
LYU1803:

Opensource E-voting System for
8 million mobile devices

ESTR4999 Graduation Thesis Presentation

Maxwell Chan presents

supervised by Prof. Michael Lyu



Review of Term 1

2



Motivation
- Disadvantage of paper-based voting

- Blockchain

- End-to-end verifiable voting

Review of Term 1

3



Design
- Helios

- Permissioned blockchain

Review of Term 1

4



Implementation
- Election encryption & decryption

- “Backbone” of blockchain

- Draft user interface

Review of Term 1

5



Objective

6



Overall schedule
Objective

Research Design Implementation Testing

Term 1

Term 2

7



Objective of Term 2
- Zero-knowledge proof

- Communication full verification

- User interface design

- Load test

Objective

8



Protocol design

9



Zero-knowledge proof
- Sigma protocol

- Non-interactive mode

Protocol design

10



Trustee knowledge on private key
- Need all private key for decryption

- Malicious example:

Trustee public key: 𝑦𝑖 private key: 𝑥𝑖

Submit public key as: 𝑦𝑖/(𝑦1𝑦2𝑦3...𝑦n)

Election public key = (𝑦1𝑦2𝑦3...𝑦n) × 𝑦𝑖/(𝑦1𝑦2𝑦3...𝑦n) = 𝑦𝑖

Protocol design >> Zero-knowledge proof

11



Trustee honest decryption
- Must use the private key

- Malicious example: 𝑥𝑖𝑔
1 or 𝑥𝑖𝑔

-1 

- Ballot aggragation

12

Protocol design >> Zero-knowledge proof



Voter honest encryption
- Encrypt only 0 or 1

- Limit number of selection

- Use “simulated proof” for other values

- Reverse the Sigma protocol

- Verify sum of “Challenge”

13

Protocol design >> Zero-knowledge proof

Q1 (1-3 selection)

Choice 1
Choice 2
Choice 3

1 real, 1 simulated

1 real, 1 simulated

1 real, 1 simulated

1 real, 2 simulated



Authentication method
- Signature bound with ballot

- Key generation problem

- Server generate, send via email

- Voter self-enrollment

- Election administrator upload directly

14

Protocol design



Roles and permission
Different type of administrator:

- Server administrator

- Election administrator

- Trustee

15

Protocol design >> Blockchain



Block design
1. Election details

2. Ballots

3. Election tally

16

Protocol design >> Blockchain



Block generation - Node selection
- Use Server ID instead of address

- Unique ID for each server key pair

17

Protocol design >> Blockchain



Implementation

18



System architecture
- Modularized design

19

Implementation



1. Vote in a prepared election

2. Tally the election

3. Decrypt the election

4. Show result

20

Demo



Testing

21



Overview
- Aim: Bottleneck of scaling up

- Load test (2 round)

- Block length test

- Arrival rate test

- Ballot aggregation test

- Reliability test

22

Testing



Environment
- CSE machine x3

- 4 CPU @ 2.8GHz

- 8GB RAM

- Google Cloud Virtual Machine

- 8 CPU @ 2.5GHz

- 56GB RAM

23

Testing



Block length test - CSE machine
- Case of 100,000 ballots

24

Testing >> Load test >> First round



Block length test - CSE machine
- Case of 1,000,000 ballots

- Database out of memory

- Some ballots in multiple blocks

25

Testing >> Load test >> First round



Block length test - Google VM
- Case of 1,000,000 ballots

- Processing time increase

26

Testing >> Load test >> First round



Arrival rate test - 1 node - CSE machine
- 11 Ballots per second

27

Testing >> Load test >> First round

- 12 Ballots per second



Arrival rate test - 1 node - Google VM
- 12 Ballots per second

28

Testing >> Load test >> First round



Ballot aggreagtion test - CSE machine
- 3 nodes on same machine

- 100 Ballots: 0.07 second

- 1000 Ballots: 0.6 second

- 10000 Ballots: 72 seconds

29

Testing >> Load test >> First round



Summary & Improvement
- Cannot scale up

- Single thread → Low CPU utilization
- Fork child processes for ballot processing

30

Testing >> Load test >> First round

Master process

Ballot child 
process 1

Ballot child 
process n...

All request

Ballot request



Summary & Improvement
- High database memory usage → Long response time

- More index

- electionID ↑, blockType ↑, blockSeq ↓, data.voters.id ↑

- electionID ↑, blockSeq ↓

31

Testing >> Load test >> First round



Block length test - Google VM
- Case of 1,000,000 ballots

- Crash at ~950,000 ballots

32

Testing >> Load test >> Second round

- Extended test



Arrival rate test - 1 node - Google VM
- 48 Ballots per second

33

Testing >> Load test >> Second round

- 56 Ballots per second



Arrival rate test - 1 node - Google VM
- 48 Ballots per second

34

Testing >> Load test >> Second round

- 56 Ballots per second



Arrival rate test - CSE machine
- 1 node

- 30-31 Ballots per second

- 2 nodes
- 28-29 Ballots per second

35

Testing >> Load test >> Second round



Ballot aggregation test
- With 1 or 2 node(s) on CSE machine

36

Testing >> Load test >> Second round



Summary & Improvement
- Great improvement

- Able to scale up

- Memory leakage problem

- Fixed (on block generation)

37

Testing >> Load test >> Second round



Reliability test
- 3 nodes on the same CSE machine

- Able to adapt the situation

- Need time to sync

38

Testing



Conclusion

39



Overview of Term 2
- Zero-knowledge proof

- Reviced design
- Authenication

- Blockchain

- Implementation
- Full verification between nodes

- User interface & authenication

- Testing & improvement

- Opensource

40

Conclusion



Possible application
Legislative Council Election

- 5 geographical constituencies (GC)

- 1 million voters per GC

- 100,000 votes per hour

- 28 ballots per second

41

Conclusion



Future work
- Improvement on scalability

- Improvement on reliability

- Full implementation of the proposed design

- Enforce more security measure

- Use newer communication protocols

- Possibility of enabling “Voting-as-a-service”

42

Conclusion



Improvement on scalability
- More Child processes

- Blockchain, Election, Handshake

- Partially broadcasting ballots

- nodes with same database

43

Conclusion >> Future work



Improvement on reliability
- Ballot re-broadcasting

- Voter experience

- Smarter blockchain synchronization

- Sequence of ‘invalid blocks’

- Clock synchronization

- For block generation

44

Conclusion >> Future work



Full implementation of the proposed design
- Kiosk voting

- Authentication method

45

Conclusion >> Future work



Enforce more security measure
- Removed for the ease of testing

- Replay attack → Nonce

- Secure connection → HTTPS

46

Conclusion >> Future work



Use newer communication protocols
- Current: All via HTTP

- Improvement: Some via TCP

- Future: Use QUIC

47

Conclusion >> Future work



Possibility of enabling “Voting-as-a-service”
- Pay for computation power used

- Earn by hosting as a node

48

Conclusion >> Future work



Q & A

49


