NAN values
- KNN imputer with k = 2
- Mainly on Player Scores and Team Scores

Dimension reduction (PCA)

- Dimension reduction
- Mix odds features and other features
- Proportion of variation (POV) 0.95 and 0.999
 - Selection features which can explain x% of variance

Dimension reduction (Autoencoder)

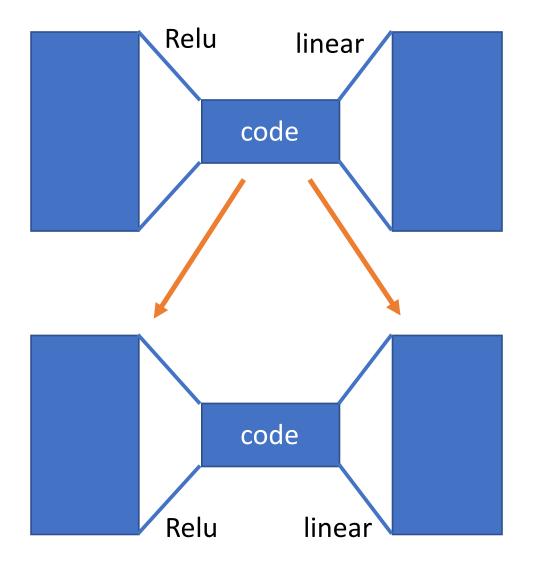
- One hidden layer
- Dynamic hidden layer uses percentage (%)



• Approximate $x \approx f(x)$

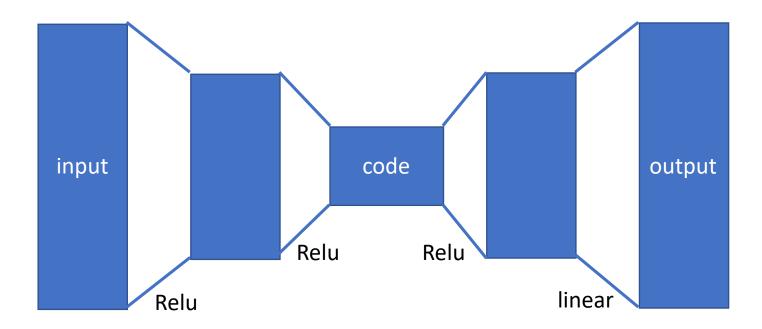
Dimension reduction (Stacked Autoencoder)

- Two hidden layers
- Dynamic hidden layer uses percentage (%)
- Greedy layer-wise pretrain



Dimension reduction (Deep Autoencoder)

- Two hidden layers
- Dynamic hidden layer uses percentage (%)
- Train as deep NN.



Hyperparameter tuning

- 5 folds cross validation
- Choose the best set of features on validation set
- Use it in testing set

20%	20%	20%	20%	20%
Validating	Training	Training	Training	Training
Training	Validating	Training	Training	Training
Training	Training	Validating	Training	Training
Training	Training	Training	Validating	Training
Training	Training	Training	Training	Validating

Benchmark Model

- Odds-based benchmark
 - Always bet on the team that has lower odds
- Expected value

• $EV = \frac{(invest_{money}*home_{odd}+invest_{money}*away_{odd})}{2}$

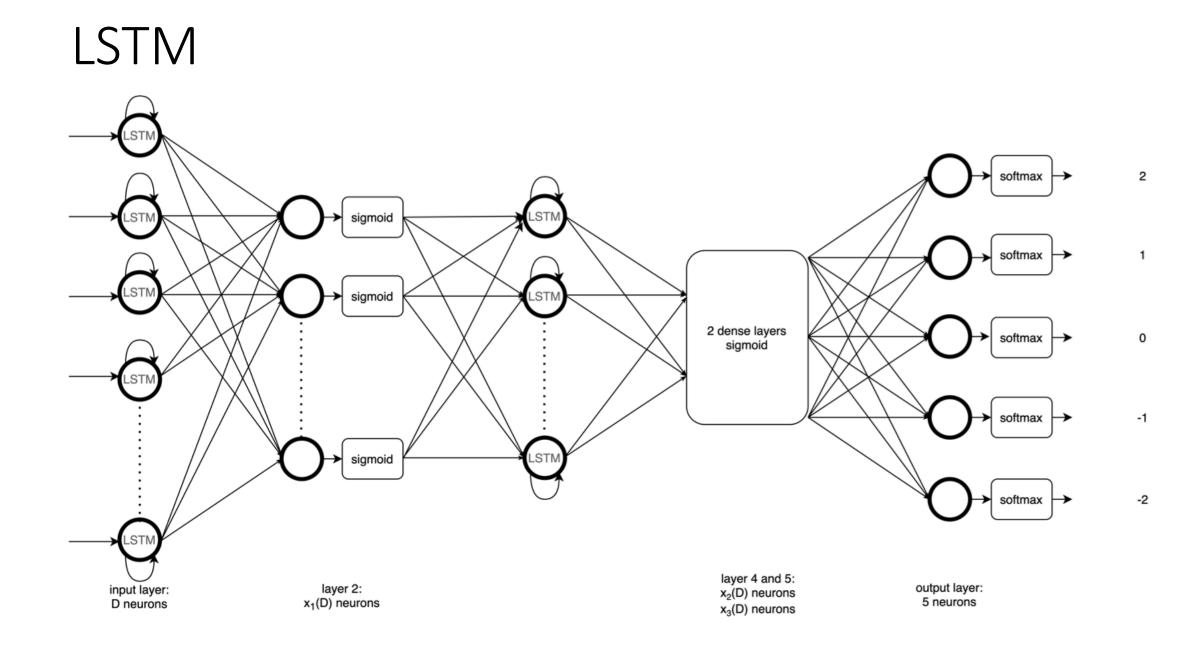
Statistical Model

- Linear Regression
- Logistic regression
- Random Forest
- K-nearest neighbour

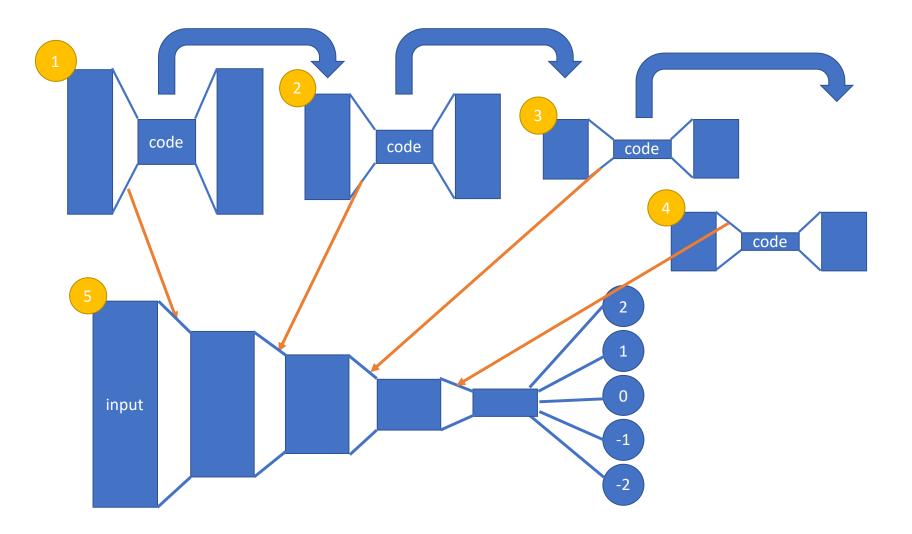
Neural Network Model

- Feedforward Neural Network (FNN)
- Long short-term memory (LSTM)
- Autoencoder (Supervised tuning) (Sencoder)

FNN softmax 2 → ≁ sigmoid softmax |-> 1 → → sigmoid 2 hidden layers sigmoid softmax 0 ≁ → softmax -1 ≁ sigmoid → softmax **→** -2 ≁ layer 3 and 4: x₂(D) neurons layer 2: x₁(D) neurons output layer: 5 neurons input layer: D neurons x₃(D) neurons



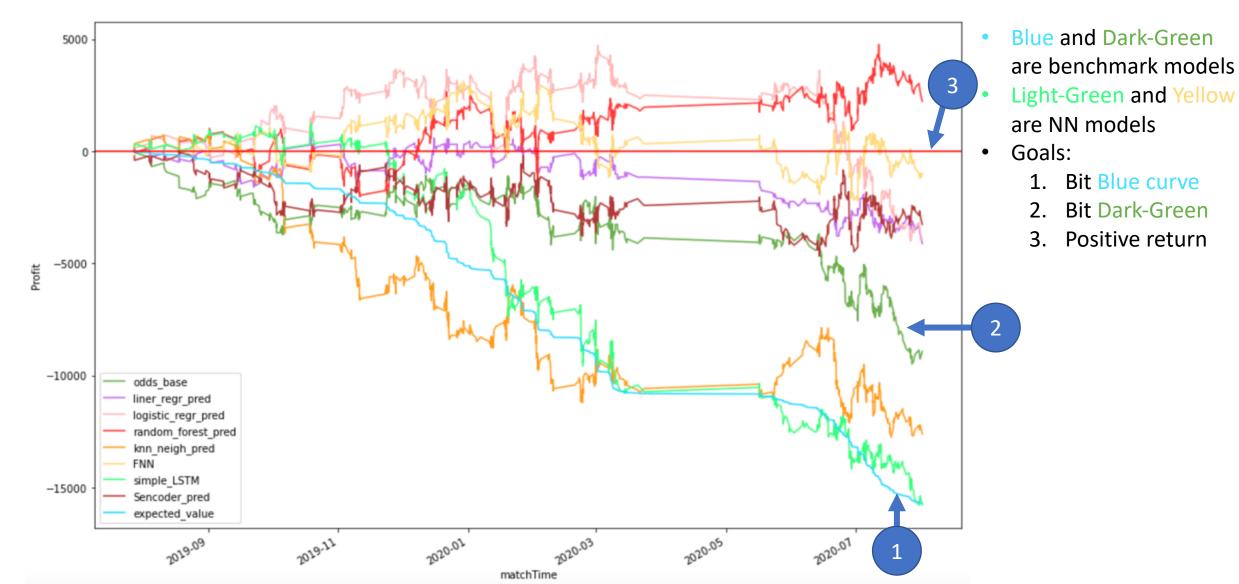
Autoencoder (Supervised tuning)



Evaluation

- Dataset contains 2017 to 2020-08, 5277 records
- Train on first 80% of data, test on the rest
- Invest \$200 on each match
- Plot the cumulative profit over time

Evaluation (Example)



Three approaches on training

- By-league
- All-league
- Cluster-then-Predict
- For By-league and Cluster-then-Predict:
 - Train on each subset, evaluate on them, plot the graph in one plot

By-league

- Odds in each league is different
- Separating them helps modeling
- Only select league with > 200 records

```
{'挪超': 215,
 '日職聯': 232,
'德乙': 472,
 '美職業': 253,
'法甲': 383,
'英冠': 463,
 '歐冠盃': 214,
 '西甲': 691,
'德甲': 520,
 '英超': 738,
'荷甲': 250,
'意甲': 594,
 '澳洲甲': 252}
```

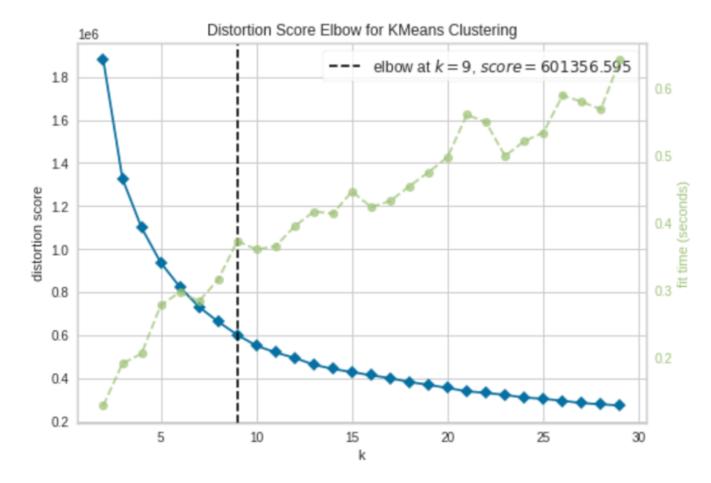
All-league

- Train all the data at once
- Only select league with > 200 records

Cluster-then-Predict

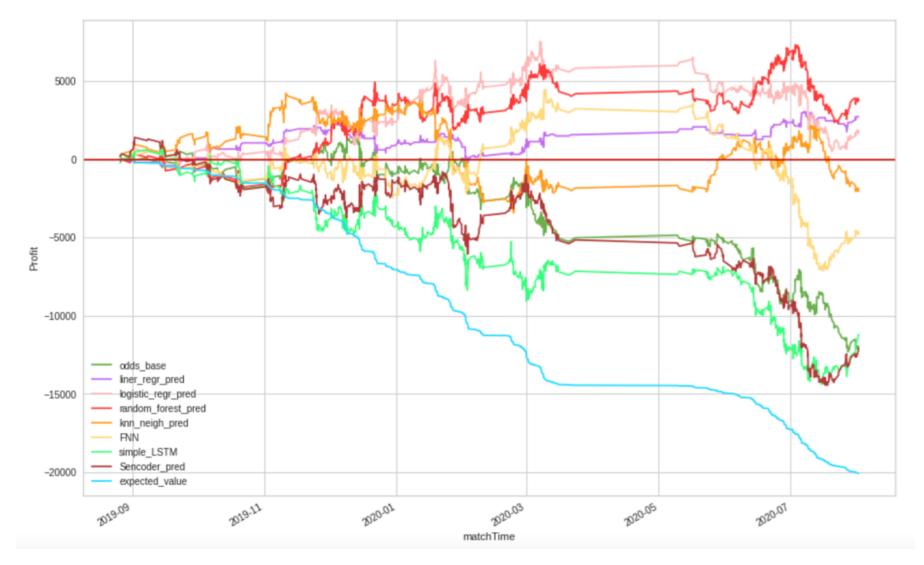
- Kmeans clustering
- Modeling on each cluster
- Elbow Method to select k

Cluster	Number of Records
1	1373
2	314
3	952
4	464
5	830
6	594
7	729
8	872
9	607



Cluster-then-Predict, the first cluster

Cluster-then-Predict, overall



Best Model

- All-league
- Reasons
 - Quite good performance of statistical models
 - Best average performance of FNN and LSTM

	Expected Value	Odds based	Linear Regr	Logistic Regr	Random forest	KNN	FNN	LSTM	Sencoder
Cluster-then-Predict	-20000	-12000	2500	1500	3750	-2000	-4950	-11000	-12000
by-league	-16000	-9000	-4250	-4250	2250	-12500	-750	-16000	-3000
all-league	-16000	-6250	-50	1250	100	-4500	-2000	-12500	-14000

Dimension Reduction

- 0.999POV better than 0.95 POV
- Deep autoencoder better than stacked autoencoder

(all-league)	Expected Value	Odds based	Linear Regr	Logistic Regr	Random forest	KNN	FNN	LSTM	AVG
Base	-16000	-6250	-50	1250	100	-4500	-2000	-12500	-2950
PCA, POV=0.95	-16000	-6250	0	1250	-1000	-10000	-5000	-3500	-3042
PCA, POV=0.999	-16000	-6250	-50	2000	-5750	-4500	-1300	100	-1583
Stacked Autoencoder	-16000	-6250	-50	-1000	2000	-10000	-100	-6000	-2525
Deep Autoencoer	-16000	-6250	-50	-1800	2000	-2000	-14000	4000	-1975
Autoencoder	-16000	-6250	0	-100	-3000	-6000	1200	-5100	-2167

Feature Selection

Index(['home away label', 'hkjc hdc home first', 'hkjc hdc away first', 'hkjc_hdc_home_last', 'hkjc_hdc_away_last', 'bet365_hdc_hkjcFirst home', 'bet365 hdc hkjcFirst away', 'crown hdc hkjcFirst home', 'crown hdc hkjcFirst away', 'macau hdc hkjcFirst home', 'macau hdc hkjcFirst away', 'bet365 hdc hkjcLast home', 'bet365 hdc hkjcLast away', 'crown hdc hkjcLast home', 'crown hdc hkjcLast away', 'macau hdc hkjcLast home', 'macau_hdc_hkjcLast_away', '總進球_away', '總進球_home', '總失球_away', '總失球 home', '凈勝球 away', '凈勝球 home', '場均進球 away', '場均進球 home', '勝率 away', '勝率 home', '平率 away', '平率 home', '负率 away', '负率 home', '同主客進 away', '同主客進 home', '同主客失 away', '同主客失 home', '同主客凈勝 away', '同主客凈勝 home', '同主客均進 away', '同主客均進 home', '同主客勝 away', '同主客勝 home', '同主客平 away', '同主客平_home', '同主客负_away', '同主客负_home', 'fifa_team_home_score_ATT', 'fifa team home score MID', 'fifa team home score DEF', 'fifa_team_home_score_能力', 'fifa_team_home_score_球隊評分', 'fifa team away score ATT', 'fifa team away score MID', 'fifa team away score DEF', 'fifa team away score 能力', 'fifa team away score 球隊評分', 'home player power mean', 'home player hidden power mean', 'away player power mean', 'away player hidden power mean'], dtype='object')

Number of features: 59

Feature Selection – AIC

- Forward selection
- La Liga League

Linear regression

Step: AIC=161.3 fd\$hkjc_hdc_results ~ fd\$home_full_勝率_總 + fd\$away_full_失_近6 + fd\$fifa_team_home_score_ATT + fd\$homeVsAwayPassTenRecord_converted + fd\$crown_hdc_home_first + fd\$同主客凈勝_home + fd\$bet365_hdc_initialFirst_away + fd\$bet365_hdc_initialFirst_home Of Sum of Sq RSS AIC 390.52 161.30

Logistic regression

Step: AIC=412.21 fd\$hkjc_hdc_results ~ fd\$away_full_勝率_客 + fd\$home_full_負_總 + fd\$home_full_勝率_總 + fd\$away_full_平_近6 + fd\$away_full_得分_近6 + fd\$同主客均進_home

Feature Selection – AIC

• Backward selection

• La Liga

Linear regression Logistic regression fd\$hkjc_hdc_results ~ fd\$fifa_team_home_score_ATT + fd\$fifa_team_home_score_MID + fd\$fifa_team_home_score_DEF + fd\$fifa_team_home_score_能力 + fd\$fifa_team_home_score_球隊評分 + fd\$fifa_team_away_score_ATT + fd\$fifa team away score MID + fd\$fifa team away score 能力 + fd\$hkjc hdc home first + fd\$hkjc hdc away first + fd\$hkjc hdc home last + fd\$hkjc hdc away last + fd\$bet365 hdc home first + fd\$bet365 hdc away first + fd\$bet365 hdc away last + fd\$bet365 hdc initialFirst away + fd\$bet365_hdc_initialLast_home + fd\$bet365_hdc_initialLast_away + fd\$crown hdc home first + fd\$crown hdc away first + fd\$crown hdc home last + fd\$crown hdc away last + fd\$crown hdc initialFirst away + fd\$crown hdc initialLast home + fd\$crown hdc initialLast away + fd\$macau hdc initialFirst home + fd\$bet365 hdc hkjcFirst home + fd\$bet365_hdc_hkjcFirst_away + fd\$crown_hdc_hkjcFirst_home + fd\$crown hdc hkjcFirst away + fd\$bet365 hdc hkjcLast away + fd\$crown_hdc_hkjcLast_home + fd\$crown_hdc_hkjcLast_away + fd\$macau_hdc_hkjcLast_home + fd\$homePassTenRecord_converted + fd\$總進球 away + fd\$總進球 home + fd\$總失球 home + fd\$場均進球 away + fd\$場均進球_home + fd\$勝率_away + fd\$勝率_home + fd\$平率_away + fd\$同主客進 away + fd\$同主客進 home + fd\$同主客失 away + fd\$同主客失_home + fd\$同主客均進_away + fd\$同主客均進_home + fd\$同主客勝 away + fd\$同主客勝 home + fd\$同主客平 away + fd\$同主客負 away + fd\$home full 賽 主 · fd\$home_player_weight_mean + fd\$away_player_weight_mean + fd\$home player value mean + fd\$home player age mean + fd\$away player age mean + fd\$home player hit mean + fd\$away player hit mean + fd\$home player power mean + fd\$away player power mean + fd\$away player hidden power mean

Feature Selection – RFE

- Backward selection using SVM
- Eliminate the feature that has lowest importance each time
- Grid search on "number of feature to retain"
- Only odds-related features retained

```
Number of features: 12
```

Feature Selection – FNNFS

- Forward selection using our FNN
- Select up till 40 features

array(['home_away_label', 'hkjc_hdc_home_first', '平率_home', 'bet365_hdc_hkjcLast_away', '場均進球_away', 'away_player_hidden_power_mean', '同主客平_away', '负率_away', 'home_player_hidden_power_mean', '同主客進_away', '同主客失_home', '總進球_home', 'fifa_team_home_score_MID', 'crown_hdc_hkjcLast_away', 'hkjc_hdc_away_last', '平率_away', 'bet365_hdc_hkjcFirst_home', 'fifa_team_away_score_球隊評分', 'fifa_team_home_score_能力', 'fifa_team_away_score_球隊評分', 'fifa_team_home', '總失球_away', 'bet365_hdc_hkjcLast_home', '同主客均進_away', 'bet365_hdc_hkjcFirst_away', '同主客均進_home', '總失球_home', '勝率_away', 'loef365_hdc_hkjcFirst_away', '同主客均進_home', '總失球_home', '勝率_away', 'loef365_hdc_hkjcFirst_away', '同主客均進_home', '總失球_home', '勝本_away', 'loef365_hdc_hkjcFirst_away', '同主客为進_home', '總失球_home', '勝本_away', 'loef365_hdc_hkjcLast_away', '同主客为涉_home', 'kijc_hdc_away_first', 'away_player_power_mean', '同主客淨勝_home', 'fifa_team_away_score_ATT', '同主客平_home', '凈勝球_home'], dtype='<U29')</pre>

Feature Selection

• Deep autoencoder better than stacked autoencoder

(all-league)	Expected Value	Odds based	Linear Regr	Logistic Regr	Random forest	KNN	FNN	LSTM	AVG
Base	-16000	-6250	-50	1250	100	-4500	-2000	-12500	-2950
Stacked RFE	-16000	-6250	0	-4500	500	2000	-500	-4000	-1083
Deep RFE	-16000	-6250	0	-100	2000	-100	-200	-10	265
Stacked FNNFS	-16000	-6250	0	-3000	-1500	-6300	-10	-13000	-3968
Deep FNNFS	-16000	-6250	0	750	3000	-800	-8000	2500	-425

Odds-only features

	Expected Value	Odds based	Linear Regr	Logistic Regr	Random forest	KNN	FNN	LSTM	Sencoder	AVG
by-league	-16000	-9000	-4250	-4250	2250	-12500	-750	-16000	-3000	-5500
by-league (odds only)	-16000	-9000	2000	-2200	-9000	-2700	2500	6300	-3000	-871
all-league	-16000	-6250	-50	1250	100	-4500	-2000	-12500	-14000	-4529
all-league (odds only)	-16000	-6250	-100	1250	-4900	-5100	2000	3000	-14500	-2621

Conclusion & Future Work

- Workable
 - Proved and 5 classes for handicap result
- Best features
 - Odds-related features
- Best model
 - NN models
- Future Work
 - Focus on deep learning
 - Follow up on Cluster-then-Predict
 - Betting strategy
 - Real-time prediction program

Appendix

• These Pages are only for Q&A

Imputation

- KNN imputer with k = 2
- Mainly on Player Scores and Team Scores

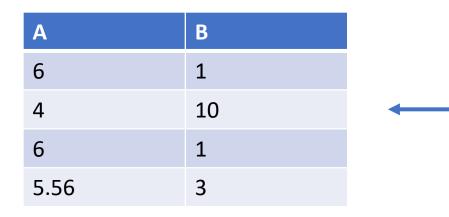
Group by	H/A Team	Leagu	Je	Home player scores		Away playe scores	er	Home tear scores	n	Away team scores
	Liverpool	EPL		int		int		int		int
	Liverpool	EPL		int		int		int		int
Player	H player po	ower	H pla	yer pot. power			H pla	yer power	H play	er pot. power
scores	nan		1				6		1	
example	4		10		KN	N imputer	4		10	
	6		1				6		1	
	nan		3				5.56		3	

KNN Imputation, n = 2

Α	В
nan	1
4	10
6	1
nan	3

R1	R2	R3	R4
0	11.29	0	2.51
11.29	0	11.29	8.8
0	11.29	0	2.51
2.51	8.8	2.51	0

 $\sum \sum Euclidean_distance(row_i, row_j)$



Example Fill in Row4, ColA that nan Choose the closest two point(without nan) 4* (1 - 8.8/(8.8+2.51))+ 6* (1 - 2.51/(8.8+2.51)) Output = 5.56