LYU2002

Study Neural Architecture Search

[Neural Architecture Search on BERT for Network Compression]

ESTR4999 2020/21 Term 2 Oral Presentation

Yau Chung Yiu, Oscar

1155109029

30 min present, 15 min Q&A

Background

- Natural Language Processing uses deep neural networks that are
 - Computationally expensive, slow
 - BERT 12-layer: 22.2 Billion FLOPS, for classification of sequence at most 128 tokens long
 - Processing 144 sentences / second on GPU
 - Processing 4 sentences / second on CPU
 - BERT 12-layer: 110 Million parameters -> requires 419 MB to load the model into memory for inference -> limits parallelization
- We achieve network compression by Neural Architecture Search

Related Study – Lottery Ticket Hypothesis

- Consider training a larger neural network as buying a lot of lottery ticket
 - Larger network initialized for training -> Higher chance of winning
 - After training only the winning ticket (subnetwork) is responsible for prediction
 - The weight initialization is crucial for a subnetwork to be a winning ticket
 - Reinitializing the winning ticket will lead to a poor model

Problem Setting – Pruning NN: BERT

- Search for optimal sub-architecture from original network.
- Define
 - α architecture parameters
 - r sub-architecture FLOPS / original architecture FLOPS
 - *E* training error on data samples
 - *w* neural network parameters
- Objective:
 - Finding sub-architecture α of small r that achieve small training error E
 - $\min_{\alpha,w} E$ such that $\text{Ratio}(\alpha) = r$
 - We approach solving this problem by min {min E}

Problem Structure

- Objective:
 - Finding sub-architecture α of small r that achieve small training error E
 - $\min_{\alpha,w} E$ such that $\operatorname{Ratio}(\alpha) = r$
 - We approach solving this problem by $\min_{w} \{\min_{\alpha,w} E\}$

 $\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$ s.t. $w^*(\alpha) = \operatorname{argmin}_w \quad \mathcal{L}_{train}(w, \alpha)$

Fig 1. Bilevel architecture search formulation. [1]

- α can be understood as mask variable $\in \{0,1\}^n$
 - *n* number of pruning groups (e.g. pruning an attention-head)
 - *n* depends on the search space
 - e.g. for TinyBERT-4L, $n = 3072 \times 4 + 12 \times 4 = 12336$
- 2^n is large, it cannot be solved by exhaustively searching
- This optimization problem is non-convex, because
 - combinatorial nature
 - bilevel optimization

Methodology – Existing Baseline Method

• Magnitude Pruning

- Remove weights connections of small magnitude
- Intuitively small magnitude weights have small impact to the output

Dataset	MNLI	QQP	STS-B	WNLI	QNLI	MRPC	RTE	SST-2	CoLA	SQuAD	MLM
Sparsity	70%	90%	50%	90%	70%	50%	60%	60%	50%	40%	70%
Full BERT_{\rm BASE}	82.4 ± 0.5	90.2 ± 0.5	88.4 ± 0.3	54.9 ± 1.2	89.1 ± 1.0	85.2 ± 0.1	66.2 ± 3.6	92.1 ± 0.1	54.5 ± 0.4	88.1 ± 0.6	63.5 ± 0.1
$egin{aligned} f(x, m_{ ext{IMP}} \odot heta_0) \ f(x, m_{ ext{RP}} \odot heta_0) \ f(x, m_{ ext{IMP}} \odot heta_0) \ f(x, m_{ ext{IMP}} \odot heta_0') \ f(x, m_{ ext{IMP}} \odot heta_0'') \end{aligned}$	$\begin{array}{c} 82.6 \pm 0.2 \\ 67.5 \\ 61.0 \\ 70.1 \end{array}$	$\begin{array}{c} 90.0 \pm 0.2 \\ 76.3 \\ 77.0 \\ 79.2 \end{array}$	$\begin{array}{c} 88.2 \pm 0.2 \\ 21.0 \\ 9.2 \\ 19.6 \end{array}$	$54.9 \pm 1.2 \\ 53.5 \\ 53.5 \\ 53.3 \\ 53.3$	$\begin{array}{c} 88.9 \pm 0.4 \\ 61.9 \\ 60.5 \\ 62.0 \end{array}$	$\begin{array}{c} 84.9 \pm 0.4 \\ 69.6 \\ 68.4 \\ 69.6 \end{array}$	$\begin{array}{c} 66.0 \pm 2.4 \\ 56.0 \\ 54.5 \\ 52.7 \end{array}$	$91.9 \pm 0.5 \\ 83.1 \\ 80.2 \\ 82.6$	$53.8 \pm 0.9 \\ 9.6 \\ 0.0 \\ 4.0$	$\begin{array}{c} 87.7 \pm 0.5 \\ 31.8 \\ 18.6 \\ 24.2 \end{array}$	$ \begin{vmatrix} 63.2 \pm 0.3 \\ 32.3 \\ 14.4 \\ 42.3 \end{vmatrix} $

Table from [3], results of iterative magnitude pruning

Methodology – Existing Baseline Method

• Structured Pruning

- Masking the variables according to the structure of the original network
- Measure importance of weight by sensitivity to mask variables
- Performance aware pruning pruning continues as long as validation performance is over 90% of the full model
- Algorithm is unstable [5], <u>all tickets are winning</u>!
 - Compared between "Good" and "Bad" subnetworks.
 - Suggests that all weights in BERT contains useful information, enough for prediction

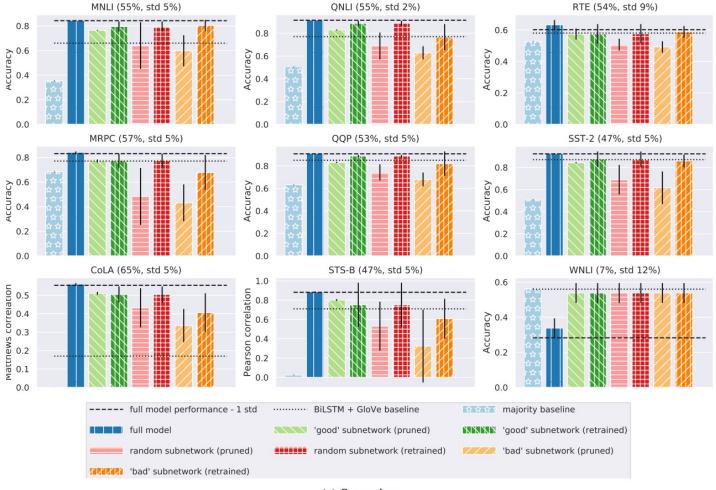
$$I_{h}^{(h,l)} = E_{x \sim X} \left| \frac{\partial \mathcal{L}(x)}{\partial \xi^{(h,l)}} \right|$$

Equation from [4]. Output sensitivity w.r.t. the mask variables.

[5] S. Prasanna, A. Rogers, A. Rumshisky: When BERT Plays the Lottery, All Tickets Are Winning (2020)

Methodology – Existing Baseline Method

- Structured Pruning
 - Bad subnetworks are also winning



(a) S-pruning

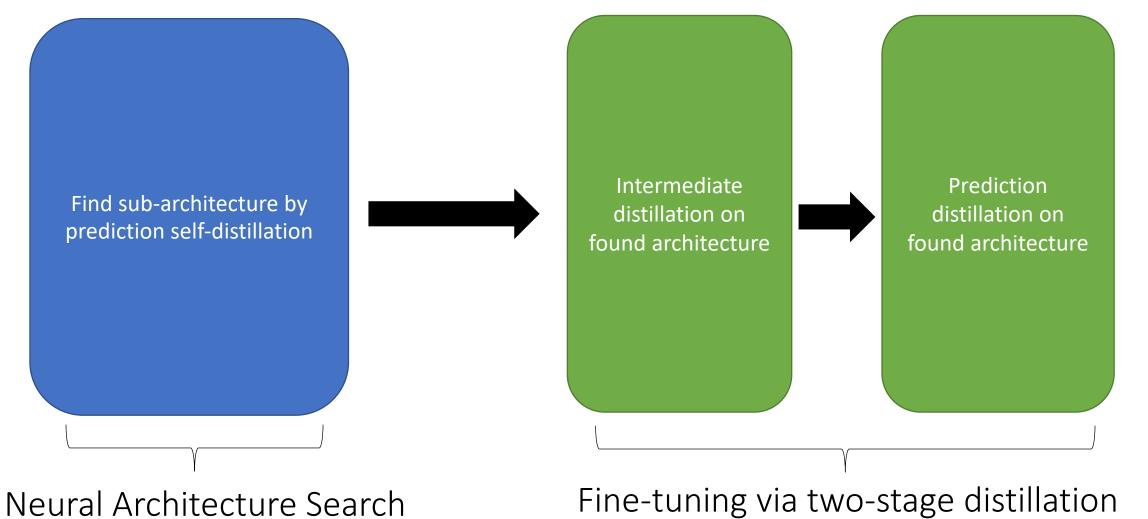
Fig. from [5], performance on GLUE tasks by structured pruning.

[5] S. Prasanna, A. Rogers, A. Rumshisky: When BERT Plays the Lottery, All Tickets Are Winning (2020)

Methodology – Introduction

- Our NAS approach:
 - Search for the optimal architecture by learning
 - Relaxation on mask variable by $sigmoid(\alpha), \alpha \in \mathbb{R}^n$
 - Gradient descent to the architecture parameters α
- Combining
 - Structured Pruning
 - Prune Multi-heads by blocks
 - Prune Feed-forward intermediate by dimensions
 - Distillation
 - Self-supervised distillation to recover original performance

Methodology – Procedure



10

Methodology – Search Method

- Loss functions compose of
 - 1. Prediction self-distillation loss $(\mathcal{L}_{\alpha}, \mathcal{L}_{w})$
 - 2. FLOPS loss (\mathcal{L}_{α})

$$\mathcal{L}_{arch} = \mathsf{MSE}(o_{student}, o_{teacher}) + \lambda_{cost}\mathcal{L}_{cost} \qquad (3)$$

$$Positive FLOPS loss if the current$$

$$architecture size > required size$$

$$\mathcal{L}_{cost} = \begin{cases} \frac{\log (\mathbb{E}_{cost}(\mathbb{A})) & \text{when } F_{cost}(\mathbb{A}) > (1+t) \times R \\ 0 & \text{when } (1-t) \times R < F_{cost}(\mathbb{A}) < (1+t) \times R \end{cases}$$

$$Positive FLOPS loss if the current$$

$$architecture size < required size$$

$$Fig 2 \quad Formulation of loss functions from report Section 5.2$$

Fig 2. Formulation of loss functions, from report Section 5.2.

Methodology – Search Method Tricks

- Architecture target ratio control (FLOPS loss)
 - Target ratio R moves linearly throughout the searching procedure
 - e.g. R moves from 1 to 0.3
 - Sharp drop of architecture size damages the learning outcome
- Update control
 - Only top 10% of the large magnitude gradients are backpropagated to the *α* for update.

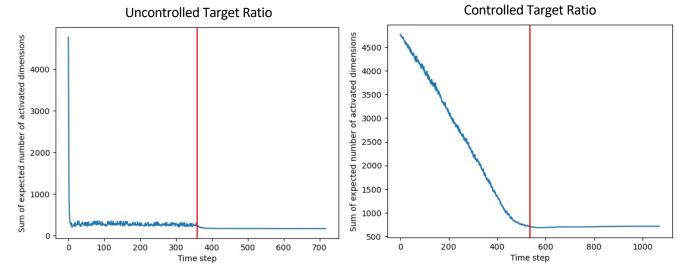
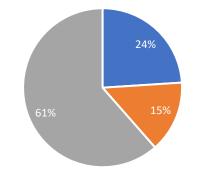


Fig 3. Comparison between controlled arch. target ratio and uncontrolled learning of alpha, from report Section 7.4.

Methodology – Search Space

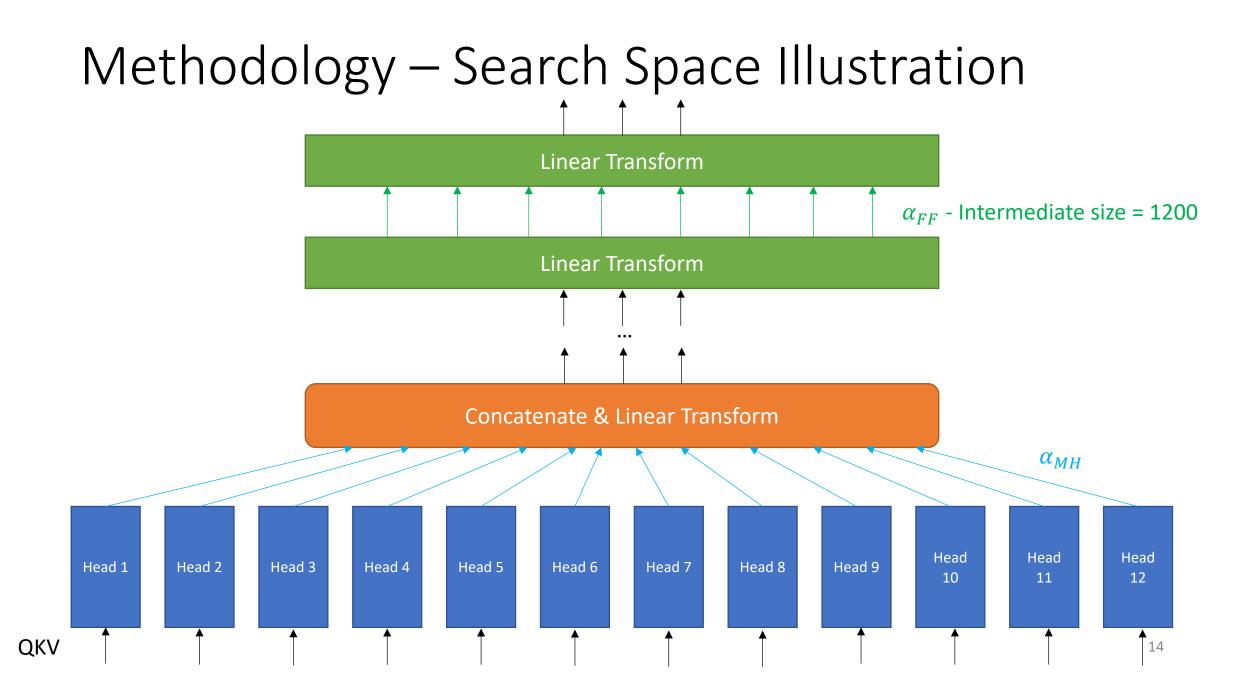
- Multi-head attention
 - Different heads learn different kind of similarity
 - When trained on down-stream task many heads are redundant [4]
- Feed-forward intermediate dimensions
 - Major contribution to FLOPS (61%)
 - Intermediate dimension expanded to learn high dimensional features



Embedding to QKV QKV QKV Self-attention Feed-Forward

Fig 4. Distribution of FLOPS in TinyBERT 4L, from report Section 7.2.

Distribution of FLOPS in TinyBERT 4L



<u>Metrics reported</u> Mcc: CoLA F1: QQP, MRPC Pearson-Spearman correlations: STS-B Accuracy: MNLI, QNLI, SST-2, RTE

Main Result

All tables from report Section 6.3.2

Models	FLOPS (B)	Speedup	MNLI (-m/-mm)	QQP	QNLI	SST-2	CoLA	STS-B (Pear/Spea)	MRPC	RTE
TinyBERT-4L	1.239	1.0x	82.5/81.8	71.3	87.7	92.6	44.1	-/80.4	86.4	66.6
30% TinyBERT-4L	[0.375, 0.403]	[3.0x, 3.3x]	80.8/80.4	70.9	84.4	91.8	40.7	79.9/78.6	85.4	61.4
Percentage Change in Accuracy	/	/	-2.06%/-1.71%	-0.56%	-3.76%	-0.86%	-7.71%	-2.24%	-1.16%	-7.81%

Table 1. GLUE Test Result on TinyBERT-4L pruning

Models	FLOPS (B)	Speedup	MNLI (-m/-mm)	QQP	QNLI	SST-2	CoLA	STS-B (Pear/Spea)	MRPC	RTE
TinyBERT-6L	11.100	1.0x	84.6/83.2	71.6	90.4	93.1	51.1	-/83.7	87.3	70.0
30% TinyBERT-6L	[3.348, 3.590]	[3.1x, 3.3x]	83.7/83.0	71.8	89.5	93.0	46.1	84.2/83.3	86.9	63.6
Percentage Change in Accuracy	/	/	-1.06%/-0.24%	+0.28%	-1.00%	-0.11%	-9.78%	-0.48%	-0.46%	-9.14%

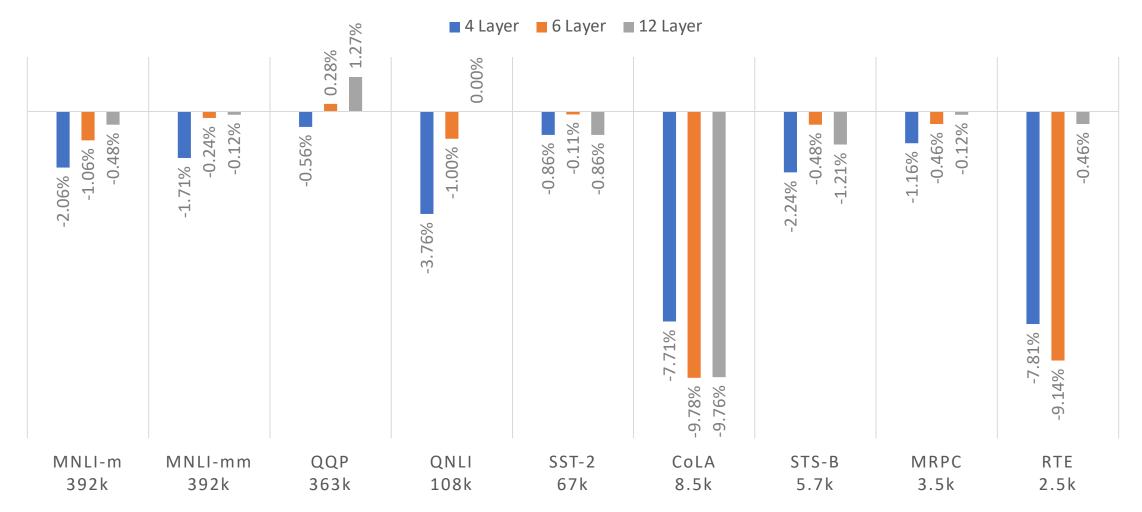
Models	FLOPS (B)	Speedup	MNLI (-m/-mm)	QQP	QNLI	SST-2	CoLA	STS-B (Pear/Spea)	MRPC	RTE
Reproduced Bertbase-12L	22.199	1.0x	84.0/83.2	70.7	91.1	92.7	55.3	84.2/82.5	86.6	65.5
30% Bertbase-12L	[6.697, 9.471]	[2.3x, 3.3x]	83.6/83.1	71.6	91.1	91.9	49.9	82.9/81.5	86.5	65.2
Percentage Change in Accuracy	/	/	-0.48%/-0.12%	1.27%	0.00%	-0.86%	-9.76%	-1.54%/-1.21%	-0.12%	-0.46%

Table 3. GLUE Test Result on Bertbase-12L pruning

Table 2. GLUE Test Result on TinyBERT-6L pruning

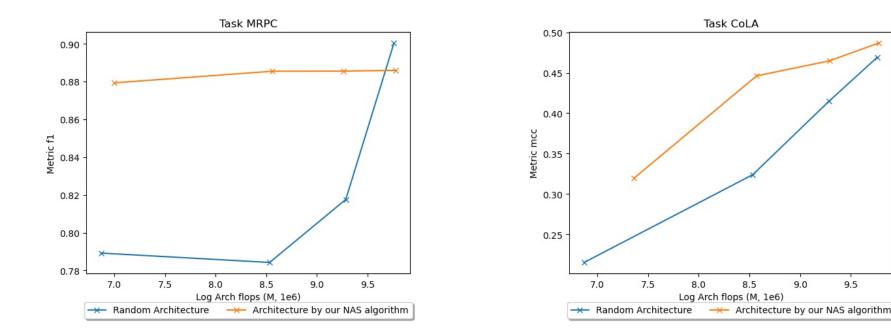
Main Result

Accuracy Percentage Change



Main Result – Comparison with Simple Baseline: Random Architecture

• We have shown that our algorithm can find architecture that performs better than a random architecture of similar FLOPS.



Main Result – Comparison with Existing Baseline: Google BERT

• We have shown significant prediction accuracy improvement compared to existing BERT model with similar FLOPS.

Models	FLOPS (B)	MNLI (-m/-mm)	QQP	QNLI	SST-2	CoLA	STS-B (Pear/Spea)	MRPC	RTE
	0.972	, ,		0.4.1	05.0	0.0		01.1	57.0
BERT-Mini [25]	0.873	74.8/74.3	66.4	84.1	85.9	0.0	75.4/73.3	81.1	57.9
30% TinyBERT-4L	[0.375, 0.403]	80.8/80.4	70.9	84.4	91.8	40.7	79.9/78.6	85.4	61.4
Percentage Change in Accuracy	/	+8.02%/+8.21%	+6.78%	+0.36%	+6.87%	+inf	+5.97%	+5.30%	+6.04%

Table 4. Comparison between BERT-Mini by Google and pruned TinyBERT-4L, from report Section 6.3.2.

Main Result – Comparison with Existing Baseline: Magnitude Pruning

Dataset	MNLI	QQP	STS-B	WNLI	QNLI	MRPC	RTE	SST-2	CoLA	SQuAD	MLM
Sparsity	70%	90%	50%	90%	70%	50%	60%	60%	50%	40%	70%
Full BERT _{BASE}	82.4 ± 0.5	90.2 ± 0.5	88.4 ± 0.3	54.9 ± 1.2	89.1 ± 1.0	85.2 ± 0.1	66.2 ± 3.6	92.1 ± 0.1	54.5 ± 0.4	88.1 ± 0.6	63.5 ± 0.1
$f(x, m_{\text{IMP}} \odot \theta_0)$	82.6 ± 0.2	90.0 ± 0.2	88.2 ± 0.2	54.9 ± 1.2	88.9 ± 0.4	84.9 ± 0.4	66.0 ± 2.4	91.9 ± 0.5	53.8 ± 0.9	87.7 ± 0.5	63.2 ± 0.3
$f(x, m_{ m RP} \odot heta_0)$	67.5	76.3	21.0	53.5	61.9	69.6	56.0	83.1	9.6	31.8	32.3
$f(x, m_{\text{IMP}} \odot \theta'_0)$	61.0	77.0	9.2	53.5	60.5	68.4	54.5	80.2	0.0	18.6	14.4
$f(x, m_{\mathrm{IMP}} \odot \theta_0'')$	70.1	79.2	19.6	53.3	62.0	69.6	52.7	82.6	4.0	24.2	42.3

Table from [3], results of iterative magnitude pruning on dev set

Dataset	MNLI	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE
	(-m)					(Pearson)		
Ratio	28.3%	28.3%	39.9%	28.6%	28.9%	31.5%	29.2%	28.2%
30% Bertbase-12L	84.2	90.3	91.7	92.3	58.3	88.8	85.3	69.7
Ratio	30%	10%	30%	40%	50%	50%	50%	40%
IMP [3]	82.6	90.0	88.9	91.9	53.8	88.2	84.9	66.0
Difference	+1.6	+0.3	+2.8	+0.4	+4.5	+0.6	+0.4	+3.7

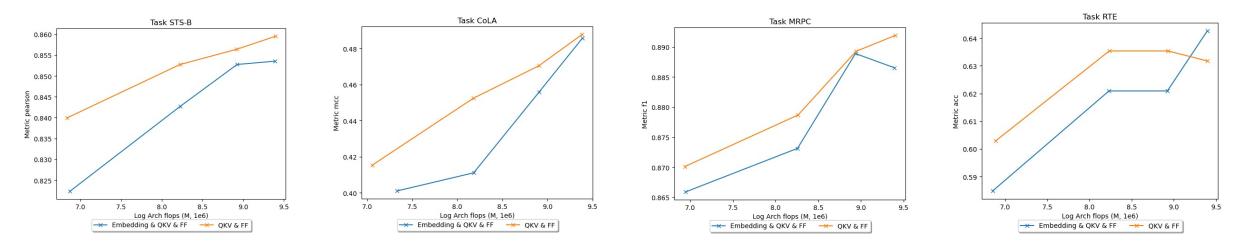
Table: comparison between IMP [3] and our results, on dev set.

Our method is stronger because we do distillation and data augmentation during fine-tuning.

[3] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, M. Carbin: The Lottery Ticket Hypothesis for Pre-trained BERT Networks (2020)

Discussion – Input Embedding Pruning

- In semester 1 we proposed pruning input embedding.
- By experiment results we see that pruning input embedding damages network prediction accuracy by a lot.
- Because input embedding carries either
 - Sentence token information (layer 1)
 - Previous layer output (layer 2 last layer)

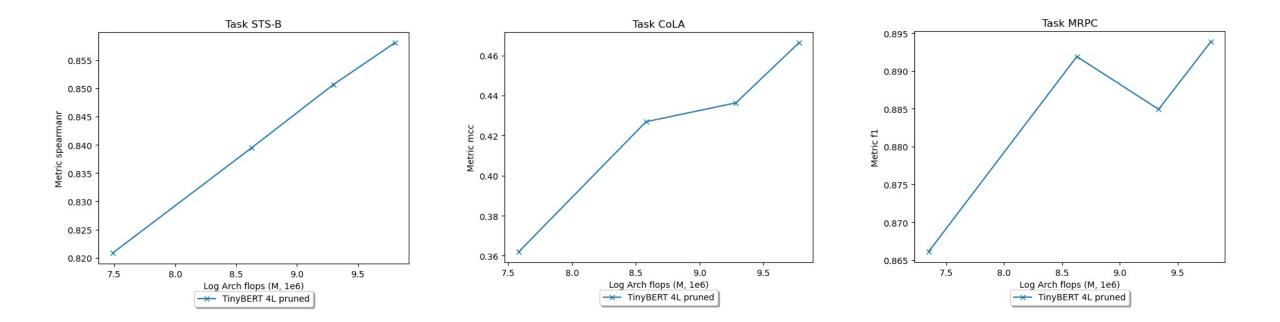


Discussion – QKV pruning VS Multi-head pruning

- Multi-head pruning is a restricted version of QKV pruning
 - An attention head = A group of QKV dimensions
 - Structured Pruning
- Structured Pruning outputs an architecture that is computationally faster

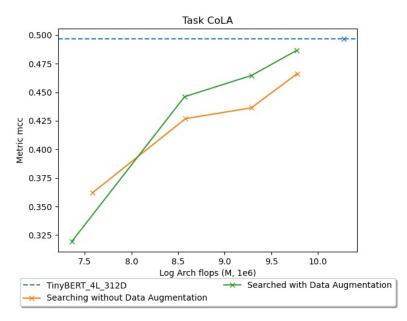
Discussion – Architecture Size Ratio

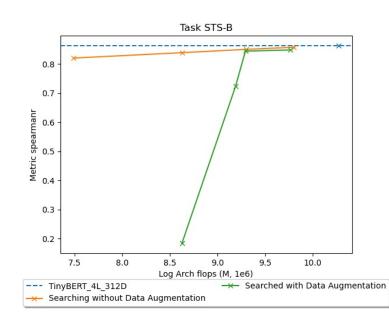
• By experiment we observed that below the ratio 0.3, the prediction performance damage is significant.

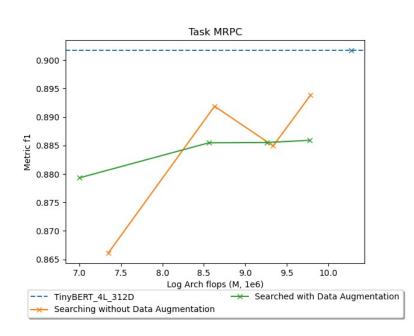


Discussion – Effect of Data Augmentation

- For fine-tuning data augmentation always improves prediction accuracy (more generalized model)
- For searching for architecture, data augmentation is
 - harmful for data sufficient task, and
 - useful for data insufficient task (CoLA, RTE)







Discussion – Pros and Cons of our algorithm

- Our searching algorithm can search for an architecture of any size (architecture size ratio *R* is a parameter)
- Our method considers all the possible search regions of BERT and assuming equal importance over all regions
- Our method is applicable to other variants of BERT
 - TinyBERT 4L / 6L
 - Bert-base 12L
- The algorithm computationally expensive
 - 10 epochs for architecture search
 - 20 epochs for two-stage distillation fine-tuning
 - 12 hours 2 days on CSE GPU
- Instability

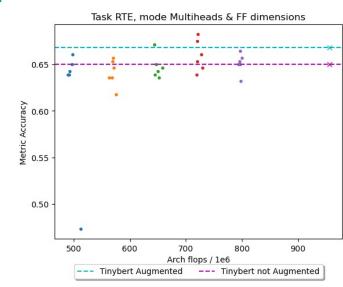


Fig. Random seeding

Conclusion

- Larger neural networks have higher redundancy (tolerant to pruning)
 - Performance drop is larger on small neural network, when pruning on the same ratio
 - For production deep neural networks are highly accelerable
- The quality of model depends on the quality of learning data
 - Difficult tasks: RTE, CoLA (difficult and insufficient data)

Reflection

- We should compare among baselines fairly:
 - Compare at the similar searched architecture size
 - When comparing we need to care about whether
 - Is the searched architecture better? (fix fine-tuning method to compare)
 - Is the fine-tuning method better? (fix architecture to compare -> more difficult to handle)

Future Direction

- Fixing network parameter during search
 - Less interference with the architecture parameter $\boldsymbol{\alpha}$
- Experiment on knowledge transfer (distillation from stronger BERT)
- Apply performance aware searching
 - Searching continues when the pruned model recovered its prediction performance
 - Searching terminates when the pruned model cannot recover
- Analysis the attention pattern
 - Between the pruned network and the original network

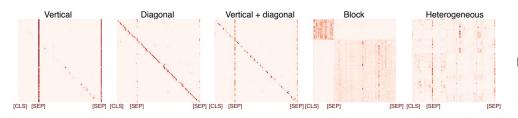


Fig. from O. Kovaleva, A. Romanov, A. Rogers, A. Rumshisky: Revealing the Dark Secrets of BERT (2019)