
1

ESTR 4999 FYP LYU2002 2020/21 Term 2 Thesis Report

Yau Chung Yiu, Oscar 1155109029

Study Neural Architecture Search

[Neural Architecture Search on BERT for Network Compression]

Abstract

Due to the limitation of manually designing neural network architecture, Neural

Architecture Search arises to algorithmically learn the suitable network architecture for

machine learning tasks. This report will emphasize on two elements of this project, i.e.

Neural Architecture Search and its application on BERT, an attention-based neural

network for natural language understanding. After experiments, we realized prediction

distillation is the most effective objective for sub-architecture searching over the multi-

heads and the feed-forward layer connection. The latest experiment result shows that

the result of our architecture searching algorithm can surpass the performance of the

existing BERT models of similar architecture computational complexity.

Abbreviation

AutoML – Automatic Machine Learning

BERT – Bidirectional Encoder Representations from Transformers

FLOPS – Floating Point Operations Per Second

LSTM – Long Short-Term Memory

NAS – Neural Architecture Search

NLP – Natural Language Processing

RNN – Recurrent Neural Network

TinyBERT 4L – A variant of BERT with 4 hidden layers from [28]

2

Index

1 Introduction .. 4

2 Background Study .. 4

2.1 Neural Architecture Search, and AutoML .. 4

2.1.1 Search Strategy .. 6

2.1.2 AutoML System ... 8

2.2 Network Compression .. 9

2.2.1 Weights Quantization ... 9

2.2.2 Network Pruning .. 9

2.2.3 Low-rank Approximation... 10

2.2.4 Knowledge Distillation .. 10

2.2.5 Lottery Ticket Hypothesis .. 12

2.3 Natural Language Processing ... 13

2.3.1 Recurrent Neural Network, LSTM .. 13

2.3.2 Transformer .. 15

2.3.3 Language Modelling: ELMo, GPT, BERT .. 19

2.3.4 Tokenization ... 22

2.3.5 GLUE ... 23

3 Problem Statement ... 24

4 Related Works .. 25

4.1 DARTS .. 25

4.2 TAS ... 26

4.3 AdaBERT .. 28

4.4 TinyBERT ... 29

4.5 Overview on Pruning NLP Model .. 31

5 Methodology .. 32

5.1 Differentiable Search Method ... 32

5.2 Search Objective ... 33

5.3 Search Space ... 33

5.3.1 Input Embedding .. 35

5.3.2 QKV Hidden Representation ... 35

5.3.3 Feed Forward Intermediate Representation ... 37

5.3.4 Multi-heads Pruning... 37

5.4 Knowledge Distillation - BERT-Base to TinyBERT .. 38

5.4.1 Procedure ... 38

5.5 Self-Knowledge Distillation ... 39

5.5.1 Procedure ... 39

3

5.6 Search Scheduling and Parameter Control ... 39

5.7 Conclusion .. 40

6 Experiment.. 41

6.1 Knowledge Distillation - BERT-Base to TinyBERT .. 41

6.1.1 Reproducing TinyBERT & Setup .. 41

6.2 Self-Knowledge Distillation .. 43

6.2.1 Experiment Setup ... 43

6.3 Experiment Results ... 44

6.3.1 Development Evaluation .. 44

6.3.2 Test Evaluation ... 45

6.3.3 Baseline Comparison ... 47

7 Analysis & Discussion ... 48

7.1 Verification of Methodology on MNIST .. 48

7.2 Search Space ... 51

7.2.1 Input Embedding Pruning .. 53

7.2.2 QKV Dimension Pruning / Multi-Head Pruning ... 54

7.2.3 Feed-Forward Intermediate Dimension Pruning ... 55

7.3 Search Objective ... 56

7.3.1 Empirical Error Loss via Cross Entropy .. 56

7.3.2 Two Stage Distillation .. 56

7.3.3 Intermediate Distillation Loss .. 56

7.3.4 Prediction Distillation .. 57

7.3.5 Why Self-Distillation? ... 57

7.3.6 Conclusion of Search Objective... 58

7.4 Target Search Size Scheduling .. 58

7.5 Architecture Parameter Control .. 59

7.6 Data Augmentation in Architecture Search ... 61

7.7 Performance-FLOPS Plot Analysis... 61

7.8 Keep Weights from Searching .. 61

7.9 FLOPS Weight Sensitivity Analysis ... 62

8 Conclusion ... 64

Reference ... 65

4

1 Introduction

To understand NAS, we are trying to experiment with the possibility of NAS on

deep neural network. Existing research results mainly focus on the implementation of

NAS on state-of-the-art neural network modules such as convolution, residual

connection, which shows the best performance on image cognition problems. Thus, we

decide to work on the less explored architectures of neural network.

We have seen the rapid development and success of deep neural network on natural

language processing problems. A new emerging architecture named Transformer caught

all the attention in the natural language processing community. Considering the

constraints of our resources, we decide to focus on BERT and its application on

sentence pairs classification problems using GLUE dataset. The transformer

mechanism utilities the correlation of pairs of words within the sentences to infer

information about the contextual meaning of the sentences.

We propose to apply NAS on BERT architecture and perform network

compression on the architecture. We foresee that at the end we should be able to remove

redundancy in the architecture and reduce the number of parameters in the network. We

might also hope that the network would improve in accuracy, as network compression

can be thought of as an action of regularization.

2 Background Study

2.1 Neural Architecture Search, and AutoML

A family of methodologies that allows computers to automatically learn the better

computational model to solve a specific task is called Automated Machine Learning.

Intuitively it can perform architecture development just like a machine learning

developer will do, but better at being data-driven.

It is common to describe the problem of AutoML as a Combined Algorithm

Selection and Hyperparameter optimization problem, dubbed as CASH [7]. In a CASH

problem, we are trying to minimize the evaluation loss of the model trained on the

training dataset, where the model is parametrized by the hyperparameters and the choice

of algorithms. This equivalently captures the idea of finding the best solution to solve

the existing problems, using machine learning.

5

Under AutoML we have three popular areas of study, namely hyperparameter

optimization, meta-learning and neural architecture search.

Hyperparameter optimization [1, Chapter 1], as its name suggests, focuses on

searching for the best hyperparameters of a machine learning model to attain the best

performance. Common hyperparameters of a model are learning rate, batch size,

number of training epoch etc. While it is not the focus of our project, it is worth to

mention that hyperparameter optimization overlaps a lot with NAS. We can think of the

architecture of a network as one of the hyperparameters of the network.

Meta-learning suggests using meta-data to lead the learning of our model. Meta-

data is the data we get from learning other models on different datasets. Across datasets

and across machine learning models we can observe and calculate statistically what is

the factors behind that leads to the success of some models and the failure of some other

models. For example, if we know certain models will not perform well on some tasks,

we can predict that they will not perform well on similar tasks. Meta-learning utilizes

this idea and allows the computer to learn how to learn [1, Chapter 2]. For example,

Auto-PyTorch Tabular do both NAS and hyperparameter optimization on tabular

datasets and set up a benchmark called LCBench for learning curve prediction [2].

NAS covers all the methods that use automatic algorithms to design the

architecture of a neural network. NAS algorithms can be categorized according to its

search space, search strategy and performance estimation strategies [1, Chapter 3].

Inside the search space are all the candidate architectures for the task. At each iteration

of the searching, we sample one architecture from the search space for evaluation of its

performance, using the performance estimation strategy. The most intuitive way to

estimate the performance of the architecture is to use a training dataset for training until

convergence and perform evaluation on the unseen dataset as the estimated

performance of the architecture.

 Most of the time NAS procedures are computationally expensive due to the cost

of performance estimation. Training cost of a deep neural network can be as expensive

as up to a GPU day. The more architecture that we have evaluated on, the more

information about the search space we have and the higher chance that we can evaluate

on a suitable architecture that performs well on the given tasks. This situation makes

NAS different from other machine learning algorithms, where in general we can

monitor the learning progress of a neural network by looking at its validation results

6

and infer that whether the model is converging or overfitting. But in NAS the search

will not overfit on sampling too many architectures. So we cannot adopt strategies such

as early stopping in our searching process. This motivates the choices of better search

strategies and better performance estimation strategies that do prediction on the

performance of the architecture without training the architecture to convergence, to

overcome the large cost deep neural network training. Searching strategies that could

achieve efficiency by this idea includes Bayesian optimization and gradient-based

algorithms.

Fig. from [1, Chapter 3]. An illustration of NAS.

2.1.1 Search Strategy

Here we will describe the details of different searching strategies. The major

classes of NAS algorithms according to the search strategies are searching by Bayesian

optimization, reinforcement learning, genetic algorithms and gradient-based algorithms.

Bayesian optimization is the method that allows us to predict a certain function

without a full evaluation of the function [6]. This is very helpful to NAS, when

especially the function of interest is the function of network performance, given the

hyperparameters and architecture as the input of the function. Using Bayesian

optimization is like exploring an unknown function, and in each iteration, Bayesian

optimization will tell us what is the best point to evaluate on to get a more accurate

estimation of the high points of the function. With the objective of finding the best

architecture, Bayesian optimization will save us a lot of time from preventing

evaluation on weak architectures, or architectures that will not bring us new information

about the best architecture.

7

Fig. from [6]. Top: 3 blue points represent observed data point, which can be referred

as the evaluated architectures in NAS. Dashed red lines represent the confidence

intervals of the estimation of unobserved input. Bottom: Acquisition function suggests

the next relevant points of sampling to get the most unknown information about the

distribution.

When we consider architecture searching as a task of reinforcement learning, the

agent’s action will choose how to build the next architecture for evaluation. The

evaluation results of the architecture become the reward of the agent. So, the

reinforcement agent will use achieving the best network performance as its target to

generate the best architecture according to the given data and tasks.

Using genetic algorithms to produce the best architecture for a certain task is also

popular as an intuitive method to perform NAS. In a population each individual is a

candidate architecture, and through mutation process new architectures will be

generated, for example, by picking the fittest parent and generate its offspring by

applying mutation on its architecture [1, Chapter 3]. Each candidate is evaluated on the

unseen dataset to get their own scores as a fitness function, so suitable genes of

architecture that perform well on the tasks will survive in the population.

Gradient-based searching stands out to be one of the most efficient searching

strategies. We can see from the above strategies that evaluation of the architecture is

done for each iteration of searching, for example genetic algorithms have to train each

8

of the candidate architectures to convergence in order to calculate its fitness score. For

larger architecture or larger dataset, the cost of training an architecture is huge, thus

becomes the reason of inefficiency. In contrast, gradient-based methods enable us to

learn the architecture during the training of the network. Extra learnable weights are

attached to the network, which serves as probabilities of the possible architectures. If

we are training to minimize the training loss and architecture loss at the same time, we

could have the gradient of the architecture weights with respect to the losses and have

the architecture weights trained together with the original weights of the network. For

example, [3] has shown a differentiable searching algorithm to search for the width and

depth of a ResNet [4], a convolutional neural network with residual connection.

In our project, we decide to use a gradient-based searching strategy to perform

NAS by the reason that it is more feasible to execute within a reasonable period of GPU

hours.

2.1.2 AutoML System

To get a better understanding of the state-of-the-art AutoML methods, here we

introduce a few of those that become successful in the community of AutoML.

Essentially each of the following is a product of “easy to use” machine learning library

that allows normal users with no expert knowledge about machine learning or about the

data to perform machine learning tasks.

Auto-Keras is the realization of NAS that uses Bayesian optimization to guide the

network morphism [5]. For efficiency of the searching procedure, Auto-Keras perform

Bayesian optimization that searches for architectures on CPU while in parallel it

performs model training on GPU so that evaluation results are passed back to the

Bayesian optimization searcher to update its estimation of the performance graph of the

model. By the constraint of Bayesian optimization methods that the search space of

parameters needs to be continuous, it is not applicable to NAS since network

architectures are discrete. To tackle this problem Auto-Keras decided to use the edit

distance of two architectures to lay the discrete architecture onto continuous dimensions.

It means that two architectures are close to each other when it only takes a few numbers

of morphing to transform one architecture into the other one. Finally, it is reasonable to

see that Auto-Keras focuses on searching the architecture of a deep neural network since

we expect that a deeper network creates flexibility for the architecture to be changed,

and thus being more probable that we will see a good performance of deep neural

network after architecture searching comparing to shallow machine learning models.

9

In contrast to searching for the best deep neural network architecture for a certain

task, Auto-sklearn takes the traditional machine learning approach and put together an

ensemble of weak learners as the resulting model for the given task [7]. The system

performs meta-learning to initialize the prediction of its Bayesian optimization searcher

as a warm-starting operation. While in each searching iteration the Bayesian optimizer

will search for the best hyperparameter for the base learner, after evaluation the trained

weak model is also saved and serve as a candidate to participate in the final ensemble

of the model. In the end, the system will perform ensemble selection using a held-out

set of data to produce the ensemble of models.

2.2 Network Compression

State-of-the-art deep neural networks have a large size of trainable parameters, and

certainly leads to more computational operations and longer inference time is required.

For systems that want to achieve real-time performance, this is the bottleneck that limits

the representation power of the neural network. Under the study of network

compression, there are methods that will decrease the number of weights in the model

while maintaining the model performance. In the following, we will try to introduce

some of the existing compression methods.

2.2.1 Weights Quantization

In modern use of neural networks, weights of the network are often represented as

32-bits float point values for precision. Using parameter quantization we can reduce

memory consumption by limiting the precision of weights down to 16-bits or 8-bits,

while correspondingly providing up to 2x and 4x more memory space on the GPU. This

is advantageous in the case that we need to train very deep neural networks, as one of

the bottlenecks for increasing model complexity is the memory size of a GPU. At the

extreme people have tried using binary numbers as the weights of the network, however

in practice this often suffers from the significantly lowered accuracy of the resulting

model [8].

2.2.2 Network Pruning

Network pruning achieve network compression by removing less informative and

less impactful connections from the network to save computation. Early approaches

such as using the second-order gradient information of the loss function to deduce the

contribution of neurons have shown superior performance over the others in the early

10

times [8]. Network pruning is always applicable to connections of feed-forward layers,

which are common types of connections among all the neural networks. Similarly

approaches such as imposing L1-norm regularization can also be thought of as a kind

of network pruning, since L1-norm regularization induces sparsity in the connection of

the network. For the same reason we can say that network pruning has the same effect

of regularization, which will limit the learning capacity of the network and avoid

overfitting.

2.2.3 Low-rank Approximation

Aside from feed-forward layer, another common type of layer is convolution.

Low-rank approximation allows us to split a big convolution filter into two smaller

convolution filter, which reduces the number of learnable weights and the number of

computational operations. Two famous examples of such kind are called spatial

separable convolutions and depthwise separable convolutions [9]. Spatial separable

convolution deals with the case where we want to factor a 2D convolution filter into

two 1D convolution filter, thus the number of computations for a 𝑚 × 𝑛 matrix

reduces from 𝑚𝑛 to 𝑚 + 𝑛. On the other hand, depthwise separable convolution is

more power as it also deals with convolution across channels. It is common to see a

network that adopts the use of 3D convolution filters. Depthwise separable convolution

makes it possible to reduce computation by separating convolution into two parts,

depthwise convolution and pointwise convolution. In depthwise convolution, we will

be using 𝑘 filters to learn the spatial characteristic within the same channel, for 𝑘

input channels. Using the output of depthwise convolution we perform the second step

called pointwise convolution, which uses ℎ 1 × 1 × 𝑘 filters to learn the cross-

channel information and generate an output of ℎ channels. We see that separable

convolution is applicable to all shapes of convolution layers while being able to show

a significant reduction in computational complexity.

2.2.4 Knowledge Distillation

If we look at a very deep neural network, we might ask ourselves how much each

layer is contributing to the prediction results. When it is the case that some of the layers

are redundant or even be no-op that does not learn any details of the data we will

consider doing knowledge distillation. In the setup of knowledge distillation, we will

transfer the knowledge of a trained teacher network to a smaller student network. It can

be further separated into two types of distillation, the prediction layer distillation and

intermediate layer distillation. In the prediction layer distillation, the final output of the

smaller student network is trained with respect to the output of the teacher network.

11

This is based on the belief that the knowledge of the teacher is more informative than

the data labels, which allows the student network to generalize well [10]. We can

illustrate this by an example of MNIST, the recognition of handwritten digits. A typical

MNIST classifier will have the final layer having softmax output, representing the

probability of each class that the digit will belong to. To see how informative a teacher

network output can be we can assume that upon taking a ‘2’ as the input, the teacher

network will assign 𝑃(𝑥 is 2) = 0.95, 𝑃(𝑥 is 3) = 0.03, 𝑃(𝑥 is 7) = 0.02 and all the

other classes as 0. These softmax outputs are referred as the “soft target” of the student

network. From this distribution we can see that the teacher correctly predicts the input

to its corresponding class, which provides the same information that the data label can

give, while in extra is telling us that the digit ‘2’ is more similar to the digits ‘3’ and ‘7’

than the other digits. If the student network can also generate similar distribute of

probability at its output layer, it is very likely that the student network has learnt the

useful features from the input data that allows the model to make correct classification

decision. If we extend the idea of knowledge distillation further into the output of the

intermediate layers of the teacher network we have intermediate layer distillation. Each

layer of the student network will be trained to match the intermediate layers’ output of

the teacher network. Intuitively this is similar as we are trying to let one layer of the

student network to mimic the operation of several layers of the teacher network. For

example, in [11] this idea is referred as “Task-useful Knowledge Probe”, where the

authors are performing task-specific fine-tuning of the language model BERT together

with knowledge distillation to achieve network compression.

Fig. Example illustrating intermediate layer distillation, red arrows represent that the

student is training w.r.t the output of intermediate layers of the teacher network, the

same color of the layer blocks represent that they have a similar function for

processing the input.

12

There are also cases where the student network is deeper than the teacher network

but thinner [12]. This will allow the student network to perform a richer feature

extraction process, while still being better than the teacher model by having shorter

inference time and smaller model size.

While there are a variety of techniques to do network compression, a rule of thumb

is that we should not sacrifice too much of the performance of the network for efficiency,

unless under the situation where memory efficiency or computation efficiency is more

important than the accuracy of the model. Network compression can not only reduce

the resource required to build and use a deep neural network, it also enables us to train

a deeper neural network and gain more learning capacity.

2.2.5 Lottery Ticket Hypothesis

 Inspired by all kinds of pruning techniques, [32] proposed the famous Lottery

Ticket Hypothesis which states that a randomly-initialized dense neural network

contains a subnetwork which is able to be trained to match the test accuracy of the

original network under the same initialization of the original network. An analogy to

lottery ticket is mentioned where different subnetwork of the initialized neural network

is similar to a lottery ticket and a larger model have more combination of subnetwork,

thus it has a larger chance of winning the lottery, i.e. converge to the parameters that

obtains high test accuracy.

 In [32] the author also proposed an iterative pruning method such that it can

identify the winning ticket (i.e. the best subnetwork) after 𝑛 rounds of iteration:

 By repeating the above algorithm for 𝑛 iterations, each time with 𝑝 = (𝑝∗)
1
𝑛

where 𝑝∗ is the final ratio of weights we want to prune, this is referred as Iterative

pruning in [32]. In step 3 we are pruning the first 𝑝% smallest magnitude parameters.

Intuitively the parameters with small magnitude should be the least influential in the

network.

 In the discussion of [32], it is hypothesized that the initialization of weights is the

core behind determining the subnetwork to be well trained.

13

 Beyond the idea of Lottery Ticket Hypothesis [34] found out the phenomenon that

within a large randomly weighted network there exist subnetwork that performs well,

even without training the network weights. These results strongly suggest the

importance of an architecture over weight optimization, and reveal more underlying

unknown about state-of-the-art deep neural networks.

2.3 Natural Language Processing

 Natural language processing concerns with all the machine learning algorithms

that allow computers to understand and extract useful information from sentences of

the same language. This area is getting most of the attention of the machine learning

community, with its advancement in architecture that it brings to the study of machine

learning. In the old days, the common approach is to use a recurrent network to capture

contextual information from a sequence of words. Notice that in NLP we need models

that could handle sequence to sequence operation. By design, popular layer choices in

other problems such as convolution will not work for NLP problems since information

of a sentence is not positional invariant property. The order of word appearance will

affect the meaning of the word. For example, for sentiment analysis problem such as

customer review analysis, “Although I like the product, but the delivery is too late.”

and “Although the delivery is too late, but I like the product.” will have different scores

of positiveness, where the first one is more negative than the second one. By this we

see that using convolution operation will not help much in problems of NLP. Instead,

there are other kinds of neural networks that are more suitable for NLP.

 2.3.1 Recurrent Neural Network, LSTM

Recurrent neural network has first been used to tackle NLP problems. Due to its

cyclic connection between current states and previous states, RNN can model

sequential information flow and have been successfully used for sequence labelling and

sequence prediction tasks [13]. RNN is a sequence to sequence model, that it inputs in

a sequence of data input and outputs a sequence of hidden representation. At the

segment of input data, RNN will take the combination of the internal output of the

previous layer and the data to generate its output. The internal output acts as an internal

memory of RNN, which allows the network to remember useful information that is

encountered while taking in the previous segment of the input data. Sometimes the

internal outputs will be referred as the hidden states of the RNN.

14

Fig. from [14]. An illustration of the computational graph of RNN. ℎ𝑖 represents the

internal output (hidden states) of the RNN at time 𝑖 after manipulating the input 𝑥𝑖−1

and ℎ𝑖−1. 𝑦𝑖 are the outputs of the RNN at time i.

 One limitation of the vanilla RNN is that it can only consider sequential

information flow in one direction. This leads to an improved version of RNN called

Bidirectional RNN, where essentially it is two vanilla RNN that one takes the input

sequence from head to tail while the other one takes the input sequence from tail to

head. The i-th output of the two RNN is the combination of the i-th output of each of

the RNN.

 Another problem is that it is difficult for vanilla RNN to represent the long-term

dependencies within the sequence in practice. To further expand the representation

power of RNN, the popular and practical solution of RNN type network is the Long

Short-term Memory network, introduced back in 1997 [15]. In LSTM, it has expanded

the mechanism of the internal states of RNN. There are several gates around the hidden

states to allow LSTM to decide what to remember and what to forget in its internal

memory. The input gate unit is to protect the memory content and allows the network

to decide what information is allowed to manipulate the hidden states. The output gate

unit is to control what content to flow out of the hidden states, and irrelevant memory

contents will not be received by the neurons outside. Finally, the forget gate decides

whether to accept the hidden state from the previous layer or not, depending on the

current input and current internal state. Such a mechanism allows LSTM to model long-

range dependencies and learn useful information out of the sequential data input.

15

Fig. from [16]. An overview of LSTM. The non-linearities in the connection of gates

expanded the learning capacity of the memory mechanism.

 2.3.2 Transformer

 Right now, when we talk about the state-of-the-art model for modelling sequence

many people would refer to a better design of architecture called self-attention

mechanism. Transformer is the sequence transduction model that only uses self-

attention mechanism, dispensing with recurrence and convolutions entirely [17]. To

understand self-attention, we can assume that within a sequence each word is probably

related to each other word. Self-attention tries to capture all pairs of relationship

between the word tokens within the sequence. We say that a token i is attended to the

other token j when the attention score of the i,j position is large. For a better

understanding, we look at the following figure and explain how we do computation

from the input of the attention layer to the output of the same layer.

Fig. from [17]. On the right side is the illustration of a self-attention layer. On the left

16

side is the illustration of the attention mechanism.

 Generally, the self-attention layer takes in three sequences of input, namely the

query sequence (Q), the key sequence (K) and the value sequence (V), where the key

and value sequences come in pair and describe a certain value of a key. Each of the

input is linearly transformed into sequences of the head size, where the head size is the

size of a hidden representation within the self-attention mechanism. Within the scaled

dot-product attention computation, each query position will be attended to each key

position. A high value will be yield in this step if this query has related semantic

information with the specific key, which is further passed through a softmax to generate

probability weight. With this attention weight, it is used to weight the values of the

corresponding keys and summed up as the output for this query. In practice, the

attention computation of all tokens in the query is done by matrix multiplication for

computational efficiency. So, in forward through the self-attention mechanism, only

two matrix multiplication is required, as shown on the left of the figure above. This is

significantly important to sequence transduction process since we want to allow long-

range dependencies within the sequence. The operation required between temporal

sequence unit is bounded by the operation stated on the left of the figure, which shows

that we ensure a constant path length for the temporal information flow [17]. Unlike

the situation in RNN where the path length of temporal information flow can grow in

𝑂(𝑛), depending on how far away the locations of the two information is within the

sequence.

Table from [17]. Comparison of self-attention with recurrent layer and convolutional

layer. n is the sequence length, d is the representation dimension, k is the kernel size

of convolutions and r is the size of neighbourhood in restricted self-attention (masked

self-attention). Showing that self-attention is more parallelizable and has a constant

path length of long-range dependencies.

17

Fig. from [18]. An example of the attention mechanism used in the decoder of

Transformer. The query will match with all the related keys in the input sequence. In

this case, attention is masked and is limited to the word tokens at earlier locations.

In practice, we can assign different kinds of input to query, key and value for different

desired behaviour of the attention. In the Transformer architecture, it adopts the

encoder-decoder structure and uses self-attention differently in the encoder and the

decoder. The following figure will illustrate the architecture of Transformer.

18

Fig. from [17]. The architecture of Transformer. On the left is the encoder stack, on

the right is the decoder stack.

The encoder-decoder structure generally can be understood as the encoder takes

the original input and learn a representation of the input sequence, and the decoder

generates a sequence of output according to the learned representation of the data from

encoder and the previously outputted sequence tokens by itself.

 The encoder of Transformer will take the input of data word sequence, such as

sentence or pairs of sentences, and use learned embedding to convert the input tokens

into embedding token sequence. Notice that positional encoding is added to the

embedding sequence because from the design of attention mechanism we know that

there is no ordering information during the calculation of attention. When positional

encoding information is added to the embedding tokens ordering information is kept

within the embedding token, so the network has the chance to refer to the ordering

information during attention. For self-attention in the encoder, the input embedding

sequence is used as query, key and value inputs equally, to let the network to learn the

contextual knowledge of the given sequence and generate the encoded representation

19

of the input sequence. After self-attention we have a feed-forward layer, to generate the

output of one encoder layer. For self-attention in the decoder, they serve different

purposes as those in the encoder. At each step of decoding, the decoder is only allowed

to look at the full encoded representation and the previously decoded output tokens.

That is why a masked self-attention layer is used in the lower half of the decoder, to

ensure that there is no leftward information flow during decoding and preserve auto-

regressive nature of the decoding process. There is one more type of self-attention in

the decoder, referred as the “encoder-decoder attention”, that it takes the encoded

representation of the corresponding encoder as the memory keys and values. The query

is given by the output of the previous masked attention, which is essentially the output

of the previous layer of the decoder stack. This serves the purpose that we want the

decoded sequence to consider all the information we have from the whole sequence, by

taking in the representation learned by the encoder. Notice that across each layer of

operation there is a residual connection, which allows gradient to propagate further and

allows Transformer to stack more encoder-decoder structure while still being able to

train well.

2.3.3 Language Modelling: ELMo, GPT, BERT

 To handle NLP tasks, we want our model to understand the syntax and semantics

of the language in order to learn useful information from sentence input. State-of-the-

art projects use large text corpus to perform unsupervised pre-training of the model.

Generally, language modelling requires the model to be capable of predicting future

tokens or missing tokens of the sentence, which is kind of a behaviour of understanding

the language. The following paragraphs will introduce three well-known methods of

language modelling.

 First, we have a language model that uses bidirectional LSTM to generate its

contextualized word representations, famously known as ELMo [19]. The

representations learnt by ELMo are contextualized in the sense that the same word

appearing in different locations could have different learnt representation. Bidirectional

language model essentially uses a forward LSTM and a backward LSTM to generate

the representation and jointly maximize the log likelihood of both two of the outputs

given the history of the sequence, where for a sentence 𝑡, 𝑡1, … , 𝑡𝑘−1 is the history of

the forward LSTM and 𝑡𝑘+1, … , 𝑡𝑁 is the history of the backward LSTM when

computing the probability of 𝑡𝑘. We can train a deep bidirectional LSTM by taking the

output of each LSTM as the input of the upper layer LSTM, which allows the model to

learn a deeper representation of the input sequence. ELMo builds on top of deep

bidirectional language models by learning the task-specific weighting of the

20

intermediate layer representations in a stack of bidirectional language models. ELMo

puts together all the weighted representation of the token and generates its own

representation, and these richer representations can be used as extra inputs to other

supervised models solving downstream NLP tasks, where this is referred as a feature-

based approach.

Fig. from [18]. An illustration of bidirectional LSTM used in ELMo. ℎ1, ℎ2 in the

middle represents the intermediate layer representations of the stack of LSTMs.

 Second, we have an attention mechanism based approach that uses the decoder of

Transformer to perform language modelling, which is famously known as GPT [20].

GPT performs its unsupervised generative pre-training on large text corpus by a forward

language modelling objective, by using a stack of decoders of the Transformer and

masking out the future attentions to simulate forward predictions. At the last layer of

the decoders, a softmax layer is used to model the probability distribution of the target

tokens we want to predict. After pre-training, according to the downstream task we want

to solve we perform supervised fine-tuning of the parameters with respect to the target,

and depending on the structure of the downstream tasks we will need to use the output

of the decoder differently, where usually the final layer would be a linear connection.

During the fine-tuning process, GPT continues unsupervised language modelling as an

auxiliary objective, which can improve the generalization of the supervised model and

accelerate convergence [20].

 At last, we would like to introduce BERT [21], which uses a stack of encoders of

the Transformer to build a deep bidirectional language model. Bidirectional understand

21

of the sentence is done by the attention mechanism. During unsupervised pre-training,

two objectives are used to perform language modelling, i.e. the masked language

modelling (Masked LM) and next sentence prediction (NSP). At each iteration of pre-

training, a percentage of input tokens are chosen at random to either be masked by 80%

probability, or be replaced with a random token by 10% probability or be unchanged

by 10% probability, and BERT is required to perform predictions of the original token

on these chosen locations as to perform language modelling. At the same time, the given

masked sentences come in pairs and BERT is required to predict the relationship of the

two sentences, whether the given sentence B is the next sentence of sentence A as a

binary classification task. The combined pre-training methods of BERT allows the

model to utilize the language information given by surrounding tokens, and understand

language structure across sentences, which is useful for some downstream tasks such

as Question-Answering. After pre-training, we perform downstream tasks fine-tuning

on the BERT model using the same pre-trained model parameters for initialization. It is

reported that the fine-tuning procedure is way less expensive than the pre-training

procedure [21], and in fact it is obvious by the difference of sizes of the dataset used.

Fig. from [21]. Overall pre-training and fine-tuning procedures for BERT.

Unsupervised pre-training is shown on the left, where two tasks are simultaneously

used to train the model. Supervised fine-tuning is shown on the right, depending on

the task specification we use the output of the BERT encoder differently.

 As we know from our previous discussion about Transformer, the ordering

information of tokens will be lost during attention. BERT uses a combination of token

embedding (word representation), segment embedding (whether the token belongs to

sentence A or B) and position embedding (index of the token position) as the input to

the BERT model.

22

Fig. from [21]. An illustration of how the input embedding is produced.

 We can summarize their differences in the following table.

 ELMo GPT BERT

Language modelling

mechanism

LSTM Attention, decoder

of Transformer

Attention, encoder

of Transformer

Language modelling

direction

Bidirectional Unidirectional Bidirectional

Downstream task

approach

Feature-based,

combining with

other models

Fine-tuning Fine-tuning

Table 1. Comparison between ELMo, GPT, BERT.

2.3.4 Tokenization

Tokenization of words is an important procedure to preprocess the input before

feeding it into any language model. Since a word can appear in a different form while

carrying similar meaning, for example in English the word “walk”, “walks”, “walking”

and “walked” all refer to the action of moving around but with different time scenario.

In this case, we want the model to understand these words as having a similar meaning,

where then we need similar encoding of these words as tokens.

WordPiece [22] is one of the tokenization algorithms, where it initializes its

vocabulary starting with every character present in the corpus. By merging two of its

vocabulary according to the likelihood of subwords of the corpus, it progressively

generates new word units until a predefined limit of word units is reached. This allows

the vocabulary to capture all the frequently occurring sub word tokens in the corpus.

23

2.3.5 GLUE

To allow experiment with a language model, we need a benchmark to compare the

performance of different architectures. General Language Understanding Evaluation

benchmark [23] (GLUE) is the set 9 of tasks and dataset that combines a diverse range

of existing language understanding tasks. At the following paragraphs, we will describe

three of the tasks that are of small, medium and large size of corpus respectively.

CoLA is a relatively small dataset consisting of English sentences, designed for

the acceptability judgment of the grammatical correctness of the sentence. Matthews

correlation coefficient (mcc) is used as the evaluation metric, which evaluates binary

classification performance on an unbalanced dataset.

SST-2 is the medium-sized dataset consisting of movie reviews. The

corresponding task is to predict the sentiment of the sentence, whether it is positive or

negative.

RTE is the large-sized dataset consisting of textual entailment. Binary

classification is done on RTE to distinguish the sentence pairs as entailment or not

entailment.

The remaining tasks also cover a broad range benchmark on language

understanding ability.

MRPC is a corpus of sentence pairs from online news sources and annotated for

whether the sentences in the pair are semantically equivalent.

QQP is a collection of question sentence pairs from Quora, a community question-

answering website, and the corresponding task is to determine whether the pair is

semantically equivalent.

STS-B is a collection of sentence pairs form news headlines and annotated by

human with a similarity score from 1 to 5, the corresponding task requires to predict

the similarity scores.

MNLI is a crowd-sourced collection of sentence pairs, annotated according to

textual entailment of the pairs. Labels are either entailment, contradiction or neutral.

24

QNLI is a dataset for question-answering training. The dataset consists of

question-answer pairs, where the corresponding task is to predict whether the given

answer sentence is the correct answer to the question sentence.

WNLI consists of sentence pairs where the first sentence contains a pronoun and

the second sentence has the pronoun substituted with other possible referents. The

corresponding task is to predict whether the sentence with the pronoun substituted is

entailed by the original sentence with the correct substitution.

3 Problem Statement

In our project, we propose that there exist redundancies in the pre-trained BERT

model. During fine-tuning, these redundancies are learnt to be omitted and useful

connections are learnt to perform the downstream tasks well. To efficiently use the pre-

trained model to solve downstream tasks, we would like to use Neural Architecture

Search methods to search for the best sub-network architecture of the pre-trained model

during the fine-tuning stage of BERT.

 We will be using BERT for Natural Language Understanding tasks. These

downstream tasks are taken out from the GLUE dataset. The objective of our problem

is to find a minimal set of connections in the fine-tuned BERT model that has the

minimal performance drop comparing to the original fine-tuned model.

25

4 Related Works

 In the works of this project, we have referenced to several of the following existing

methods that work with NAS and network compression of BERT.

 4.1 DARTS

 Differentiable architecture search (DARTS) [24] perform its architecture search

by formulating a continuous relaxation of the architecture representation. DARTS is a

cell-based approach to architecture searching, meaning that it targets to find the best

cell architecture and the final network architecture is a stack of the searched cell. For

example, when DARTS searches for convolutional cells on CIFAR-10, two types of

cells are searched including the normal cell that maintains the same size for the input

and output dimensions and the reduction cell that is used to reduce the output dimension

to be smaller than the input dimension.

 DARTS formulate its searching as a bilevel optimization problem, which uses 𝛼

as an upper-level architecture variable and 𝑤 as the lower-level model parameters

variable: (by [24, equations (3), (4)])

min
𝛼

 ℒ𝑣𝑎𝑙(𝑤∗(𝛼), 𝛼)
(1)

s. t. 𝑤∗(𝛼) = argmin𝑤 ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼) (2)

 To solve the above optimization, we need a solution to (2) for solving (1) .

However, in practice solving (2) requires large amount of computation and it becomes

expensive to solve (1). DARTS is the algorithm that approximate the gradient of the

target function in (1) without solving (2).

Fig. from [24]. Algorithm of DARTS.

From the above definition we see that DARTS iterate between optimizing (1)

and (2) alternatively using gradient descent. The overall idea is to use

26

𝑤 − 𝜉∇𝑤ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼) as an approximation to 𝑤∗(𝛼), the solution of (2). This term

is obtained by performing one step of training of the network parameters 𝑤 under the

current 𝛼 . By this approach, we have an efficient searching algorithm that can

approximately solve the bilevel optimization problem stated above.

 To model the continuous search space using 𝛼, within a cell we learn a set of 𝛼

that models the probability of each candidate operations on each edge using softmax.

The set of candidate operations defines the discrete search space of the architecture, for

example convolution, max pooling and zero operation of different dimensions forms a

set of candidate operations.

Fig. from [24]. An overview of DARTS. (a) shows that the operation on each edge is

initially unknown. (b) shows that a continuous relaxation of the discrete search space

is done by allowing a mixture of the operations happening on each edge. (c) by

learning the set of 𝛼 we can tell which operation is the most important on each edge.

(d) the final architecture is determined by the operation of maximal probability.

 4.2 TAS

 Transformable architecture search [2] (TAS) is another differentiable architecture

searching algorithm, which searches for the best width and depth of the network

efficiently. TAS achieve differentiable searching by modelling the probability of

choices of architecture as 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼) . TAS also adopts the idea of sampling the

options of architecture at each training step, to avoid traversing all the paths of possible

architectures for a more efficient searching [26]. In order for sampling to be

differentiable, [26] uses the Gumbel-softmax trick to turn categorical sampling into a

differentiable procedure of sampling. The sampled k-dimensional vector 𝑦 is given by

the equation ([27, equation (2)])

27

𝑦𝑖 =
exp ((log(𝜋𝑖) + 𝑔𝑖)/𝜏)

∑ exp ((log(𝜋𝑖) + 𝑔𝑗)/𝜏)𝑘
𝑗=1

, for 𝑖 = 1, … , 𝑘

, where 𝜋 is the class probabilities and 𝑔 ~ Gumbel(0, 1). This Gumbel-softmax will

behave like one-hot sampling when 𝜏 approaches 0, and similarly it will behave like

uniform sampling when 𝜏 approaches ∞ . The class probability 𝜋 is 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼)

in TAS.

 For example, when searching for the width of a convolutional neural network, TAS

sampled two architectures of different width in one layer and weight their output

according to the class probabilities. To deal with the difference in dimension of the

sampled width choices, TAS perform a channel-wise interpolation which transformer

the smaller width output to the same size as the larger width output so as to do weight

sum of their output. The implementation of channel-wise interpolation can be

considered as expanding the smaller dimensional output with the mean values of

neighbour dimensions output.

Fig. from [3]. An illustration of the procedure of searching for the width of a

convolutional neural network using TAS. At each layer, 2 choices of the number of

channels are sampled and the architecture for one forward step is determined after all

the sampling.

 In TAS, the training set of data is used to train the pruned network’s weights and

the validation set of data is used to train the architecture parameters 𝛼. TAS has

combined two searching objectives for 𝛼, i.e. the cross-entropy classification loss of

the network and the penalty for computation cost. The loss of validation that is used to

update 𝛼 is given by the following equations [25, equations (7),(8)]:

28

cross-entropy classification loss computational cost loss

ℒ𝑣𝑎𝑙 = − log (
exp(𝑧𝑦)

∑ exp(𝑧𝑗)|𝑧|
𝑗=1

) + 𝜆𝑐𝑜𝑠𝑡ℒ𝑐𝑜𝑠𝑡

ℒ𝑐𝑜𝑠𝑡 = {
log (𝔼𝑐𝑜𝑠𝑡(𝔸))

0
−log (𝔼𝑐𝑜𝑠𝑡(𝔸))

when 𝐹𝑐𝑜𝑠𝑡(𝔸) > (1 + 𝑡) × 𝑅

when (1 − 𝑡) × 𝑅 < 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅

when 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅

, where 𝔸 represents the architecture parameters modelled by 𝛼 , 𝔼𝑐𝑜𝑠𝑡(𝔸) is the

expected computation cost of the possible architectures and 𝐹𝑐𝑜𝑠𝑡(𝔸) is the actual cost

of the sampled architecture. Here we are using the target R as a parameter to control the

network to converge at having R computation cost, and we use 𝑡 ∈ [0,1] to model the

tolerance of efficiency of the model.

 When the optimal architecture is found, TAS performs knowledge distillation from

the unpruned network to the searched architecture.

 4.3 AdaBERT

 AdaBERT [11] inherit the work of DARTS [24] and implements neural

architecture search to find a convolutional-based architecture cell that performs similar

to a fine-tuned BERT by knowledge distillation. In the search space of AdaBERT

operations like convolution, pooling, skip connection and zero operation are possible.

As similar to DARTS, each operation is allowed to take two inputs within the cell and

provide one output. To achieve knowledge distillation, the searching objective of the

architecture is to learn generating the intermediate layer output of the teacher BERT

model with the searched architecture. The resulting architecture would be a stack of the

searched cells, composed of only the operations in the search space, without attention

operation of BERT. AdaBERT uses downstream tasks from GLUE for knowledge

distillation and architecture searching.

 The results of AdaBERT is promising, showing the advantage of inference

speedup of the searched architecture and significant compression ratio of the network.

This implies the computational efficiency of convolutional operations over attention

mechanism.

29

Fig. from [11]. The searched cells for different downstream tasks from GLUE.

 4.4 TinyBERT

TinyBERT [28] provides a solid demonstration of network compression by

knowledge distillation on the BERT model. BERT as the encoder of the Transformer

has several intermediate operations before the output layer. TinyBERT looks into the

details of BERT operations and performs knowledge distillation of transformer layers

by comparing the attention matrices and the hidden states, while also distillate the

embedding layer and the prediction layer of BERT. Attention matrices distillation is

motivated by the fact that self-attention of BERT can capture rich linguistic knowledge

[29], and that would be important for natural language understanding.

Knowledge distillation is performed first on the pre-trained model, using the large

text corpus that is used to train the original general model and this is referred as General

Distillation. Knowledge distillation is also performed using the downstream task

augmented training set, which is referred as Task-specific Distillation. So, we need to

prepare two teacher models for a downstream task, one being the pre-trained general

BERT model and one being the fine-tuned BERT model.

30

Fig. from [28]. An illustration of how the attention matrices and hidden states are

used to perform knowledge distillation.

Fig. from [28]. An overview of TinyBERT learning.

 Notice that data augmentation in TinyBERT uses the language model BERT and

a pre-trained embedding GloVe to generate new training data. Given a sequence of

words, we can generate a similar sentence as follows. First, we choose which and how

much of the words to replace. If the chosen word is a single-piece word, BERT is used

by taking the sentence and mask out the target word to feed it into BERT, where the

predictions of BERT is used as candidate words to replace the chosen word. If the

chosen word is a multi-piece word, GloVe embedding is used to retrieve the most

similar words for replacement.

 GloVe is the embedding representation of words where training is performed on

aggregated global word-word co-occurrence statistics from a corpus.

31

 4.5 Overview on Pruning NLP Model

 By the summary of [36], most of the pruning methods regarding Transformer-

like models can be overviewed by the following diagram.

Fig. Illustration of all types of pruning over Transformer network, from [36].

 Besides the difference in search space of each pruning method, the rule of

determining which weights to be removed also varies. Hessian based method uses a

measure of saliency of each weight to determine the importance of a weight. Hessian

based methods are usually expensive since second derivatives are computationally

expensive to calculate. A more efficient and computationally feasible method is to prune

the weight according to the magnitude. Weights with smaller magnitude are considered

to be less influential to the prediction output. Another variant of magnitude weight

pruning is iterative magnitude pruning where pruning is done gradually during training.

For computationally efficiency on GPU, some methods decide to group the

weights into blocks and prune the blocks according to the maximum magnitude within

the same block. For a bigger group of weights, we can consider pruning the attention

heads. A few possible ways to consider the important of the heads are by gradient

information to the attention score of the heads, or computing the average maximum

attention weights over tokens in a set of sentences, or by layer-wise relevance

propagation.

32

5 Methodology

5.1 Differentiable Search Method

 To facilitate differentiable architecture searching similar to [24] and [3], we need

to design how to generate the architecture from the architecture variable 𝛼 . The

following paragraphs will describe how to model 𝛼 to perform searching on the

representation dimensions.

 In this method, we use the architecture variable 𝛼 to generate the mask by

sigmoid(𝛼). Since we want to simulate the mask with sigmoid(𝛼), we want 𝛼 to be

outside of the range [−5, 5] so that the mask would contain {0, 1} values. We do some

trick to make sure that the gradient arriving at 𝛼 would make a large enough step to

jump across -5 and 5, by rescaling the gradient arriving at 𝛼 and adding limitation to

the update of 𝛼 according to the magnitude of the gradient. Details are referred to

Section 7.4.

Fig. from Wikipedia. Sigmoid function.

Algorithm: Search Method for Representation Dimension

Initialize 𝛼 to a constant value 5, since sigmoid(5) ≈ 1.

Initialize encoder weights 𝑤 from pre-trained model.

For each forward pass:

1. Generate mask by sigmoid(𝛼).

2. Mask the corresponding representation during forwarding of the encoder.

3. Backpropagate the cross-entropy loss w.r.t labels and FLOPS loss to learn 𝛼.

Choose the dimensions according to the activated α, i.e. sigmoid(𝛼) > 0.99

https://en.wikipedia.org/wiki/Sigmoid_function

33

prediction distillation loss computation cost loss

5.2 Search Objective

The objective of our NAS algorithm is to maximize network efficiency. In

particular, to model the network efficiency, we propose to calculate the floating point

operations per second (FLOPS) to represent the network efficiency. At the further

development of the project, we can change the objective to other measures of the

network efficiency, such as the network parameter size or the inference time.

To facilitate the minimization of architecture FLOPS, we adopt a similar approach

like [3] and formulate the objective loss function as follows:

ℒ𝑎𝑟𝑐ℎ = MSE(𝑜𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑜𝑡𝑒𝑎𝑐ℎ𝑒𝑟) + 𝜆𝑐𝑜𝑠𝑡ℒ𝑐𝑜𝑠𝑡 (3)

ℒ𝑐𝑜𝑠𝑡 = {
log (𝔼𝑐𝑜𝑠𝑡(𝔸))

0
−log (𝔼𝑐𝑜𝑠𝑡(𝔸))

when 𝐹𝑐𝑜𝑠𝑡(𝔸) > (1 + 𝑡) × 𝑅

when (1 − 𝑡) × 𝑅 < 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅

when 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅

(4)

ℒ𝑎𝑟𝑐ℎ represents the loss function value of the architecture variables and is used

to train the architecture variables only. ℒ𝑎𝑟𝑐ℎ consists of two parts, the first part is the

cross-entropy classification loss with respect to the data labels, which trains the

architecture to prune away the connections that do not contribute to the task

performance. The second part is the weighted ℒ𝑐𝑜𝑠𝑡, where ℒ𝑐𝑜𝑠𝑡 models the network

efficiency and train the architecture variables to approach a target 𝑅 within a range of

tolerance. The target 𝑅 is usually determined by a portion of the maximum FLOPS of

the architecture, which is the unpruned architecture FLOPS. According to different

searching methods we would have a different formulation of 𝔼𝑐𝑜𝑠𝑡(𝔸), the expected

FLOPS of the architecture.

5.3 Search Space

 To fully extend the ability to compress the network into any targeted computational

cost, i.e. any sub-architecture, we model the searching algorithm in the way that it

covers all the computations involving matrix multiplication. While keeping the

connection between hidden layers and the choice of activation functions unchanged,

our searching algorithm will decide on the dimension reduction of hidden

representations. The overall effective search space can be divided into two parts, the

34

multi-heads attention and the feed-forward intermediate dimension.

 In BERT model we use multiple attention heads to learn different aspects of

similarity among the hidden representation. We expect that after fine-tuning towards

the downstream task, not all heads trained are responsible for the prediction task, by

evident shown from [31], where attention heads are removed without much of an impact

towards the prediction performance of the final model. In our searching algorithm each

head is independently assigned with one parameter variable 𝛼.

 In BERT model we have a large intermediate size in the feed-forward block before

each hidden layer output. We can prune the intermediate dimensions of each feed-

forward block as long as the output dimension of the first linear layer matches with the

input dimension of the second linear layer. In our searching algorithm each dimension

in the intermediate representation is independently assigned with one parameter

variable 𝛼.

Within the BERT architecture, there are several parts that we consider as the

candidates to be pruned.

First, we consider reducing the hidden representation size. In the original BERT

architecture, a fixed hidden size is used throughout all the layers so that within one layer

of the encoder of the Transformer each token is represented with the same hidden size.

We investigate bottom-up to see which operations allow reduction of hidden

representation size. The following illustrations are adapted from [17].

Fig. An overview of a hidden layer of BERT, read from left to right. Red and blue lines

represent what are the inner operations of the concerned layer.

35

 On the leftmost, we have a hidden layer of BERT. We suggest that we can search

for the hidden representation size of the multi-head attention layer since [31] have

shown that there are redundancies among the multiple heads in each layer of BERT. To

understand where the hidden size flexibility is, we take a look at the multi-head

attention layer and scaled dot-product attention individually.

5.3.1 Input Embedding

Fig. [𝑥, 𝑦] represents a linear transformation of a vector from x dimensions to y

dimensions.

(𝑒𝑣 , 𝑒𝑘, 𝑒𝑞) In the original setup, the linear transformation before scaled dot-

product attention takes the sentence token embedding as inputs. In this case 𝑒𝑣 = 𝑒𝑘 =

𝑒𝑞 = the representation size of a token embedding, which is often referred as the

hidden representation size or the hidden size of a BERT model. We can search on how

much of the hidden representation is required as input to this linear transformation to

gain enough information for specific downstream tasks, and we refer to this as

searching on the dimensions of the input embedding.

5.3.2 QKV Hidden Representation

(ℎ𝑣 , ℎ𝑘 , ℎ𝑞) Constrained by the nature of the matrix multiplication operation

within the attention mechanism, we require ℎ𝑞 = ℎ𝑘 . By the definition of BERT

attention, the output of the attention matrix is precisely ([17], equation (1))

[𝑒𝑞, ℎ𝑞]

[𝑒𝑘, ℎ𝑘]

[𝑒𝑣 , ℎ𝑣]

[ℎ𝑣 , ℎ]

36

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉

Fig. (𝑥1, 𝑥2) × (𝑦1, 𝑦2) → (𝑜1, 𝑜2) represents a matrix multiplication 𝑂 = 𝑋𝑌,

where 𝑋 ∈ ℝ𝑥1×𝑥2 and 𝑌 ∈ ℝ𝑦1×𝑦2. 𝑠 represents the maximum sentence length.

 We can search on the dimensions of ℎ𝑣, ℎ𝑘, ℎ𝑞 constrained by ℎ𝑞 = ℎ𝑘. We will

refer to this as searching on the qkv hidden representation.

At the top layer of multi-head attention, we have a linear transformation [ℎ𝑣 , ℎ].

The output size of this transformation is fixed to be the hidden size of the network

because its output will be added with the residual connection from before the attention

layer.

Fig. Red arrow shows the residual connection in concern. The same hidden size h

(𝑠, ℎ𝑞) × (ℎ𝑘 , 𝑠) → (𝑠, 𝑠)

(𝑠, 𝑠) × (𝑠, ℎ𝑣) → (𝑠, ℎ𝑣)

ℎ

ℎ

37

must be maintained at the output of the multi-head attention layer.

5.3.3 Feed Forward Intermediate Representation

Fig. An illustration of the feed-forward layer of the encoder of the Transformer.

At the top layer of the encoder, we have a feed-forward layer consists of two linear

transformations. We can search for the intermediate representation.

5.3.4 Multi-heads Pruning

 Motivated by [31], we would like to reproduce the result of [31] using our

differentiable NAS method. It has been shown that across the multiple heads, only

several of them at each layer are responsible for the performance on the downstream

task. In [31] the experiment covers the setup of manually choosing one head to be

removed from the model and manually choosing only one head to remain in each layer.

While the combination of important heads is yet to be observed by the experiment. We

suggest investigating whether our searching methods could find the suitable

combination of heads in each layer.

38

Fig. Observe that the output of each attention head is combined in the above circled

layer. Pruning the multi-heads will prune away part of the linear transformation at

the top as well.

5.4 Knowledge Distillation - BERT-Base to TinyBERT

5.4.1 Procedure

We follow the procedure below throughout the experiment to obtain the results.

Notice that during distillation we perform architecture search at the same time, similarly

as the DARTS algorithm (refer to 4.1). For distillation, we always use fine-tuned bert-

base-uncased model of the specific task as the teacher model. We would record the

intermediate models only during prediction layer distillation, and only when the model

performs better than the previous best model on the evaluation set. Each of the

following steps is trained on 10 epochs of the training data.

1. Use 2nd_General_TinyBERT_4L_312D as student model, perform intermediate

layer distillation and architecture search.

2. Inherit the resulting model of 1. as the student model, perform prediction layer

distillation and architecture search.

3. Inherit the resulting model of 2. as the searched architecture, extract the

architecture to initialize 2nd_General_TinyBERT_4L_312D as student model,

and perform intermediate layer distillation.

4. Inherit the resulting model of 3. as student model and perform prediction layer

distillation.

39

5. The final resulting model is obtained by the output of step 4.

5.5 Self-Knowledge Distillation

5.5.1 Procedure

 Most of the training, including architecture searching and fine-tuning, uses 10

epochs unless specified, especially for larger dataset we will use less epochs. In our

experiment the teacher model is always the fine-tuned TinyBERT_4L_312D on the

specific downstream task. The searching and fine-tuning procedure is as follows:

1. Use TinyBERT_4L_312D as student model, perform prediction layer distillation

and architecture search.

2. Inherit the resulting model of 1. as the searched architecture, extract the

architecture to initialize a subnet of TinyBERT_4L_312D as student model, and

perform intermediate layer distillation.

3. Inherit the resulting model of 3. as student model and perform prediction layer

distillation.

4. The final resulting model is obtained by the output of step 3.

5.6 Search Scheduling and Parameter Control

 In our approach to architecture searching, we use a moving architecture target size

(𝑅 in equation (4)) in the search objective so that the architecture converges to the

target architecture size slowly. The scheduling of the architecture target size is

determined by the target architecture size 𝑅∗ and the number of training step 𝑠, where

𝑠 = ⌈
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
× #𝑒𝑝𝑜𝑐ℎ⌉ and

𝑅(𝑖) =
1 − 𝑅∗

𝑠
× 𝑖 (5)

 Using equation (5) we can determine the architecture target size at the 𝑖 -th

training step. The intuition behind is that the scheduling is done linearly so that 𝑅(𝑖)

decreases linearly towards 𝑅∗.

 To avoid early convergence of the architecture, we limit the update of gradient to

40

the architecture parameters in the way that at the backpropagation step, only a certain

ratio of gradients can be propagated to the architecture parameter, while the rest of the

updates are not allowed in the same backpropagation step. The best ratio depends on

the architecture size. We evenly distribute the allowed updates over each search region

so that the resulting architecture is not biased on pruning any of the search region

because of this parameter control.

5.7 Conclusion

 As a wrap up of all the methodology, our final approach towards architecture

searching relies on searching the subnetwork by self-prediction distillation. For

prediction performance concern it is best that we do not change the connection of the

input embedding dimensions and the QKV hidden dimensions alone, but instead

searching for the pruning by grouping them as individual heads and prune the

connection of heads. Aside from the pruning of heads we also prune the intermediate

dimension of the feed-forward layer in each BERT layer for the sake of large

computation reduction.

41

6 Experiment

 By implementing our method on PyTorch we managed to experiment over the

searching algorithm in hopes of understanding the relationship between the search

space, search objective, data augmentation and prediction performance.

 By configuring different search space and different composition of architecture

parameter it provides different level of freedom for the searching algorithm. We

investigate the relationship between constrained search and less constrained search.

Using different search objectives like distillation and prediction loss by cross entropy

will lead to different architecture. We would like to understand which objectives is most

suitable in the context of architecture search.

 Motivated by the result from [33] where experiments show that retraining the

network after pruning would help upholding prediction performance, after our

searching algorithm we fine-tune the searched architecture before evaluating the final

model.

 Limited by the resources we have, and the fact that BERT model and other NLP

deep learning models are expensive to train [35], we would mainly inherit the result

from TinyBERT [28] where it provides a BERT model of smaller size for

experimentation.

 The major contribution of this project is that we suggest pruning only the multi-

head attention and the intermediate dimensions of the feed-forward layer, while keeping

the hidden embedding unpruned for performance consideration. Also, we proposed an

iterative learning procedure to learn the subnetwork by distillation.

6.1 Knowledge Distillation - BERT-Base to TinyBERT

6.1.1 Reproducing TinyBERT & Setup

 In our experiment we inherit the setup and results of TinyBERT and extend the

project by applying NAS for network pruning during the fine-tuning stage of TinyBERT.

We will expand the code for task-specific distillation in TinyBERT and add new

functionality to perform pruning on the representation of input embedding, qkv hidden

representation, feed-forward intermediate representation and the multi-head attentions

of each layer.

42

 For task-specific distillation, we need a teacher model that is fine-tuned on specific

downstream task. In our setup, we use bert-base-uncased pre-trained model from

HuggingFace’s implementation [30] and perform fine-tuning on all the tasks on GLUE

to obtain the teacher models for task-specific distillations. Bert-base-uncased is the

implementation of BERT that has 12 hidden layers, 768 hidden representation size,

performing 12 heads attention, 3072 feedforward size and has 110 million parameters.

Bert-base-uncased is pre-trained on all lower-case English corpus. We will be using the

teacher models as baseline performance of any fine-tuned models. In our experiment

we will focus on three tasks from GLUE, each represents a small, medium and large-

sized dataset respectively. To obtain a fine-tuned BERT model, we trained the pre-

trained model for the following three tasks for 10 epochs, 32 batch size, 5e-5 initial

learning rate for Adam.

 CoLA (mcc) RTE (accuracy) SST-2 (accuracy)

reproduced performance

(10 epochs)
0.572 0.708 0.921

reported performance

[21] (3 epochs)
0.521 0.664 0.935

 Table 2. Showing evaluation results of fine-tuned bert-base-uncased on GLUE tasks.

In TinyBERT two versions of the final distilled model are available, 4layer-312dim

represents the smaller version that has 4 hidden layers, 312 hidden size, 1200

feedforward size and 12 attention heads in a layer. 6layer-768dim represents the larger

version that has 6 hidden layers, 768 hidden size, 3072 feedforward size and 12

attention heads.

We follow the data augmentation procedure given by TinyBERT using GloVe

embedding and the pre-trained bert-base-uncased language model to generate

augmented data. Fine-tuning of TinyBERT model is done on the augmented dataset. To

obtain a fine-tuned TinyBERT model, we perform knowledge distillation from a fine-

tuned bert-base-uncased model to both general pre-trained 4layer-312dim and 6layer-

768dim.

43

 CoLA (mcc) RTE (accuracy) SST-2 (accuracy)

reproduced 4layer-312dim

TinyBERT performance

(10, 10)

0.426 0.667 0.917

reported 4layer-312dim

TinyBERT performance

[28] (20, 3)

0.441 0.666 0.926

reproduced 6layer-768dim

TinyBERT (10, 10)
0.556 0.714 0.926

reported 6layer-768dim

TinyBERT performance

[28] (20, 3)

0.511 0.700 0.931

Table 3. Showing evaluation results of distilled TinyBERT on GLUE tasks. Brackets at

the end of first column (x,y) represent the model spent x epochs of training for

intermediate layer distillation and spent y epochs of training for prediction layer

distillation.

From the above tables, it shows that our reproduced models perform similar to

the reported behavior.

6.2 Self-Knowledge Distillation

 By experiment we concludes that self-knowledge distillation is better than

knowledge distillation from large model to smaller model, for the reason described in

Section 7.2.5. In this section we focus on describing the second experiment setup, which

at the end becomes our main result of this project.

6.2.1 Experiment Setup

 In this experiment setup we require a lot less than the previous setup. We only need

a fine-tuned model in any architecture size and apply self-distillation throughout the

searching process. In this project we focus on using TinyBERT-4L as the architecture

we interested in. A fine-tuned model of TinyBERT-4L on the GLUE dataset are open to

public so it is easy to get both the student and the teacher model ready, and no fine-

tuning to downstream task from general pre-trained model is required in this setup.

To facilitate the searching algorithm with stability and high performance, we

design specific learning tricks to help with architecture searching. We control the

amount of architecture parameters updated at each training step. We also control the

44

target architecture size so that the algorithm converges slowly and avoid early

convergence. Throughout most of the experiment result we update 10% of the

architecture parameter and set the final target architecture size as one of {10%, 30%,

50%, 70%} of the original FLOPS.

6.3 Experiment Results

 For all the results we report in this section, each task measures the prediction

performance using the metric as specified here. Matthew’s Correlation Coefficient is

used for CoLA, F1 score is used for MRPC and QQP, both Pearson-Spearman

correlations are used for STS-B, and the remaining tasks use accuracy as metric.

6.3.1 Development Evaluation

 In order to balance between computational efficiency and prediction performance,

we analysis the tradeoff between them and find the best configuration which satisfies

both of two requirements.

 We study the tradeoff in the setup where we do not use data augmentation during

fine-tune due to the limited GPU resources for this project. We observe that the best

architecture size in consideration of prediction performance is at around 30% of the

original architecture FLOPS, since beyond 30% the model would suffer from a larger

drop of prediction performance.

Tasks
 FLOPS 10% 30% 50% 70% 100%

CoLA
36.2

(-27.2%)

42.7

(-14.1%)

43.6

(-12.3%)

46.6

(-6.2%)
49.7

MRPC
86.6

(-4.0%)

89.2

(-1.1%)

88.5

(-1.9%)

89.3

(-1.0%)
90.2

STS-B
82.1/82.1

(-5.1%/-4.9%)

84.1/83.9

(-2.8%/-2.8%)

85.2/85.1

(-1.5%/-1.4%)

86.0/85.8

(-0.6%/-0.6%)
86.5/86.3

Table 4. GLUE dev set result. Comparison between different size of searched

architecture. Percentage change in performance is calculated with respect to the

original architecture performance, i.e. 100% column in table 4.

45

Fig. Visualization of GLUE dev set result. Blue dashed horizontal line represents the

performance of the original architecture.

We also created an architecture search baseline by randomly initializing an

architecture of the specific sizes of FLOPS. The comparison will show an advantage of

our architecture searching algorithm above the random heuristic approach.

 FLOPS

Tasks

10% 30% 50% 70%

NAS Random NAS Random NAS Random NAS Random

CoLA 36.2 21.5 42.7 32.4 43.6 41.5 46.6 46.9

MRPC 86.6 78.9 89.2 78.4 88.5 81.8 89.3 90.0

STS-B 82.1/82.1 17.3/17.5 84.1/83.9 42.9/41.2 85.2/85.1 70.6/69.9 86.0/85.8 70.9/70.3

Table 5. GLUE dev set result by our searching method and random architecture.

6.3.2 Test Evaluation

 Naturally we would compare the searched architecture with the original

architecture in term of prediction performance. With only 30% of the original

computational cost we achieved a fast inference model with minor performance

accuracy drop in many of the tasks in GLUE. FLOPS in the searched architecture rows

are presented in a range, representing a set of searched architecture with similar FLOPS

within this range.

 To obtain the best result but limited by GPU resources we have, we fine-tuned

architecture for CoLA, STS-B, MRPC and RTE on augmented data while fine-tuned

the rest without data augmentation.

46

Models FLOPS (B) Speedup MNLI

(-m/-mm)

QQP QNLI SST-2 CoLA STS-B

(Pear/Spea)

MRPC RTE

TinyBERT-4L [28] 1.239 1.0x 82.5/81.8 71.3 87.7 92.6 44.1 -/80.4 86.4 66.6

30% TinyBERT-4L

(Our main result)
[0.375, 0.403] [3.0x, 3.3x] 80.8/80.4 70.9 84.4 91.8 40.7 79.9/78.6 85.4 61.4

Percentage Change

in Accuracy
/ / -2.06%/-1.71% -0.56% -3.76% -0.86% -7.71% -2.24% -1.16% -7.81%

Table 6. GLUE test set result scored by GLUE evaluation server. Comparison between

searched 4-layer model and the original model.

Models FLOPS (B) Speedup MNLI

(-m/-mm)

QQP QNLI SST-2 CoLA STS-B

(Pear/Spea)

MRPC RTE

TinyBERT-6L [28] 11.100 1.0x 84.6/83.2 71.6 90.4 93.1 51.1 -/83.7 87.3 70.0

30% TinyBERT-6L

(Our main result)
[3.348, 3.590] [3.1x, 3.3x] 83.7/83.0 71.8 89.5 93.0 46.1 84.2/83.3 86.9 63.6

Percentage Change

in Accuracy
/ / -1.06%/-0.24% +0.28% -1.00% -0.11% -9.78% -0.48% -0.46% -9.14%

Table 7. GLUE test set result scored by GLUE evaluation server. Comparison between

searched 6-layer model and the original model.

Models FLOPS (B) Speedup MNLI

(-m/-mm)

QQP QNLI SST-2 CoLA STS-B

(Pear/Spea)

MRPC RTE

Reproduced Bertbase-

12L [28]
22.199 1.0x 84.0/83.2 70.7 91.1 92.7 55.3 84.2/82.5 86.6 65.5

30% Bertbase-12L

(Our main result)
[6.697, 9.471] [2.3x, 3.3x] 83.6/83.1 71.6 91.1 91.9 49.9 82.9/81.5 86.5 65.2

Percentage Change in

Accuracy
/ / -0.48%/-0.12% 1.27% 0.00% -0.86% -9.76% -1.54%/-1.21% -0.12% -0.46%

Table 8. GLUE test set result scored by GLUE evaluation server. Comparison between

searched 6-layer model and the original model.

47

6.3.3 Baseline Comparison

Besides comparing with the original large model, we also compare with existing

small model of BERT architecture and we achieved overall better performance than the

existing BERT model produced by [25].

Models FLOPS (B) MNLI

(-m/-mm)

QQP QNLI SST-2 CoLA STS-B

(Pear/Spea)

MRPC RTE

BERT-Mini [25] 0.873 74.8/74.3 66.4 84.1 85.9 0.0 75.4/73.3 81.1 57.9

30% TinyBERT-4L

(Our main result)
[0.375, 0.403] 80.8/80.4 70.9 84.4 91.8 40.7 79.9/78.6 85.4 61.4

Percentage Change

in Accuracy
/ +8.02%/+8.21% +6.78% +0.36% +6.87% +inf +5.97% +5.30% +6.04%

Table 9. GLUE test set result scored by GLUE evaluation server. Comparison between

searched model and existing baseline models.

Another baseline result provided by [37], which prunes BERT architecture via

iterative magnitude pruning. We show that we achieved overall better performance

than unstructured pruning.

48

Table 10. GLUE dev set result comparison between our result and Iterative

Magnitude Pruning (IMP) [37]. Difference highlighted in green are out-performing

architecture with smaller size.

7 Analysis & Discussion

7.1 Verification of Methodology on MNIST

 To analysis our architecture searching method (Section 5.1) and verify that the

searching method can correctly choose dimensions of hidden representation that is

useful for prediction, we have setup a simpler learning problem on MNIST dataset. The

neural network we use is a simple feed-forward classifier composed with 3 linear layers

and ReLU activation in between. We design the architecture parameter 𝛼 at the input

dimension of the first layer such that it allows the architecture parameter to choose

which dimension of the input image is kept. In order to show the significance of the

effectiveness of our searching method, aside from the images of MNIST we also feed

noise data from gaussian distribution as input to the first layer.

 Here is the detailed description of the model we interested in.

Sequential(

(0): Linear(in_features=1568, out_features=128, bias=True)

(1): ReLU()

(2): Linear(in_features=128, out_features=64, bias=True)

(3): ReLU()

(4): Linear(in_features=64, out_features=10, bias=True)

(5): LogSoftmax(dim=1)

)

Dataset MNLI

(-m)

QQP QNLI SST-2 CoLA STS-B

(Pearson)

MRPC RTE Avg

Ratio 28.3% 28.3% 39.9% 28.6% 28.9% 31.5% 29.2% 28.2%

30% Bertbase-12L 84.2 90.3 91.7 92.3 58.3 88.8 85.3 69.7 82.6

Ratio 30% 10% 30% 40% 50% 50% 50% 40%

IMP [37] 82.6 90.0 88.9 91.9 53.8 88.2 84.9 66.0 80.8

Difference +1.6 +0.3 +2.8 +0.4 +4.5 +0.6 +0.4 +3.7 +1.8

49

Fig. Design diagram of the learning problem. 𝑥𝑖 represents the image data from

MNIST while 𝑁𝑖 represents noise. We expect the architecture parameter to prune all

the noise input and only keep dimensions of the MNIST images.

We randomly initialize the weight of the linear layers. Training of architecture

parameters and linear layers’ parameters is done simultaneously. 15 epochs of the

training data are used.

Observe that this model takes in 1568-dimensional input, where the first 784 of

them refers to the MNIST images and the later 784 of them refers to the noise.

Accuracy Target Input Size Ratio Resulting Input Size Ratio Result Split

0.758 0.01 0.012 [20, 0]

0.937 0.04 0.040 [63, 0]

0.952 0.05 0.050 [78, 0]

0.970 0.10 0.100 [154, 3]

0.976 0.30 0.265 [336, 79]

0.977 0.50 0.452 [453, 255]

0.975 0.75 0.703 [588, 514]

0.976 1.0 0.951 [726, 765]

Table 8. Searching results on validation set of the 3-layer model. Highlighted row

represents the breakpoint of accuracy drop. Result split column shows the number of

activated dimensions at the first half and the second half of the input.

By observing the results at the column of result split, we see that our searching

algorithm successfully removed the dimensions containing noisy data input, as the

target input size reduces eventually the searching algorithm converges to architecture

50

where the majority of input is the image data while pruning away the noise.

At the same time, we would also like to investigate the performance of our

searching algorithm on deeper neural network. We decided to run our searching

algorithm on a similar neural network, but configurated with more hidden layers. Here

are the details of the 11-layer version.

Sequential(

 (0): Linear(in_features=1568, out_features=119, bias=True)

 (1): ReLU()

 (2): Linear(in_features=119, out_features=95, bias=True)

 (3): ReLU()

 (4): Linear(in_features=95, out_features=76, bias=True)

 (5): ReLU()

 (6): Linear(in_features=76, out_features=61, bias=True)

 (7): ReLU()

 (8): Linear(in_features=61, out_features=48, bias=True)

 (9): ReLU()

 (10): Linear(in_features=48, out_features=39, bias=True)

 (11): ReLU()

 (12): Linear(in_features=39, out_features=31, bias=True)

 (13): ReLU()

 (14): Linear(in_features=31, out_features=25, bias=True)

 (15): ReLU()

 (16): Linear(in_features=25, out_features=20, bias=True)

 (17): ReLU()

 (18): Linear(in_features=20, out_features=16, bias=True)

 (19): ReLU()

 (20): Linear(in_features=16, out_features=10, bias=True)

 (21): LogSoftmax(dim=1)

)

The same experiment is ran on choosing the dimensions of the input. 20 epochs of

the training samples are used for training.

51

Accuracy Target Input Size Ratio Resulting Input Size Ratio Result Split

0.113 0.01 0.010 [16, 0]

0.794 0.04 0.036 [51, 7]

0.834 0.05 0.046 [69, 4]

0.916 0.10 0.100 [125, 32]

0.946 0.30 0.262 [288, 124]

0.960 0.50 0.456 [429, 287]

0.964 0.75 0.701 [539, 561]

0.940 1.0 0.963 [732, 778]

Table 10. Searching results on validation set of the 11-layer model.

We observe that our searching algorithm performs worse on deeper model, by

comparing the highlighted row between the two tables we see that on deeper model

more noise dimensions are kept which is harmful to the prediction performance. At the

same time, we also observe that a deeper model does not perform better on the

validation set, suggesting that the model overfits with the training data.

As a conclusion we know that our searching algorithm works well on models with

small numbers of hidden layer, while not as good when dealing with deeper neural

network.

7.2 Search Space

Fig. Annotated parts of the search space.

52

Throughout this project we give names to the specific part of the architecture for

discussion. The blue part, which is the input dimension of each BERT layer, will be

referred as the embedding input (embedding). The green part, which is the output

dimension of the linear layer that learns representation of QKV vectors, will be referred

as the QKV hidden dimension (QKV). The orange part, which is the intermediate

dimension of the feed-forward layer, will be referred as the feed-forward intermediate

dimension (FF).

To understand the search space, we first analysis the distribution of FLOPS over

the BERT architecture. We use TinyBERT 4L as the architecture we discuss over.

Fig. Distribution of FLOPS in TinyBERT 4L.

 Notice that Feed-Forward layers contributes to most of the FLOPS in the network,

due to that fact that BERT model uses two linear layers with large intermediate

dimension (1024 in TinyBERT 4L) as the feed-forward layer. This suggests that

network compression is most efficient if we try to prune the intermediate connection

within the feed-forward layer.

 To cover all computations within the architecture, we propose two methods for the

NAS algorithm to manipulate with the search region. First we can give freedom to the

NAS algorithm on deciding the size of each dimension of the searchable embedding,

QKV and FF. On the other hand, we can restrict the freedom of the NAS algorithm and

consider the region covered by QKV as multiple heads, and each head is pruned as a

whole, instead of being reduced in dimensionality.

24%

15%61%

Distribution of FLOPS in TinyBERT 4L

Embedding to QKV QKV Self-attention Feed-Forward

53

7.2.1 Input Embedding Pruning

 By experiment we have shown evidence that the input embedding dimension is

crucial towards the model performance. Intuitively the input embedding serves as the

input signal to the layer. Partial information given to each layer would be

disadvantageous compared to a fully informed layer.

 Experiments shows that keeping all the input embedding not pruned will allow the

NAS algorithm to arrive at a better architecture.

Fig. Experiment results on removing embedding dimension search.

From the above figures, we can see that searching only on QKV and FF

outperforms searching that includes embedding. It suggests that all the dimensions of

the input embedding are informative in performing the downstream task. There is little

redundancy in the input embedding.

54

7.2.2 QKV Dimension Pruning / Multi-Head Pruning

 Essentially QKV dimension pruning and multi-head pruning covers the same

ground of FLOPS contribution in the model. They only differ in the configuration of

the architecture variables alpha. In QKV dimension pruning each dimension in the

query, key and value vectors is assigned with one variable. In multi-head pruning each

head is assigned with one variable. We can see that QKV dimension pruning has more

flexibility and freedom when compared with multi-head pruning. When we study the

difference between these two approaches, we are also understanding whether this

architecture searching algorithm flavours a more constrained or less constrained

architecture variables. In multi-head pruning you can think of the constraints as

requiring the QKV dimension alphas to share the same value if they are within the same

head.

We can inspect the effect of computation efficiency gain after pruning the QKV

hidden dimension. We shall see that pruning part of the dimensions of each query, key,

value vectors would decrease the number of computations required during self-attention.

However, when we compare QKV dimension pruning with multi-head pruning, we can

realize that the result of multi-head pruning is more efficient than QKV pruning. As

long as certain QKV dimension remains active in the searched architecture, we might

end up doing matrix multiplication in lower dimension and the number of matrix

multiplication carried out by the self-attention layer remains unchanged. On the other

hand, architectures found by multi-head pruning directly reduce the number of matrix

multiplication, since each head represents at least one matrix multiplication when

calculating attentions. Even on the same value of FLOPS in the searched architecture,

the final model that is produced through multi-head pruning will be more efficient on

GPU than the one that is produced through QKV dimension pruning.

 On the aspect of empirical error, through experiment we have shown that the two

pruning methods show similar strengths and performance varies over different dataset.

We could not conclude which one is better. Further studies can be done on the

comparison between

 For these two reasons we have decided to adopt multi-head pruning as our final

strategy.

55

Fig. Experiment results on comparing QKV pruning and multi-head pruning.

7.2.3 Feed-Forward Intermediate Dimension Pruning

 This search space contributes most of the computation because in BERT model we

use a large intermediate hidden size between the two linear layers that form the feed-

forward layer. For example in TinyBERT 4L, the intermediate hidden size of the two

linear layers is almost four times the hidden size of the model. Reducing on the

intermediate size can greatly affect the computational cost since we would end up doing

matrix multiplication that is smaller in dimension, and especially the intermediate size

affect both two linear layers.

 We do not consider removing this region from our search region because it

contributes to 61% of the total FLOPS in the original architecture, referring to figure in

Section 6.1.

56

7.3 Search Objective

 In our searching algorithm we use gradient descent learning to search for the

architecture parameter that minimizes the search objective. We try to mix different loss

functions to see which helps the searching algorithm to find an architecture that

performs well on the downstream task. In the rest of this section we introduce a several

kinds of possible searching objective and compare the results.

7.3.1 Empirical Error Loss via Cross Entropy

 Since predicting the classification label is our final goal of the model generated by

the searching algorithm, we want to incorporate classification learning during

architecture searching as well. By adding cross entropy loss according to the model

classification layer and the data label we allow the searching algorithm to look for an

architecture that have the ability to classify the data.

7.3.2 Two Stage Distillation

 In the setup of TinyBERT, [28] uses two stage distillation in their compression

algorithm, i.e. knowledge distillation is separated into two parts. First we transfer the

knowledge of the intermediate output of the layers of the teacher model to the specific

layer of the student model. Next we transfer the knowledge prediction output logits of

the teacher model to the prediction layer of the student model.

 To apply two stage distillation in our architecture search algorithm, we use

distillation loss as the search objective of the architecture parameters. This allows the

algorithm to learn an architecture that performs similar to the original model. The

original fine-tuned model, i.e. a model that is already trained on certain downstream

task, serves as a teacher model. At the same time we use the same model as the student

model. During the searching procedure, the architecture of the student model keeps

shrinking, and thus to keep the performance of the student model we use distillation

loss to learn a sub-architecture that minimizes the damage done to the student model.

The network parameters are also fine-tuned in the process of searching, towards the

same distillation loss.

7.3.3 Intermediate Distillation Loss

 The objective loss is calculated according to two parts, the mean squared error

between the student’s outputted attention matrix and the teacher’s outputted attention

57

matrix, and the mean squared error between the student’s outputted layer-wise hidden

representation and the teacher hidden representation. The learning target of the student

layer is chosen in the way that we are evenly picking up the hidden representation of

the teacher layers, because the teacher model has more hidden layers than the student

model.

 By experiment we have shown that using only intermediate distillation loss as the

searching target cannot learn an architecture that performs well.

7.3.4 Prediction Distillation

 Prediction distillation allows the student model to focus on outputting the

prediction of the teacher model. This has a similar effect with empirical error loss by

cross entropy but differ in the way that the teacher model prediction output contains the

prediction distribution which prevails extra information that the teacher model had

learnt.

 By experiment we know that using only prediction distillation loss as the searching

target is comparable with two stage distillation and empirical error loss, which suggest

that the major contribution in two stage distillation is by prediction distillation, i.e. the

second stage.

7.3.5 Why Self-Distillation?

 Before comparing the effectiveness between knowledge distillation from larger

model to smaller model and self-distillation for searching, we state the difficulty of

evaluating their effectiveness in the following sense. Since we are only able to access

the fine-tuned models of TinyBERT, we do not have the access to the teacher model

that they used for knowledge distillation. If we continue architecture searching using

another teacher model that we reproduce (e.g. Bert-base-uncased by Hugging), we will

end up doing incorrect knowledge distillation because the student model will

experience inconsistent teacher knowledge from its previous fine-tuning stages during

searching.

 On the other hand, self-distillation avoids this issue because we can easily

inference the hidden representation of the original student model as the teacher

knowledge. This also makes our method more applicable in many scenarios, as long as

we have a fine-tuned model ready to be pruned.

58

 By experiments we know that architecture found by self-distillation is better than

architecture found by knowledge distillation with inconsistent teacher model.

7.3.6 Conclusion of Search Objective

 At this point we can acknowledge the importance of prediction distillation, i.e. to

transfer the ability of prediction to student sub-architecture. This is more effective

compared to cross entropy loss by the advantage that knowledge distillation can bring.

However, we cannot conclude whether self-distillation is better than traditional

knowledge distillation or not and this is a potential future direction of study.

7.4 Target Search Size Scheduling

We observe that the learning curve of alpha architecture parameters has an

influence on the performance of the resulting architecture. A smooth learning curve

towards a smaller architecture is better than a non-smooth learning curve which directly

arrives at the desired architecture size. The insight comes from the observation that

without scheduling over the target size, our searching algorithm can easily and quickly

converge to the target size, without considering all of the data samples. This is a sign

of the algorithm converging to a local minimum of the best architecture by just

considering one batch of samples, while the deactivated alphas most likely would not

be reactivated after the first drop of architecture size due to the convergence of

architecture flop loss.

Fig. Left: A learning curve example of early converged harmful small

architecture, at the start of two stage distillation search. Right: A learning curve

example of scheduled searching by addictive scheduling.

59

We further experimented with two kinds of scheduling scheme which search for

the target size ratio 𝑅 in 𝑠 global steps of training: the addictive scheduling where

the update rule is given by 𝑟𝑡+1 = 𝑟𝑡 + 𝑐 and 𝑐 =
1−𝑅

𝑠
 , and the multiplicative

scheduling is given by 𝑟𝑡+1 = 𝑚𝑟𝑡 for some choices of 𝑚 , e.g. 𝑚 = 10
log(𝑅)

𝑠 . For

both cases we require 𝑟1 = 1 and 𝑟𝑠 = 𝑅.

Multiplicative Average Performance (5 runs) Standard Deviation

CoLA 0.422 0.0211

SST-2 0.916 0.0040

Additive Average Performance (5 runs) Standard Deviation

CoLA 0.414 0.0117

SST-2 0.918 0.0033

Table 11. Experiment results of multiplicative and additive scheduling.

 For our project we adopted the additive scheduling, which has less standard

deviation and is a more stable choice for architecture searching.

7.5 Architecture Parameter Control

With scheduled target architecture size, we need to further control the learning of

alpha parameters. We propose this method of controlling the update of alpha parameters

by only backpropagating the gradient of large magnitude, which ideally represents the

gradient that carries the most information and has the most influence towards the final

goal of searching. For TinyBERT 4L, we control the backpropagation algorithm so that

gradients from the top 10% in terms of magnitude can be used to update the

corresponding alpha parameter value, while the rest of the gradients are removed and

no updates would be done to their corresponding alpha value.

This amount of allowed gradient update is a heuristic and the best value depends

on the size of the original architecture. As long as the algorithm converges to the desired

architecture size then the chosen ratio of gradient update is suitable for the algorithm

combined with the architecture. By experiment we expect that models that have larger

architecture size would require a larger amount of allowed gradient update.

60

By experiment we have shown that these controlling tricks would lead us to a

better architecture when comparing the setup without controlling tricks. Removing

control over the update of the gradient backpropagation will lead to instability of the

searching algorithm.

Fig. Performance comparison between different control setup.

 To understand the behavior of this altered gradient descent algorithm, where only

the top-10% magnitude partial derivatives are backpropagated, we review the theory of

gradient descent:

Fig. Descent direction for unconstrainted optimization problem, from [38].

 We further verify that masking some dimensions of the gradient ∇𝑓(�̅�) ∈ ℝ𝑛, i.e.

−∇𝑓(�̅�)′ = 𝑀𝑎𝑠𝑘𝑖𝑛𝑔(−∇𝑓(�̅�)) is still a descent direction of 𝑓 at �̅� . Suppose the

index set 𝑆 contains the index where ∇𝑓(�̅�)𝑖
′ = 0 ∀𝑖 ∈ 𝑆, then

∇𝑓(�̅�)𝑇(−∇𝑓(�̅�)′) = − ∑ ∇𝑓(�̅�)𝑖
2

𝑛

𝑖∉𝑆

≤ 0

, and equality holds when ∇𝑓(�̅�) = 0 the zero vector, i.e. when the gradient descent

algorithm converges. Thus, we have shown that −∇𝑓(�̅�)′ is a descent direction of the

loss function.

61

7.6 Data Augmentation in Architecture Search

 As stated in Section 5 we use augmented data to fine-tune the searched architecture,

but augmented data is not used during architecture search since it might lead to

instability of the searching algorithm. We have observed that our architecture searching

algorithm is unstable when the number of training step is too large, e.g. when searching

on augmented dataset. At some point our searching algorithm will early converge to an

architecture that is larger than the expected architecture size. In consideration of

implementation we would like to avoid searching for the architecture on augmented

dataset. Future work is necessary on investigating why this happens only when

searching on larger datasets, and also whether searching on smallest enough number of

samples would be enough for our searching algorithm.

Fig. Dev set result by searching on augmented data in 1 epoch. For some task it fails

to converge to the target architecture size. In difficult task such as CoLA data

augmentation helps with searching for a better architecture.

7.7 Performance-FLOPS Plot Analysis

 Observe from the figures in 6.4.1 that our major resulting models in different sizes

forms a straight line on x-axis log plot, which suggests that prediction performance and

computational FLOPS are in the log relationship. This means that if we want to have a

slight increase in the prediction performance most likely we need to double the

computational FLOPS, i.e. double the architecture size. Meanwhile we can compare

two methods by looking at the slope in the log plot. In the context of network

compression, a method with a smaller slope in the log plot suggests that it has a smaller

performance drop than those with a higher slope.

7.8 Keep Weights from Searching

 During architecture search both the architecture parameters and the BERT model

62

parameters are trained at the same time, for the original model to adapt to the new

architecture. Intuitively we would like to see if keeping the trained BERT model

parameters for fine-tuning is helpful or not.

 By experiment we know that keeping weights from searching procedure will hurt

the performance of fine-tuned model. The main difference between keeping and not

keeping the weight from searching is that the sub-architecture is fine-tuned on different

initialization of network parameters. To explain why not keeping the weights is better,

we need to focus on the fact that the objective of our architecture searching is to get as

close to the original model as possible. During the searching procedure, the network

weights of the BERT model might walk far away from the original values to fit with

the varying architecture. Initializing the BERT weights from original model can be a

good starting point because the original model is already fine-tuned, and it is closest to

the searching objective, i.e. minimizing distillation loss. At this point of writing we also

reflect whether fixing the BERT weights during searching would be beneficial or not.

This can be future direction of investigation.

7.9 FLOPS Weight Sensitivity Analysis

 Recall equation (3) in section 5.2:

ℒ𝑎𝑟𝑐ℎ = MSE(𝑜𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑜𝑡𝑒𝑎𝑐ℎ𝑒𝑟) + 𝜆𝑐𝑜𝑠𝑡ℒ𝑐𝑜𝑠𝑡 (3)

, where we can recognize 𝜆𝑐𝑜𝑠𝑡 as the FLOPS weight. We further experiment with the

different values of the FLOPS weight.

CoLA: FLOPS Weight 0.01 0.1 1 10 100

AVG (3 runs) 0.4063 0.4221 0.4338 0.4126 0.4060

STD. DEV 0.0074 0.0223 0.0134 0.0225 0.0145

SST-2: FLOPS Weight 0.01 0.1 1 10 100

AVG (3 runs) 0.916284 0.916284 0.916284 0.916667 0.916667

STD. DEV 0.00716 0.00459 0.00229 0.00132 0.00331

Table 12. Experiment results of different FLOPS weight averaged over 3 runs.

 By the experiment results we see that 𝜆𝑐𝑜𝑠𝑡 = 1 performs the best on CoLA,

while other values for SST-2 performs comparably. For the universal choice of 𝜆𝑐𝑜𝑠𝑡

for all tasks, we choose 𝜆𝑐𝑜𝑠𝑡 = 1.

 At the same time, we observe that the searching algorithm early converges to larger

63

architecture size than the target size, when searching on large tasks (e.g. SST-2) with

small FLOPS weight (e.g. 0.01). This can be explained by the fact that the gradient

propagated back to the alpha variables is not strong enough when FLOPS weight is too

small.

64

8 Conclusion

 At the time of writing this report, we do not have the results on QQP and MNLI

yet due to the large size of these dataset. An updated version of this report with these

results will be available soon.

 Through the result of this project we can see that the redundancy is high in the

TinyBERT 4L architecture when fine-tuned for tasks including MRPC, STS-B and SST-

2. While for the remaining tasks searching for a sub-architecture from TinyBERT 4L

seems to make severe damage to the prediction performance. This also suggests that

the ability of compression not only depends on the original architecture but also on the

nature and difficulty of the downstream task. By observation we suggest that model

fine-tuned on larger datasets like MNLI and QQP are more tolerant to network

compression, thus more data samples can eventually lead to more efficiently

computable neural network model.

 A potential future direction of this project is to understand the tolerance of

compression on different size of the original architecture. In this report we mainly focus

on pruning TinyBERT 4L (1.239 B FLOPS), while other variants of BERT such as

TinyBERT 6L (11.10 B FLOPS) and Bert-base (22.20 B FLOPS) are up to 20x larger

and we would like to understand whether larger architecture is more tolerant to pruning

or not. Using similar idea from Section 7.6 we can understand the difference between

these architectures of different sizes, even though they do not end up having the same

size on the compressed model.

 We hope that the discovery of this report is insight for the continuing study on

network compression over neural network architectures, especially state-of-the-art self-

attention based deep neural networks where computational complexity is growing faster

than ever.

 Here I would also like to mention that this work is impossible without the help

from Haoli BAI, Prof. Michael Lyu and Edward Yau. Thank you everyone for the

advices to this project.

65

Reference

[1] F. Hutter, L. Kotthoff, J. Vanschoren, H. J. Escalante, I. Guyon, S. Escalera:

Automated Machine Learning Methods, Systems, Challenges (2019)

[2] L. Zimmer, M. Lindauer, F. Hutter: Auto-PyTorch Tabular: Multi-Fidelity

MetaLearning for Efficient and Robust AutoDL (2020)

[3] X. Dong, Y. Yang: Network Pruning via Transformable Architecture Search

(2019)

[4] K. He, X. Zhang, S. Ren, J. Sun: Deep Residual Learning for Image Recognition

(2015)

[5] H. Jin, Q. Song, X. Hu: Auto-Keras: An Efficient Neural Architecture Search

System (2019)

[6] P. I. Frazier: A Tutorial on Bayesian Optimization (2018)

[7] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, F. Hutter:

Efficient and Robust Automated Machine Learning (2015)

[8] Y. Cheng, D. Wang, P. Zhou, T. Zhang: A Survey of Model Compression and

Acceleration for Deep Neural Networks (2020)

[9] C. F. Wang: A Basic Introduction to Separable Convolutions (2018)

[10] G. Hinton, O. Vinyals, J. Dean: Distilling the Knowledge in a Neural Network

(2015)

[11] D. Chen, Y. Li, M. Qiu, Z. Wang, B. Li, B. Ding, H. Deng, J. Huang, W. Lin, J.

Zhou: AdaBERT: Task-Adaptive BERT Compression with Differentiable Neural

Architecture Search (2020)

[12] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, Y. Bengio:

FitNets: Hints for Thin Deep Nets (2015)

[13] K. M. Tarwani, S. Edem: Survey on Recurrent Neural Network in Natural

Language Processing (2017)

[14] M. Venkatachalam: Recurrent Neural Networks (2019)

[15] S. Hochreiter, J. Schmidhuber: Long Short-Term Memory (1997)

[16] C. Olah: Understanding LSTM Networks (2015)

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.

Kaiser, I. Polosukhin: Attention Is All You Need (2017)

[18] H. Y. Lee: ELMO, BERT, GPT (2019)

[19] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L.

Zettlemoyer: Deep contextualized word representations (2018)

[20] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever: Improving Language

Understanding by Generative Pre-Training (2018)

[21] J. Devlin, M. W. Chang, K. Lee, K. Toutanova: BERT: Pre-training of Deep

https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.youtube.com/watch?v=UYPa347-DdE&ab_channel=Hung-yiLee

66

Bidirectional Transformers for Language Understanding (2019)

[22] M. Schuster, K. Nakajima: Japanese and Korean Voice Search (2012)

[23] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S. R. Bowman: GLUE: A Multi-

Task Benchmark and Analysis Platform for Natural Language Understanding

(2019)

[24] H. Liu, K. Simonyan, Y. Yang: Darts: Differentiable architecture search (2019)

[25] I. Turc, M. W. Chang, K. Lee, K. Toutanova: Well-Read Students Learn Better:

On the Importance of Pre-training Compact Models (2019)

[26] X. Dong, Y. Yang: Searching for A Robust Neural Architecture in Four GPU

Hours (2019)

[27] E. Jang, S. Gu, B. Poole: Categorical Reparameterization with Gumbel-Softmax

(2017)

[28] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, Q. Liu: TinyBERT:

Distilling BERT for Natural Language Understanding (2020)

[29] K. Clark, U. Khandelwal, O. Levy, C. D. Manning: What Does BERT Look At?

An Analysis of BERT's Attention (2019)

[30] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T.

Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. v. Platen, C. Ma, Y.

Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, A. M. Rush:

HuggingFace's Transformers: State-of-the-art Natural Language Processing

(2020)

[31] P. Michel, O. Levy, G. Neubig: Are Sixteen Heads Really Better than One?

(2019)

[32] J. Frankle, M.Carbin: The Lottery Ticket Hypothesis: Finding Sparse, Trainable

Neural Networks (2018)

[33] S. Han, J. Pool, J. Tran, W. J. Dally: Learning both Weights and Connections for

Efficient Neural Networks (2015)

[34] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, M. Rastegari: What's

Hidden in a Randomly Weighted Neural Network? (2019)

[35] E. Strubell, A. Ganesh, A. McCallum: Energy and Policy Considerations for

Deep Learning in NLP (2019)

[36] M. Gupta, P. Agrawal: Compression of Deep Learning Models for Text: A Survey

(2020)

[37] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, M. Carbin: The Lottery

Ticket Hypothesis for Pre-trained BERT Networks (2020)

[38] Anthony M. C. So: Handout 7: Optimality Conditions and Lagrangian Duality

in ENGG5501 (CUHK, 2020-2021)

