

Al Model:

Different experiments to enhance recognition

Mobile Application:

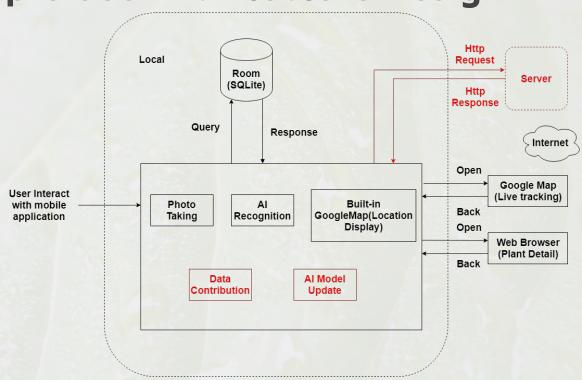
Auto-training Module

Functionality

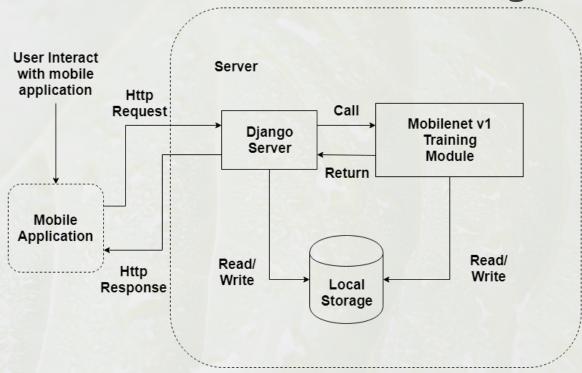
Recognition

Navigation

Look up plants in CUHK



Check out plants detail



App-sided Architecture Design

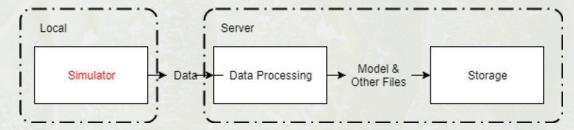
Server-sided Architecture Design

Cloud as Server Machine

- Easy to set up
- More flexibility

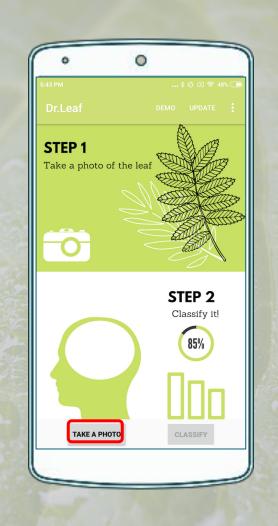

- Rapid server building
- Large python community

Communication Method

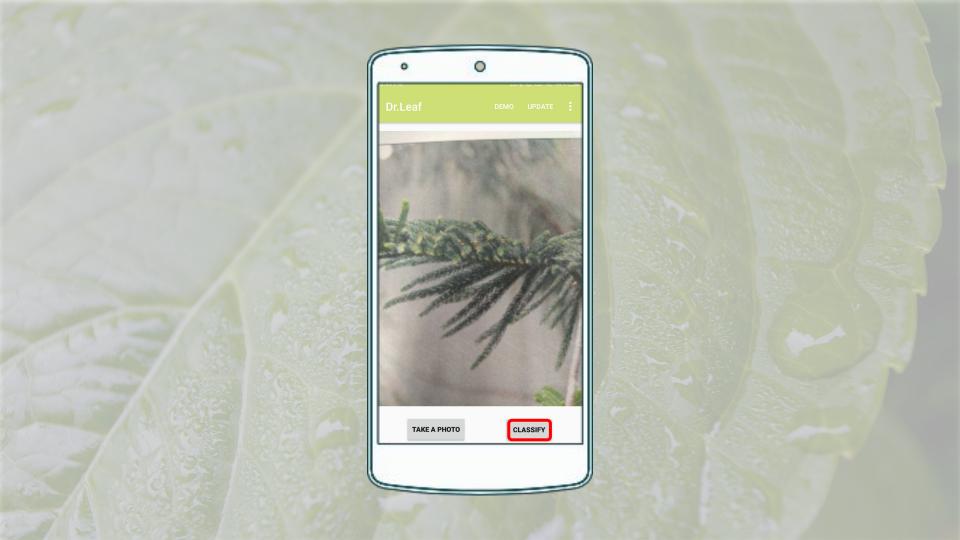

- HTTP
- URI
- Upload data:
 - http://ip_address:port _number/images
- Download model:
 - http://ip_address:port _number/models

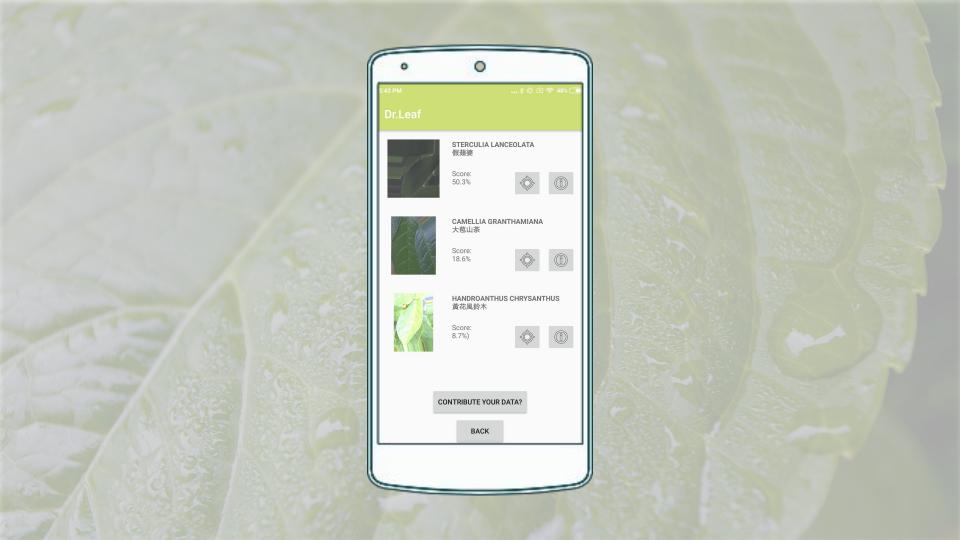
Testing Technique

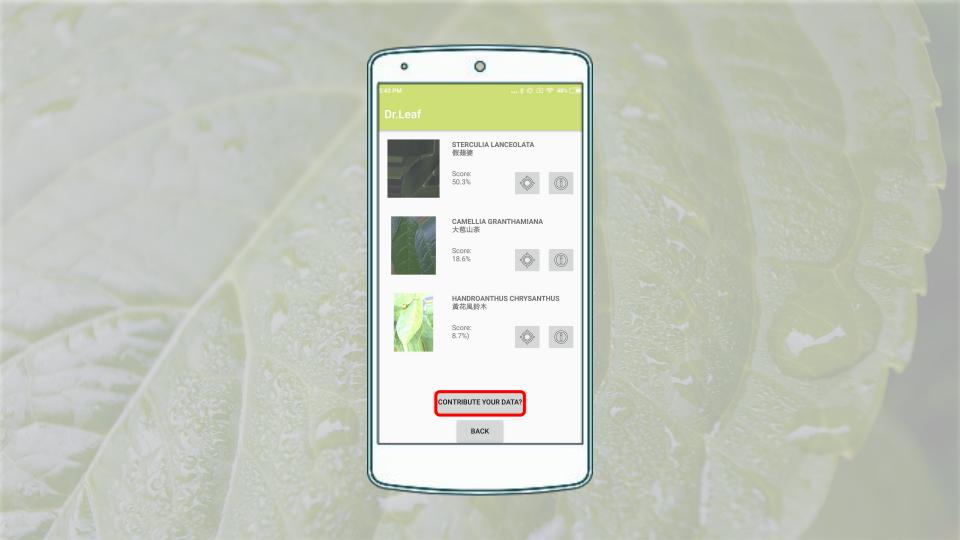
Original Design

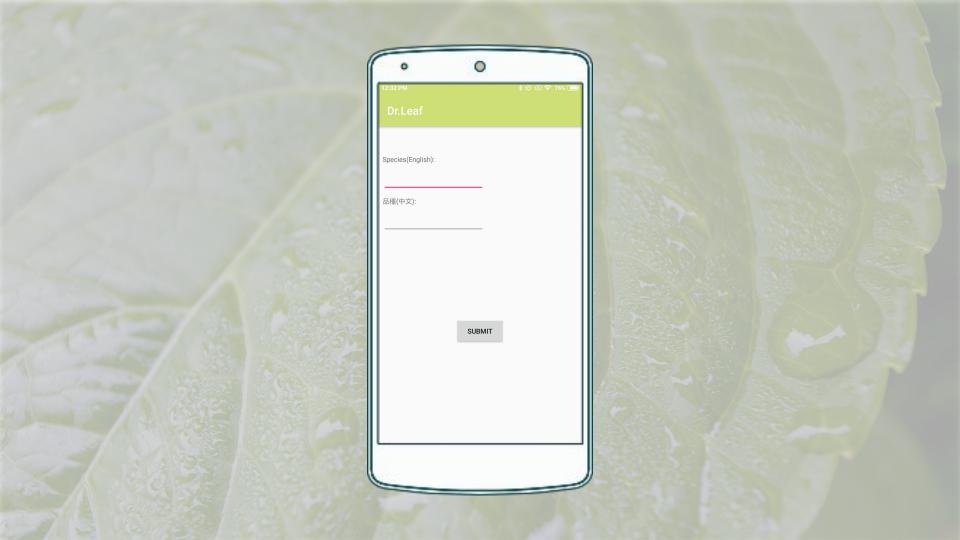


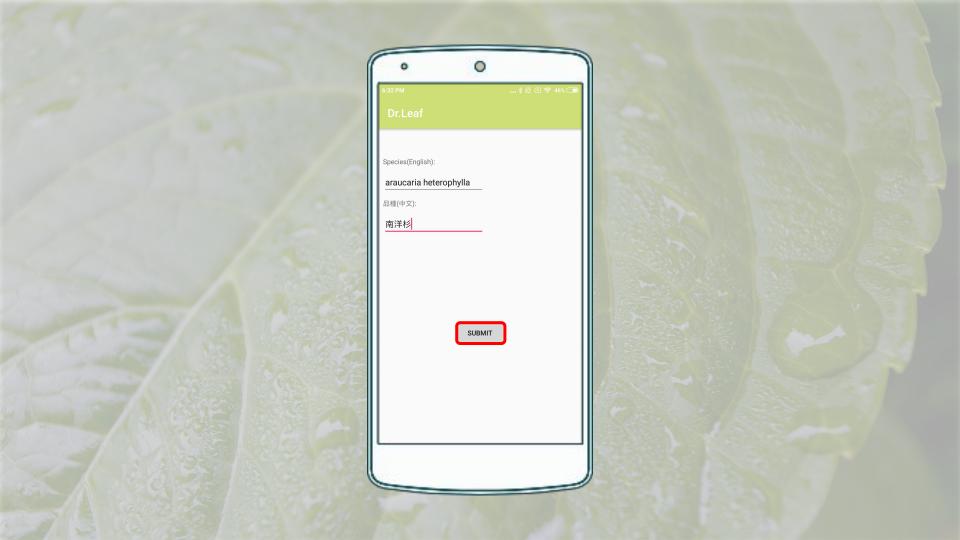
Testing



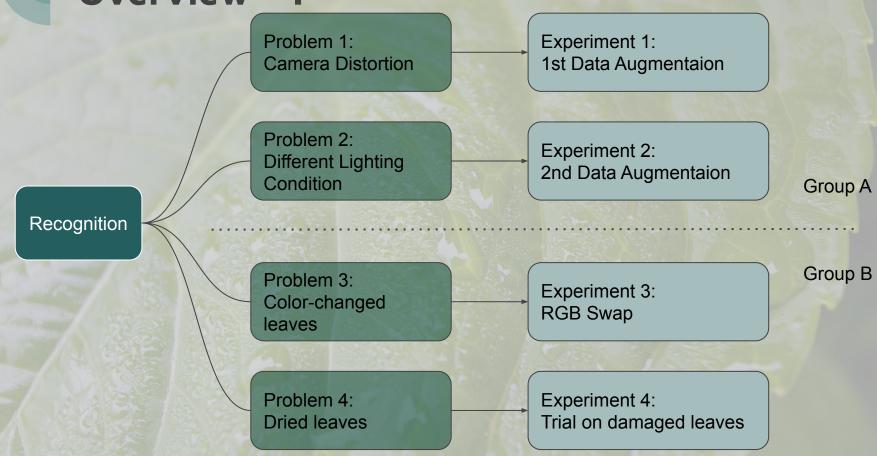

image:	選擇檔案	未選擇任何檔案	
species	_name_en	g:	
species	_name_chi	:	
Upload			

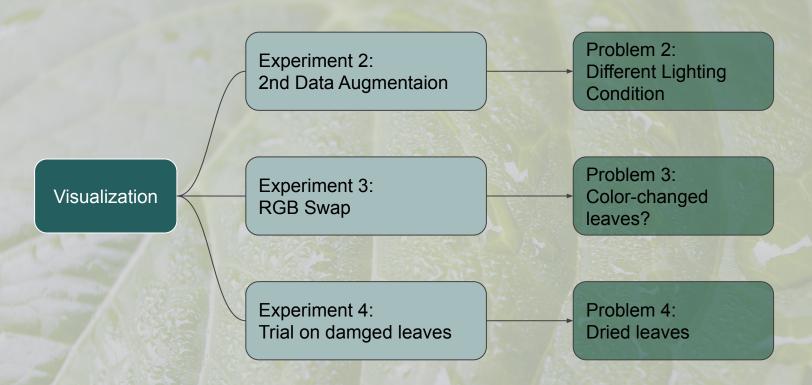


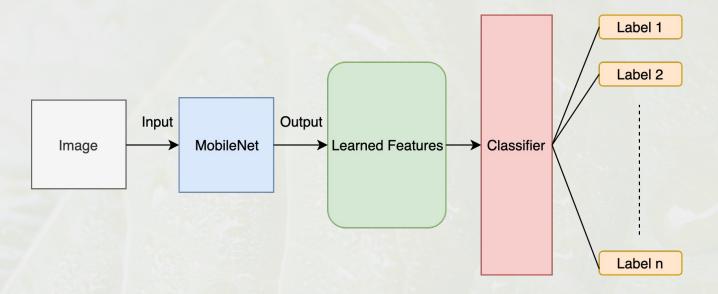


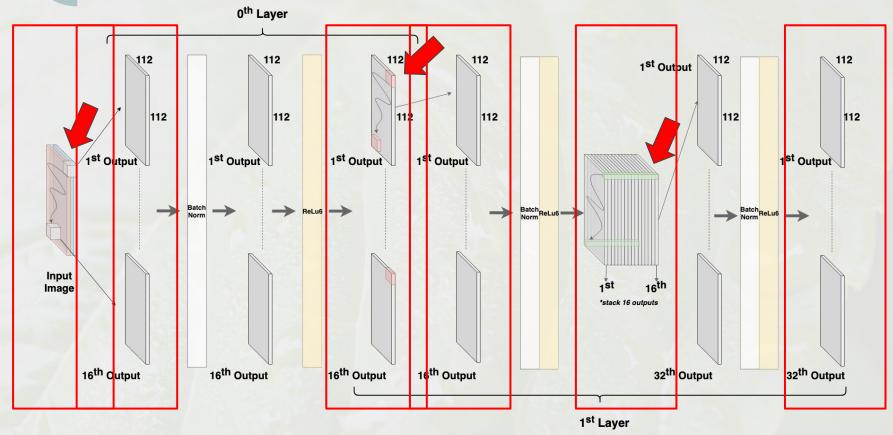


One Interface, Two Purpose


- Correct labelling into existing ones
- Add new species

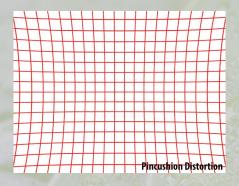


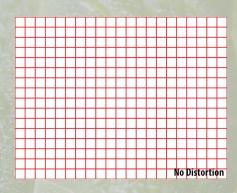

Overview - 1

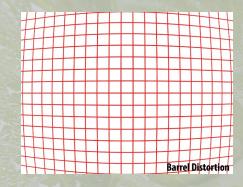

Overview - 2

where to visualize?

Example of visualization


Input Image		Index of output in a layer:						
p		0-th Layer						
	1	2	3	4	5	6	7	8
At a	9	10	11	12	13	14	15	16
			h Layer					
	9	10	3	12	5 13	6	7 15	8 16
	9		h Laye					16
	1	2	3	4	5	6	7	8
	9	10	11	12	13	14	15	16
	17	18	19	20	21	22	23	24
	25	26	27	28	29	30	31	32
0	th Layer							
	Luyer				E			
							3	
1					1	eny -n X/	~~	
· · · · · · · · · · · · · · · · · · ·								
1-th Layer d	nthwise co	nvo	lutio	n				
Sa. I Layer u	Jen Wise C	21110		•	La			
					20		3	
William State			_		1973		23	
7								
1 1 1 1 1 1 1 1 1 1					8			
1-th Layer p	ointwise co	onvol	lutior	1 30 /			1	4
	1	1		1		1	4	TE
		378	1	5		()		A
7.47	8 1	**	100	140	7	£.		200
	-	1 =			6		5	1
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36	38			1	1		
	3	· -		No.		بالر	4	1
	4		130	-		1		4
	247	с	30 F		П			
				6 8				
	1			4	1	TANK.		
	20		Lest.	1	-	1	S '	- 1
	3		70	3		1	1	
	17			1400	1			5


Problem 1


Problem 1: Experiment 1: 1st Data Augmentaion Camera Distortion Problem 2: **Experiment 2: Different Lighting** 2nd Data Augmentaion Condition Group A Recognition Group B Problem 3: **Experiment 3:** Color-changed RGB Swap leaves? Problem 4: **Experiment 4:** Trial on damged leaves Dried leaves

Distortion

User may take picture from different angles.

Augmentation

- 1. Rotation within 40 degrees
- 2. Width and Height shifting 20%
- 3. Shearing
- 4. Zoom in or out within 20%
- 5. Flip horizontally
- 6. Fill Point outside the boundaries with the nearest data

Procedure

- 1. Install the application in mobile phone
- 2. Take photo of real leaves for 10 times
- 3. Record the prediction score

Result

Label	Origin	1st	Net Result
BV	37.65	59.63	21.98
СВ	57.99	31.39	-26.6
CG	75.97	78.7	2.73
FA	7.78	35.91	28.13
НС	4.84	22.21	17.37
HR	61.43	75.04	13.61
SL	17.75	28.14	10.39
Average	37.63	47.28857143	9.658571429

Problem 2

Problem 1: Camera Distortion

Experiment 1: 1st Data Augmentaion

Problem 2: Different Lighting Condition

Experiment 2: 2nd Data Augmentaion

Group A

Recognition

Problem 3: Color-changed leaves?

Problem 4: Dried leaves Experiment 3: RGB Swap

Group B

Experiment 4: Trial on damged leaves

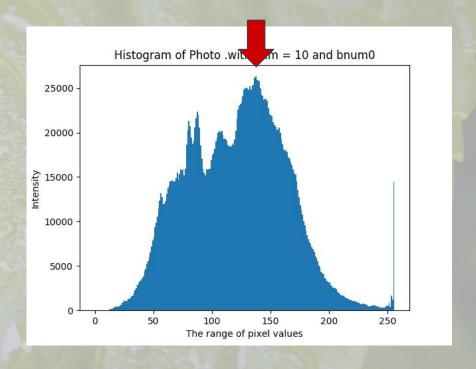
Simulate the scenario of taking picture under different lighting environments

→ Data augmentation regarding lighting

Specification

$$[R',G',B']=c*cnum*[R,G,B]+[\beta,\beta,\beta]$$

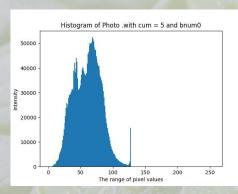
- i) [R', G', B'] is the output image
- ii) c=0.1
- iii) cnum is the contrast variable
- iv) β is the brightness variable, which has the same dimension of a color channel in the input image
- v) [R, G, B] is the input image

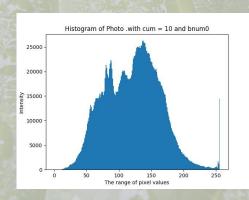

SET 1: Extreme lighting condition

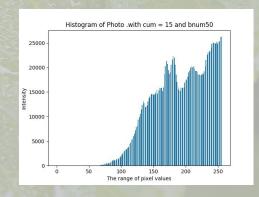
SET 2: Acceptable range of exposure measured with histogram

Iteration	1	2	3	4	Iteration	1	2	3	4
Variables	c=0.1 β=0 cnum=5	c=0.1 β=50 cnum=5	c=0.1 β=0 cnum=15	c=0.1 β=50 cnum=15	Variables	c=0.1 β=50 cnum=5	c=0.1 β=10 cnum=10	c=0.1 β=30 cnum=10	c=0.1 β=50 cnum=10
Image					image				

Historgram




Historgram


Underexposed

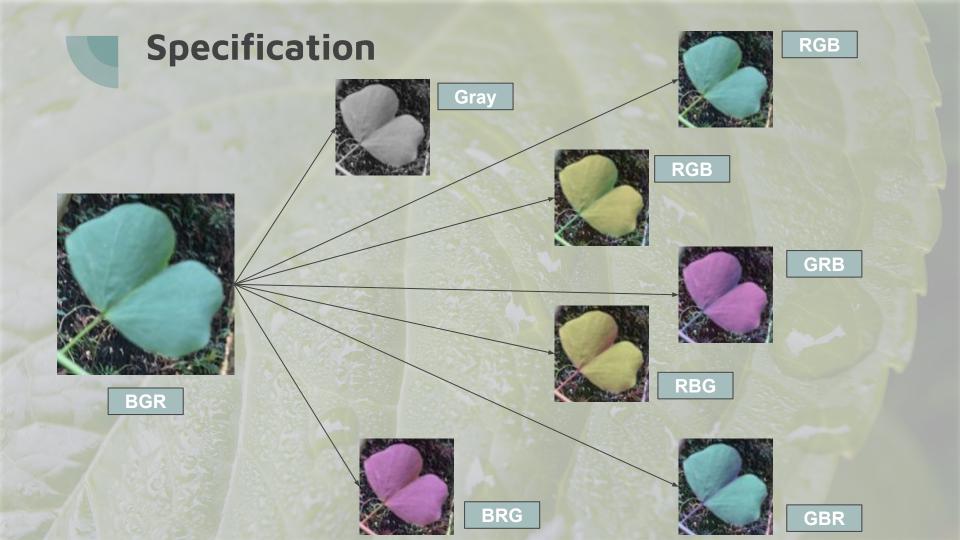
Correctly exposed

Overexposed

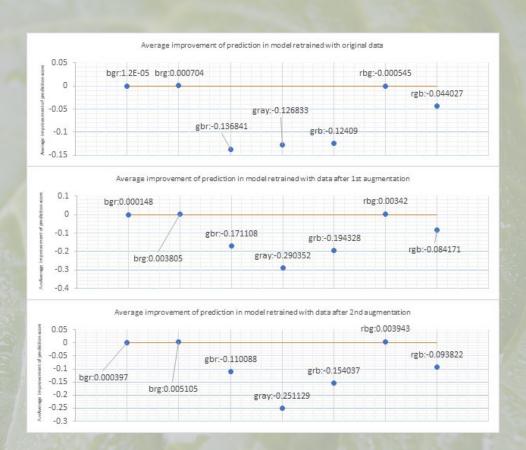
Example of test images

Label	bright	dark
CG		
CJ		

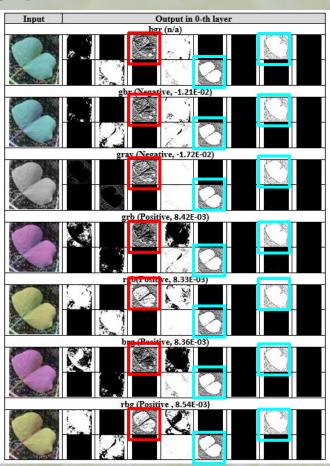
Result


Column:	1	2	8	3		
	Score from	Score from		Score from		
	model	model		model		
	retrained	retrained with		retrained with		
	with 1st	augmentation		augmentation		
	augmented	with set 1	Net Result	with set 2	Net Result	Net Result
File name	data	variable	(Col: 2-1)	variable	(Col: 3-1)	(Col: 3-2)
bv_bright.jpg	0.99952	0.99925	-0.00027	0.99987	0.00035	0.00062
bv_dark.jpg	0.99715	0.99834	0.00119	0.99957	0.00242	0.00123
ca_bright.jpg	0.24871	0.5896	0.34089	0.5528	-0.16704	-0.50793
ca_dark.jpg	0.3984	0.59977	0.20137	0.43227	-0.08022	-0.28159
cb_bright.jpg	0.95536	0.88185	-0.07351	0.93211	-0.02325	0.05026
cb_dark.jpg	0.99997	0.99972	-0.00025	0.99996	-1E-05	0.00024
cg_bright.jpg	0.98583	0.99535	0.00952	0.99438	0.00855	-0.00097
cg_dark.jpg	0.99975	0.99981	6E-05	0.99973	-2E-05	-8E-05
cj_bright.jpg	0.9998	0.99997	0.00017	0.99982	2E-05	-0.00015
cj_dark.jpg	0.99809	0.99906	0.00097	0.99671	-0.00138	-0.00235
fa_bright.jpg	0.97914	0.98521	0.00607	0.97855	-0.00059	-0.00666
fa_dark.jpg	0.86202	0.87345	0.01143	0.54897	-0.31305	-0.32448
hc_bright.jpg	0.99972	0.9958	-0.00392	0.99956	-0.00016	0.00376
hc_dark.jpg	0.99984	0.99989	5E-05	0.99953	-0.00031	-0.00036
hr_bright.jpg	0.9924	0.91952	-0.07288	0.88863	-0.10377	-0.03089
hr_dark.jpg	0.99737	0.99214	-0.00523	0.99895	0.00158	0.00681
mc_bright.jpg	0.94465	0.97052	0.02587	0.95077	0.00612	-0.01975
mc_dark.jpg	0.48928	0.32452	-0.16476	0.71835	0.22907	0.39383
sl_bright.jpg	0.87673	0.95879	0.08206	0.50232	-0.37441	-0.45647
sl_dark.jpg	0.86204	0.93595	0.07391	0.48486	-0.37718	-0.45109
AVERAGE	0.8792885	0.9009255	0.021637	0.85483	-0.0304	-0.0460955

Visualization


	Se	et 1	Set 2		
Image Index					
3					
7	No.	157 x	20.7		
10					
13					

Problem 3


Problem 1: **Experiment 1: Camera Distortion** 1st Data Augmentaion Problem 2: **Experiment 2: Different Lighting** 2nd Data Augmentaion Condition Group A Recognition Group B **Problem 3: Experiment 3:** Color-changed **RGB Swap** leaves? Problem 4: **Experiment 4:** Trial on damged leaves Dried leaves

Result

Visualization

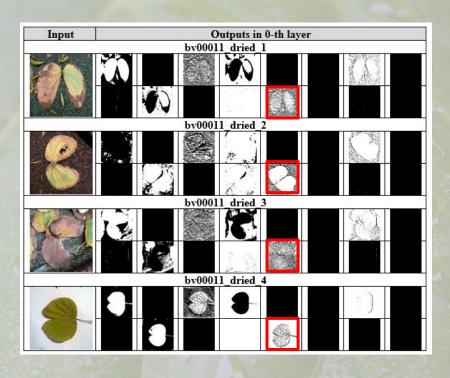
Problem 4

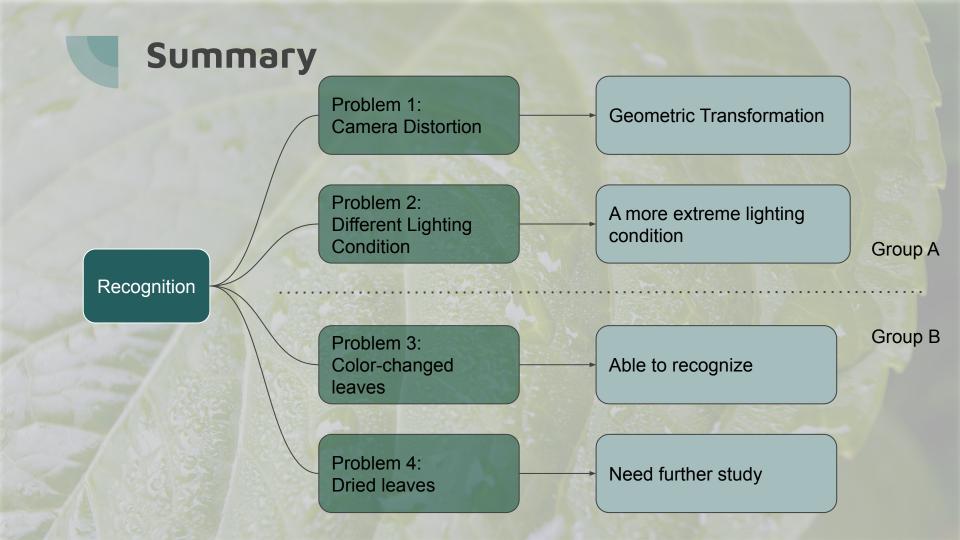
Problem 1: **Experiment 1: Camera Distortion** Problem 2: **Experiment 2: Different Lighting** Condition Recognition Problem 3: **Experiment 3:** Color-changed RGB Swap leaves? Problem 4: **Experiment 4: Trial on damged leaves Dried leaves**

1st Data Augmentaion

2nd Data Augmentaion

Group A


Group B

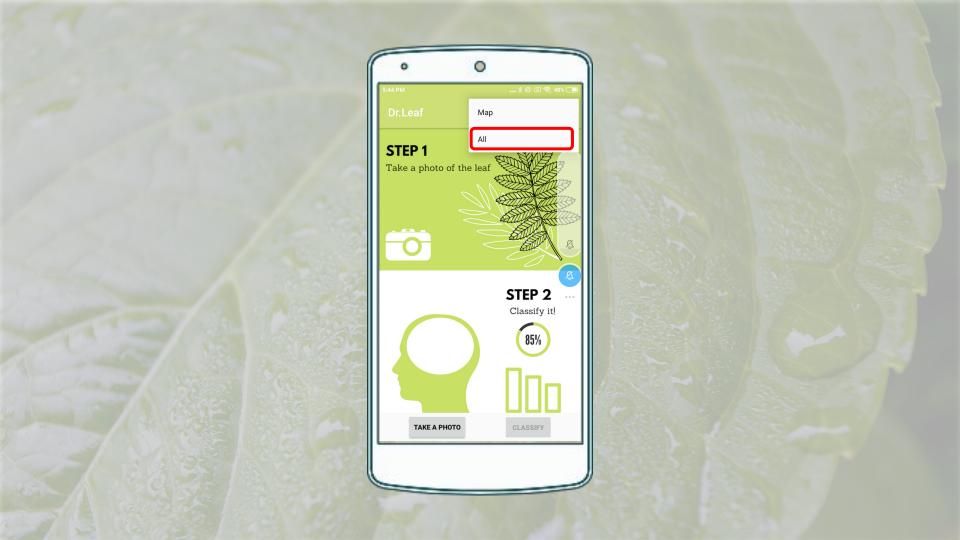


Result

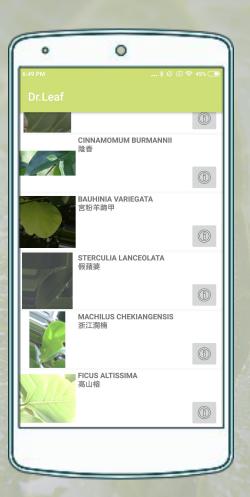
	Top 1		Top 2		Top 3		Top 4		Top 5	
File name	label	score	label	score	label	score	label	score	label	score
	75.	Predi	ct with m	odel retrain	ed with	origin datase	et		30.	
bv00011_dried_1.jpg	bv	0.99253	hc	0.00488	cg	0.00234	cj	0.00023	hr	0.00002
bv00011_dried_2.jpg	hr	0.45673	bv	0.39715	hc	0.12549	cj	0.0142	cg	0.00639
bv00011_dried_3.jpg	hc	0.91146	bv	0.08575	cg	0.00164	cj	0.00106	cb	0.00009
bv00011_dried_4.jpg	cg	0.48314	bv	0.18468	hc	0.14797	cb	0.09793	sl	0.04912
Predict with model retrained with 1st augmented data										
bv00011_dried_1.jpg	bv	0.99859	cj	0.0008	hc	0.00041	hr	0.00013	cg	0.00006
bv00011_dried_2.jpg	hr	0.88454	hc	0.07329	bv	0.02618	cj	0.01586	cg	0.00013
bv00011_dried_3.jpg	hc	0.9984	cj	0.0008	bv	0.00068	cg	0.0001	cb	0.00001
bv00011_dried_4.jpg	bv	0.90092	cb	0.07039	sl	0.01974	hc	0.00379	hr	0.00316
- KI - KI-SOFINSO	-01	Predict	with mod	el retrained	with 2 nd	augmented	data	<i></i>	10	
bv00011_dried_1.jpg	bv	0.99993	cj	0.00005	fa	0.00001	hc	0.00001	cg	0.00001
bv00011_dried_2.jpg	bv	0.99984	hr	0.00015	cj	0.00001	fa	0	hc	0
bv00011_dried_3.jpg	bv	0.8279	hc	0.13363	cj	0.02803	cg	0.01014	fa	0.00025
bv00011_dried_4.jpg	bv	0.97029	hc	0.00771	cg	0.00762	cb	0.00672	hr	0.00365

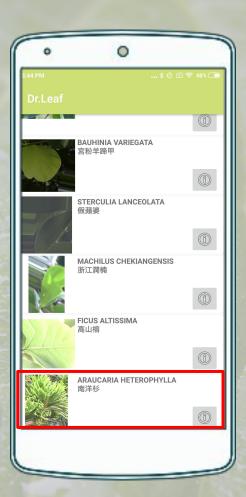
Visualization

The Model we use in the application

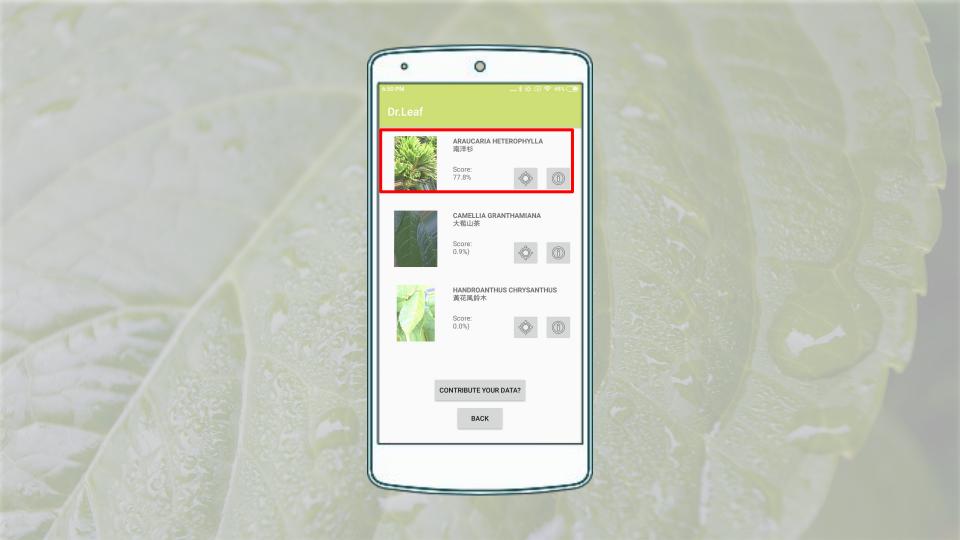

Origin 1st 2nd augmentation

88.8% 93.5% 93.7%


Label	Origin	1st Augmentation	2nd Augmentation
BV	138	799	3991
CA	137	808	3966
СВ	140	806	4026
CG	182	1055	5271
CJ	261	1467	7331
FA	209	1194	5966
нс	254	1437	7181
HR	158	912	4556
МС	209	1204	6016
SL	231	1316	6576
Total	1919	10998	54880



Before



After

Possible Outcome

- if
- Quality of dataset is great
- Size of dataset is big
- then
- Improved Outcome

Possible Outcome

- if
- Quality of dataset are great
- Size of dataset are big
- then
- Improved Outcome

Pre-trained Model

