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Abstract 

Deep Learning has been experiencing a burst of evolution recently, and been used to 

solve different kinds of problems. Existing game engines of Chinese chess, however, are 

mostly based on traditional searching approach and highly rely on hard-coded libraries 

of game records. In our project, we design and build a game AI of Chinese chess with 

Deep Learning that uses Policy Network to predict the probabilities of moves, 

Evaluation Network to evaluate chessboard statuses and Minimax Searching to select 

moves. Policy Network is further divided into Piece Selector to predict probabilities of 

selecting a piece, and Move Selector to predict probabilities of destination for that 

selected piece. Policy Network is trained by Supervised Learning based on the game 

records of master human players, and Reinforcement Learning by competing with itself. 

Evaluation Network is trained by Supervised Learning with the help of an open-source 

API. Minimax Searching is to combine the outputs of Policy Network and Evaluation 

Network to make a move selection. At last, our Game AI achieved 76% winning rate 

against amateur human players.  
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1. Introduction  

1.1. Motivation 

Artificial Intelligence (AI) , especially machine learning has been experiencing a burst of 

evolution in recent years, as the computing capability of computers has increased a lot 

so that the computations required by machine learning approaches are achievable using 

much shorter time. Among all, Googleôs AlphaGo is a good example. AlphaGo is a 

game AI that plays GO, and it beat Lee Sedol, one of the top-class professional players, 

in a five-game match with the score of 4-1 in March 2016. Itôs a surprising but expected 

result, which shows the powerfulness of AlphaGo, and more importantly, the great 

potential of machine learning. It uses a method called deep learning, which uses Neural 

Network (NN) to search for the best option for current situation. 

 

Figure 1.1. AlphaGo Playing against Lee Sedol 

Currently, many people are trying to use deep learning to solve different kinds of 

problems, including building game AI for different games. While most of them focus on 

Go or chess, none has ever applied the approach of deep learning to Chinese chess. 

Chinese chess is one traditional strategy game, which is still very popular nowadays. 

Nowadays, the existing game engines of Chinese chess are all based on searching 
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approach without using machine learning and primarily rely on hard-coded libraries of 

the initial phases and the final phases of games to make move choice. As the approach 

of deep learning has been used on many fields, like GO and chess, however, the field of 

Chinese chess remains blank. Therefore, we tried to build a game AI for Chinese chess, 

using deep learning.  
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1.2. Background 

1.2.1. Development of AI in Go 

In Go, the size of game board is 19*19=361, which is much larger than other games. 

For example, there are 8*8=64 available positions in chess, and there are 9*10=90 

available positions in Chinese chess. In a recent research, the number of legal positions 

on a game board of Go is 2.801682*10
170

. [18] The number is 1090 times larger than 

the number of atoms in the universe. It means the complexity is much larger than other 

chess games, like chess and Chinese chess. So, direct searching approach is not 

applicable for Go because searching is slow and limited in global area where the depth 

of searching may be too large. 

In the beginning process of development history of AI, however, there were no better 

algorithms to search and evaluate the game board. All they could do was to modify the 

evaluation function and pruning condition. As Go uses a really big game board, players 

are required to have the ability to judge the current situation (the difference of areas 

controlled by players). But in a game, the ownership of one place may be fuzzy and 

hard to decide even for human players, and for computer program at that time, it made 

lots of mistakes and couldnôt be used for a high-level AI. So, for the scientist that time, 

building an AI to overcome top-class human players seems impossible. 

To solve the problem, Monte Carlo Tree Search (MCTS) was introduced in this field. To 

explain what MCTS is, imagine that a person who is absolutely a beginner and knows 

nothing about Go, and let him choose a place randomly. Then repeat the process and 

calculate the winning rate of every possible move. However, simple randomization is 

not suitable for complex board games. For instance, in Go, there exist situations where 

there may exist many legal moves but only few among them are reasonable. 
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Figure 1.2. An Example of "Ladder" In Go 

As shown in Figure 1.2. above, what the black side does is called ñladderò. The black 

side forces those white stones to move like zigzag, and finally can capture them all. 

During this period, the black side must put its stones in correct points as indicated in 

Figure 1.2., or the white side can escape, which is a common sense for Go players. This 

is easy for human players but not for a computer program. 

In 2006, the invention of UCT (Upper Confidence Bound 1 applied to trees), an 

improved version of MCTS, changed this status. UCT would prefer a known better 

move with higher winning rate other than select them completely randomly. By this 

improvement, the efficiency of searching had been growing fast. In 2006, the level of 

the best AI that time had only k level, below the average level of amateurs. But in 2012, 

Zen, a Go engine using MCTS, beat top-class professional player at four stones 

handicap, which means it could win against nearly half of amateurs. 

However, MCTS also has its own limit in global view though it is good at local battle. 

The level of program hardly improved until 27 January 2016, the day when the paper 

about AlphaGo was published on Nature. AlphaGo had beat Fan Hui, a 2-dan pro, in 5-0 

complete victory, which is the first victory between Go program and professional Go 
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players in equal condition. This revolutionary improvement could attribute to the use of 

neural network. The detail of the algorithm of AlphaGo can be found in the literature 

review. To be brief, neural network provides a faster way to evaluate the situation on 

board and to generate a quick predicted move, like what human players will do. 

Combining with the accurate calculation, distributed AlphaGo running on Googleôs 

cloud service wins all 500 games against ñoldò AI. And in March 2016, AlphaGo beat 

Lee Sedol, one of the top class professional players, in a five-game match with the score 

of 4-1 in March 2016. In an ELO-ranking website GoRatings, it is the second-best 

player in the world. 

The success of AlphaGo has proved that it is possible for computer programs to beat 

human players in Go. 

 

1.2.2. Development of AI in Chess 

In chess, Deep Blue has done it long before. In May 1997, it beat Garry Kasparov with 

3½ï2½. Nowadays, even top-level professional players have little possibility to win 

against AI running on normal computers as current personal computers have higher 

computation ability than Deep Blue. 

But the AI of Deep Blue is different from AlphaGo. In fact, the hardware of Deep Blue 

consists of 30 paralleled CPUs and 480 specially made VLSI chips, meaning that the 

computer could only run chess program. But nowadays, the newest chess engine, 

Stockfish, can run on Windows machines, and beat any other players or AIs on personal 

computer with 4-cores CPU. 

Nowadays, a normal game engine of chess or Chinese chess will contain searching part 

and libraries for opening and ending. In fact, though usage of these libraries is not 

necessary, it can improve the performance of AI greatly. This is because that the number 
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of branches in searching will increase greatly as the number of available moves 

increases. So, using hard-coding libraries will be a good choice. But if we use Neural 

Network, this should not be a problem. The best neural network AI, Giraffe, can reach 

the level of an FIDE International Master though Stockfish is still stronger. 

 

1.2.3. Development of AI in Chinese Chess 

However, those game engines in Chinese chess are still using traditional methods. In 

National Computer Games Tournament of 2016, Chess Nade (ñ ò in Chinese) 

won its fifth consecutive champion. And it is recognized as the best Chinese engine in 

China. The detail algorithm of it remains secret as it is commercial software. But we can 

infer that it still uses traditional method, including searching and pruning. Now, there is 

no any software using Neural Network in Chinese Chess. So, it is a blank field for us. 
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1.3. Difference among Chinese Chess, Chess and Go 

The main difference between Chinese chess and Go is the way to make a move. In Go, 

players should put one stone into an empty position every turn, while in chess and 

Chinese chess, players should move a piece on the board following a set of rules 

depending on the type of the piece selected. And in chess and Chinese chess, pieces can 

be captured so that the number of pieces on the board will become less and less, leaving 

the possible moves of those remaining pieces become more and more. While in Go, the 

number of stones on the board will generally become more and more and the available 

positions to place a stone become less and less. 

Besides, compared with chess, there are mainly two different points in Chinese chess. 

First, there are two fortresses and one river on the chessboard, restricting the move of 

certain types of pieces, like King, Bishop and Advisor. Second, there is a special type of 

pieces, called Cannon, which can capture only with exactly one piece in the middle but 

move like Rock. Therefore, certain considerations are necessary for these difference, 

compared with the methodologies used in previous researches about GO and chess. 
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1.4. Objective 

Our objective is to implement a game AI which can play Chinese chess with human 

users, and the whole game system should have following components. 

A user interface lets human players to play Chinese chess against our AI. It should be 

able to communicate with our AI, like sending information describing the chessboard 

status to the server and receiving move choice of our AI from the server. It should be 

able to judge whether every move is legal or not and decide if a player is checkmated. 

A game AI makes moves against the opposite player based on the output of pre-trained 

NN model. It should be able to receive the message sent from frontend, preprocess it, 

then feed it into NN model to get a move choice, and at last send the choice back to 

frontend. It would be better if it is able to play Chinese chess with multiple users 

simultaneously and record game histories for further training usage. 

A program trains NN model ahead to be used in our AI and saves the trained model. For 

our AI, it only restores the previously saved model to do calculation. 

  



Department of Computer Science and Engineering, CUHK          Final Year Project Report 

LYU1601 Intelligent Non-Player Character with Deep Learning  - 15 - 

1.5. Definition of Terms 

1.5.1. PGN 

PGN is short for Portable Game Notation, which is one popular string format to record 

the game history for chess games. [1] The basic format for recording moves is simple: 

[one character to represent the type of selected piece] [the coordinates of the destination 

of this move]. Obviously, only a complete sequence of PGN starting from an initial 

chessboard status will make sense, as the original position of the selected piece in each 

move is not recorded. 

Besides, there is a Chinese version of PGN to record Chinese chess games. The basic 

rationale is quite similar, with little difference. There are also other formats in English 

or Chinese to record games. The common problem of them, however, is as the same as 

stated above, which is that only the whole sequence together will make sense. 

 

1.5.2. FEN 

 

Figure 1.3. Symbolic Representation for Different Pieces 

FEN is short for ForsythïEdwards Notation. Similarly, it is one standard string format 

representation of the chessboard status, using one letter to represent each type of chess 

pieces as shown in Figure 1.3. above.  

We also made certain modifications for simplicity, like using ó1ô to denote an empty 

position. Lowercase letters are to represent the pieces of upper-side player while 
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uppercase letters are to represent the pieces of lower-side player. FEN represents the 

whole chessboard row by row, with ó/ô as delimiter. At last, the player to make the next 

move is also declared in FEN, with óbô for black side and órô for red side. The move is 

recorded using four digits, by combining the coordinates of both the original position 

and the new position of that piece. Clearly, FEN is much better then PGN for our NN 

training usage, as it contains complete information for every intermediate game status. 

   

 (a)                               (b) 

Figure 1.4. An Example of FEN Format 

Here is an example of FEN. Picture (a) in Figure 1.4. is a chessboard status and Picture 

(b) is the chessboard after replacing real pieces with symbols. And the next move is the 

turn of the red side. The corresponding FEN representation of this chessboard status is: 

ñrnbakab1r/111111111/1c1111nc1/p1p1p1p1p/111111111/111111111/P1P1P1P1P/1C11C

1111/111111111/RNBAKABNR, rò 
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2. Literature Review 

2.1. AlphaGo 

AlphaGo mainly contains four Neural Networks. 

 

Figure 2.1. Neural Network of AlphaGo 

In Figure 2.1., the left two networks learned from human experts, which use supervised 

learning to train. 

Rollout Policy Network is a simple network that can deal with chessboard. It is similar 

as first impression of human players. It has relatively low accuracy about 24.2% in 

predicting human playersô moves, mainly used for reducing the nearly impossible 

moves of searching tree. The mainly advantage of this neural network is that it can run 

faster which needs only 2 nanoseconds to select a move while SL Policy Network needs 

3 ms to do that. 

SL Policy Network also is used to predict the human playerôs move. However, as it is 

more complex in structure which have 13 layer and well-trained which uses 30 million 

positions to train, it has higher correct rate. For normal chessboard, the accuracy can 

reach 57.0%. However, it is not enough as it has only approximately 10% winning rate 

again traditional AI using MCTS. 
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The two networks on the right side are using Reinforcement Learning. RL Policy 

Network has same structure as SL Policy Network, but it continuously plays with itself, 

and makes improvement based on the result. After Reinforcement Learning, it has 80% 

winning ratio against previous version using supervised learning. Even if it does nothing 

search at all, it performs better than any other AI. 

The last part is value network. Though the structure of this network is not very different 

from Policy Network, it only output a value representing the prediction of winning rate 

for one side. It uses the positions sampling from the self-playing game from RL Policy 

Network in order to prevent overfitting. Because if it uses normal games as training 

dataset, it would trace every move in a specific game and then record the result of the 

game instead of the stone distribution. 

Besides Neural Networks, it also uses MCTS. Different from normal AI, with the help 

of Neural Networks, the single searching used by AlphaGo will start with using SL 

Policy Network predicting a chain of moves, and using the result from value network 

and rollout to improve it. The result will be the score of next move. After repeating this 

procedure for enough time, it will have a map of score for all possible next move and 

put next move according to it. 

Figure 2.2. shows an example for how AlphaGo makes next move. The position is taken 

from the game with Fan Hui, and AlphaGo is on black side. In all of these subgraphs, 

the point with red circle is the best move according to the method it uses. 

Figure a is representing the evaluation after next move using valuation network. Figure 

b is representing the result from searching where it uses only value network without 

rollout network. Figure c is representing the result from searching where it uses only 

rollout network without value network. We can notice that the result form MCTS would 

be different if the ratio between them are changed. In their practice, they discovered that 

a mixed version would have best level. Figure d is the result from SL Policy Network 
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directly. The first move chose by it is a move of middle level. Figure e shows the results 

from its search tree, and it will choose the move with the highest value. Figure (f) shows 

principal variation from search tree of AlphaGo. The number of sequence number 

means a most possible prediction about process of the game. Though Fan Huiôs move is 

not the same as the prediction of AlphaGo, he admitted that moves suggested by 

AlphaGo would be better. 

 

Figure 2.2. An Example of AlphaGo Making a Move 

Due to the improvement above, AlphaGo has become the strongest AI in the world. 

Consisting of 1,202 CPUs and 176 GPUs, the distributed version of AlphaGo beat any 

other while a normal version using 48 CPUs, and 8 GPUs only lose one game in 495 

games in total. Even with handicaps, it still had high winning rate against others. 

Though the rules of Go and Chinese Chess are different, we can still learn from the 

method and ideas of building AlphaGo.  
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2.2. Predicting Moves in Chess using Convolutional 

Neural Networks  

The work from Oshri, B., & Khandwala, N also uses convolutional neural network. As 

it is design for chess, we think it more helpful for our project because chess is a lot more 

similar from Chinese chess compared with paper about AlphaGo. 

In their work, they mainly build policy neural network. And in predicting next move 

from human players, it reached the accuracy of 44.4%, which is pretty high. The success 

of their work proves that it is possible to use CNN to train an AI for playing chess. 

In their thesis, the recognize reasoning of chess as kind of pattern recognition while 

traditional method only consists of searching and evaluation. And the way for the neural 

network to select a move is to separate a move into two parts: select a piece and move it 

to other places. And use piece selector and move selectors to solve the part respectively. 

This is different from AlphaGo, because of the difference between moving a piece in 

chess and putting a stone in Go. 

However, the high accuracy in predicting next move doesnôt mean that the program has 

high level of playing chess. In the 100 games with Sunfish, a famous chess engine, it 

loses 74 games and draws in the rest of game. In those draw games, this program play 

well in the middle game, and force opponents to make a draw. However, in the sparse 

ending game, it faces many troubles because patterns canôt be found in that kind of 

position. 
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2.3. Giraffe: Using Deep Reinforcement Learning to Play 

Chess 

In Matthew Laiôs work, he implemented evaluation function of game engine based on 

neural network. We use his paper as reference on our Evaluation Network. 

The feature of the inputs of neural network has following features. 

a) Side to Move ï It is turn for black or for white. 

b) Castling Rights - Presence or absence of castling rights. Castling is a special 

rule for chess. In Chinese Chess, we donôt need to consider it 

c) Material Configuration ï Amount of each kind of pieces 

d) Piece Lists ï for every piece, note their position coordinate, existence 

e) Sliding Pieces Mobility ï for sliding piece, note how far they can move along a 

direction, and liberty of them. 

f) Attack and Defend Maps ï for each square, note the attacker and defender with 

lowest value. 

After determining these features, the author did not mix them directly because the 

connection between two features with long distance logically would have no benefits to 

the results. As a result, the last 2 layers are fully connected, while the prior one was 

trained separately. 

For their training dataset, instead of using that collected on Internet. They added a 

random legal move to the board and used the processed one as training data. The reason 

of this process is to increase the variety of dataset, in order to help the neural network to 

evaluate the unseen situation. 
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Then the author used Reinforcement Learning to the neural network, and use TD-leaf 

algorithm. In each time of iteration, they use the network to move 12 moves, and trace 

on the move to see when the score of board will change, weighted by the distance from 

the beginning position.  

 

Figure 2.3. An Example of TD-leaf Searching Results 

In the sample graph as shown in Figure 2.3., the network used a discount parameter 0.7. 

The second move changed the score by 10, then its effect on Total Error is 10 * 0.7 ^ 1 

= 7. We can see that in this algorithm, if a move which will change the board is far away 

from now, it would have lower contribution. The algorithm is consistent with our 

common senses about chess. 

The result of their Neural Network is remarkable. Their program, named Giraffe, have 

an evaluation function comparable to those of best chess engines worldwide, though 

evaluation functions of those engines are all designed and tuned by human over many 

years. 
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3. Methodology 

3.1. Supervised Learning 

Supervised learning is one of deep learning approaches, through which the NN model is 

trained by dataset with target labels. In supervised learning, examples in the training 

dataset are composed of inputs, usually representing features of objects to be learned, 

and target outputs. Generally speaking, the goal of supervised learning is to learn a 

function, classifying objects into different labels depending on the values of certain 

features, out of the training data. An acceptable function should be able to deal with 

unseen instances correctly, which requires the function to classify the data in a learned 

reasonable way. In supervised learning, there are several tradeoff issues, which would 

affect the training results, as stated hereinafter. [2] 

Bias-variance Tradeoff: The tradeoff between bias and variance is the first issue to be 

considered. [3] An algorithm with high bias will ignore the relevant relations between 

features and expected outputs and give incorrect answers. And an algorithm with high 

variance will record the random noise rather than expected labels and perform bad in 

unseen inputs, which is also called overfitting. An algorithm should have flexibility to 

retain low bias. If we try to increase its flexibility, the variance of the algorithm would 

increase as well. Also, the similar tradeoff issue happens between the complexity of 

regression function and the size of training data. [4] A complex function will require a 

large amount of data for the model to learn correctly and the function may have low bias 

and high variance. On the opposite, a simple function only needs a small size of data, 

but it may become inflexible, and have high bias and low variance. To handle the 

tradeoff issues, a good model should adjust between bias and variance and make a 

balance. 

Dimensionality of Input Space: If there are lots of features in inputs, it will be difficult 

for the model to learn, because redundant unrelated features will confuse the model. To 
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solve this problem and increase the accuracy, a reduction of features should be done. 

Noise in Output Values: In reality, the desired outputs in a dataset may not be always 

correct or optimal due to many reasons, such as human errors. For instance, in our 

project, human players may make faults and choose a bad move sometime. Itôs also 

possible that different players may apply different strategies based on personal 

reasoning, and choose different moves in one same situation. If the learning algorithm 

wants to make perfect matches, it will overly fit  into a specific training dataset and 

perform quite bad for other datasets.  
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3.2. Convolutional Neural Network 

In machine learning, a Convolutional Neural Network (CNN) is a special type of NN 

and its connection pattern between neurons imitates the structure of catôs visual system. 

The main difference of CNN and normal Neural Network is that CNN makes 

assumption that inputs are pictures. And it has following features. [5] 

Local Receptive Fields̔ In a fully-connected Neural Network, the input is connected to 

every hidden neuron. In CNN, however, neurons in the first hidden layer will only be 

connected to small region of inputs. The values of the first layer will be the results of a 

convolution between the input layer and filters. [5] 

 

Figure 3.1. Local Receptive Fields 

As shown in Figure 3.1., it applies a 5*5 filter to a 28*28 input image, and will get a 

24*24 hidden layer. Usually the filter is moved for one pixel at a time, but sometime a 

larger stride will be used. For instance, sometimes we may use a stride of 2, which 

means that each time we move the filter by 2 pixels to the right or down. 

Shared Weights and Biases: For a given feature, the weight and bias of every neuron are 

same, resulting in the identical feature being detected by all neurons. The advantage of 

using this method is that it can reduce the total number of parameters and computations 

in the network. [5] 
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Figure 3.2. Shared Weights and Biases 

In Figure 3.2., there exist 3 feature maps in the network. In every feature map, a 5*5 

filter is used, and the whole image shares the identical weights and bias. This network 

can detect 3 different kinds of features across the whole image. 

Pooling Layers: Pooling layers are used to condense the output from convolutional 

layers and simplify the information. For example, max-pooling, a most-used method for 

pooling will pick the maximum value in a region of specific size, and then the number 

of neurons in the output of pooling layer will decrease greatly. [5] 

 

Figure 3.3. Pooling Layer 

In Figure 3.3., a 2*2 max-pooling is used. In every 2*2 region, the pooling unit will find 
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the maximum value in the region and use it as the output. After the pooling process, the 

size of the output layer will become half of the hidden layer. 

The final layer of CNN is usually a fully connected layer, connecting every neuron in its 

previous layer to every neuron in this layer, and uses a logistic function to output result. 

With all these features, CNN will have better performance in some appropriate 

problems than traditional NN. The reason that we choose CNN will be mentioned 

afterwards. 

In our project, we choose the rectifier as the activation function used in CNN.  

 

Figure 3.4. Plot of ReLU Function 

The graph above is the plot of the rectifier function. In NN, any unit employing the 

rectifier is called a rectified linear unit (ReLU). Compared with normal logistic 

functions like sigmoid function, it has higher efficiency in computation because it only 

contains comparison and addition, and avoids the problem of vanishing or exploding 

gradient. [6] 
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3.3. Softmax 

The softmax function is a generalization of logistic regression when we need to classify 

among multiple classes. [7] After softmax, the highest input value will have highest 

probability and other values will be depressed. Every element in the output vector has a 

value in [0,1] represents the probability of the label is correct. For a K-dimension vector 

z, the softmax function can be represented as: 

 

ñ is the output vector with sum equal to 1. 
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3.4. Minimax Searching 

Minimax is a search method that can be used in different kinds of chess game that it can 

minimize the maximum loss. And it works well in two-man zero-sum games, including 

our topic Chinese Chess. 

To explain how minimax works, firstly, we define max-min value as the maximum 

reward a player can win if he doesnôt know the othersô action. Equivalently, it is the 

minimum value his opponents can reduce the reward to if they know his action. Or in 

the formula below: 

 

In the formula, i represent the current play while ïi represent the others. a is the action 

taken and v is the reward gain or the evaluation. 

 

Figure 3.5. Minimax Searching 

To calculate the value, every time we search a move, we always suppose the opponent 

will make the strongest move, or in other way the move which make the evaluation the 
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lowest. And this kind of searching can be iterated and be recognized as search tree as 

Figure 3.5.. 

 

In the zero-sum games like Chinese Chess, the result of minimax will reach Nash 

equilibrium. And the action they make will ensure that they can get maximum 

regardless the action made by the opponent. 

Using this kind of strategy, the engine can look further and prevent some short-sighted 

move. For example, the old engine may use the cannon to capture the opponentôs knight 

directly, which will soon be captured by the rock nearby and is absolutely a bad move. 

With minimax, it can predict the counter and make a better move.  
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3.5. Reinforcement Learning 

Reinforcement Learning also belongs to Machine Learning. It mainly concerned with 

how the model (or agent) should react to the input in a specialized situation to maximize 

the cumulative reward. Usually, we can use supervised learning to train if we have 

enough size of dataset. However, if we want to improve the performance of the model, 

the original dataset may not be enough. Reinforcement learning, as one of unsupervised 

learning, can be a solution. 

The main difference between Reinforcement Learning and standard supervised learning 

is that in the process of Reinforcement Learning, standard correct answers to inputs are 

never given. So, the model will try to find a balance between exploitation (of learnt 

knowledge) and exploration (of unknown territory). 

 

Figure 3.6. Reinforcement Learning 

In Reinforcement Learning, a basic model should consist of the following parts: a set of 

statuses about the environment and agent, a set of action to transit between states, 

rewards given according to the transition and the action, observations that the agents can 

see (in our case, Chinese chess is fully observable, so the whole chess board is always 

seen by the network).  

At the process of Reinforcement Learning, the model should give response to the 
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current states in discrete time steps. At each time t, the agent will see its observation of 

the environment and chooses a movement from all the available moves, and sent to the 

environment. Then the environment will transit to a new state and calculate the reward 

according to the transition. The objective of the learning process is to learn how to get 

the maximum amount of rewards. In the chess game, the greatest reward is the win of a 

game. 

Googleôs AlphaGo also uses Reinforcement Learning in the Policy Network. In their 

approach, they use a Reinforcement Learning network whose structure and values are 

identical to those in their previous supervised learning network. And they stochastically 

select a version among the iterations they made to avoid overfitting. After the 

Reinforcement Learning, the Policy Network has 80% winning rate against the iteration 

before Reinforcement Learning. So, we can see that Reinforcement Learning can be a 

powerful tool to improve the performance of neural network model. 
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3.6. TensorFlow 

As an open-source project, TensorFlow is a software library designed to do numerical 

computation. It can support different platforms, including desktop, server and mobile 

platform, and can run on both CPU and GPU. TensorFlow provides developers using 

deep learning with an easy way to handle underlying layer computation. They just need 

to define the architecture of their own Neural Network model, select the objective 

function they want to use, and then feed the training data into the model. TensorFlow 

makes their work much easier and clearer. As TensorFlow is built to support threads, 

queues, and asynchronous computation, it can make the best of the computation ability 

of hardware including both CPU and GPU. [8] 

 

Figure 3.7. Data Flow Graph 
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3.7. Aliyun 

Cloud computing is a new concept that service provider distributes their processing 

resources to users on demand. And people can deploy their program or server on it 

without worrying about setting up the environment. The use of cloud computing 

releases the workload of engineers from trivial problems and help them focus on their 

own work.  

Aliyun is a cloud computing service provider own by Alibaba, and it is the leading 

provider in mainland china. Due to 2015 IDC report, it is one of the top five providers 

in this field. Also, there are many well-known companies using Aliyunôs service, 

including Nestle, Philips and Alipay.  

 

Figure 3.8. Data Centers in Aliyun 

  



Department of Computer Science and Engineering, CUHK          Final Year Project Report 

LYU1601 Intelligent Non-Player Character with Deep Learning  - 35 - 

4. Design 

4.1. Project Workflow 

Our project development process could be roughly divided into the following four steps: 

Model Design, Model Building, Model Training and Model Testing. These four steps 

were repeated until we found that the final performance of the game AI was reasonable, 

or satisfying to certain extent. 

 

Figure 4.1. Project Workflow 

First, based on previous works of other game engines in Chinese chess, chess and Go, 

our own model was designed, such as the structure details of Neural Network, the 

components of our AI model, the algorithms to make move choices, and so on, 

considering the special aspects of Chinese chess.  

Secondly, the AI model was built based on our previous design, and functions were 

implemented accordingly. Also, the training data were collected and processed for 

future usage. 
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Next, the AI model was to be trained, using training datasets collected previously, by 

certain training strategies. 

At last, the trained AI model was to be tested so that its performance could be quantified 

or directly demonstrated. Here, it was firstly tested by a testing dataset, which was in 

the same format with the training dataset, and its prediction accuracy was calculated, 

which was a quantitative measurement of the AI model. Besides that, the AI model was 

also tested against real human players, to see whether its performance appeared to be 

reasonable in actual games. Basically, only after a satisfying accuracy was achieved in 

that simple Accuracy Testing, the AI model would be tested in real games.  

After testing, the results were analyzed to find the reasons behind, and then certain 

modifications would be made.  

If the design was determined to be ineffective, a new model would be designed, after 

more researches, analysis and reasoning. But if errors were found in the procedures of 

Model Building or Model Training, or those steps could be changed to improve the 

training results, modifications would also be made accordingly and we would train the 

modified model and test it again.  
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4.2. Game Engine Overview 

 

Figure 4.2. Game Engine Structure 

Here is the general structure design of our final version AI model. Our game engine 

mainly consists of three parts: frontend, backend and the connection between them.  

The frontend is the User Interface, which self-evidently serves as the interface for 

players to play Chinese chess against our game AI. The backend is basically the AI 

model, with several minor functions. This is the most important and difficult part of our 

whole project.  
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At last, a connection between frontend and backend is necessary, considering the fact 

that our model cannot directly run on the browser, as the library provided by 

TensorFlow is required but may not be supported by the frontend. This is also a tricky 

part, as our frontend is written in JavaScript while our backend is written in Python. 

Conventionally, JavaScript programs and work well together with PHP programs. 

TensorFlow, however, does not provide libraries for PHP. Therefore, this connection 

needs to be established by special techniques. 
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4.3. User Interface 

Our game User Interface (UI) was written in JavaScript, using the cocos2d-html5 

engine, so that it can support different types of platforms, like PC, iOS and Android. 

This UI was primarily based on an open-source project in GitHub [9], and certain 

modifications were made per the special requirements of our project. 

 

Figure 4.3. User Interface Structure 

Self-evidently, the main function of UI is to convey messages between human players 

and backend programs. But it also needs to ensure the rules of the game, i.e. Chinese 

chess, to be obeyed and the game can continue smoothly. Therefore, our UI can be 
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divided roughly into two parts: Game-Related Functions and Communication 

Functions. 

4.3.1. Game-Related Functions 

Following basic game-related functions were implemented:  

a) Move Choosing ï to let players make moves alternately 

b) Move Validation ï to ensure only valid moves per rules of Chinese chess can be 

made 

c) Move Execution ï to make the move per playersô choice and update the chess board 

status accordingly 

d) Checkmate Checking ï to check whether one of the players is in check and whether 

one side is wining 

These basic functions ensured our game engine could function correctly and legally. 

   

Figure 4.4. (a) Examples of User Interface 
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Figure 4.4. (b) Examples of User Interface 

In Figure 4.4., the left picture is the beginning of UI and users need to click the button 

to start the game. The middle picture shows the initial chessboard. The right picture 

shows when the user is trying to make a move for the red Cannon and the purple cycles 

indicates the legal moves for it. 

4.3.2. Communication Functions 

Apart from the basic functions mentioned above, several more functions were 

implemented as well, allowing our UI to communicate with our AI. 

a) Chessboard Translation - to represent the chessboard status in FEN format 

b) Message Sender - to send the FEN of chessboard status to the server via socket 

c) Message Receiver - to receive the message of move choice of our AI from the server 

via socket 

d) Message Interpreter - to interpret the received message and allow our UI to update 

the chessboard correctly 
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4.4. Game AI 

4.4.1. Structure Overview 

Our game AI consists of several Neural Network models, written in Python, with some 

other minor functions.  

 

Figure 4.5. Major Components of Game AI 

Generally speaking, there are mainly three important components inside the AI, as 

shown in Figure 4.5., two Neural Network models - Policy Network to predict the most 

possible next move and Evaluation Network to evaluate the winning rate given certain 

chessboard status, and Selection Strategy, an algorithm to make move choices based on 

the output of Policy Network and Evaluation Network, which to be specific mainly 

applied Minimax Searching.  

For Policy Network, it can be further divided into two Neural Network models, Piece 
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Selector and Move Selector, which will be explained in detail later. Roughly speaking, 

Piece Selector decides which piece to be moved and Move Selector decides where that 

piece to be moved to. For both the two NN models, a probability distribution over the 

all 90 positions of a chessboard will be output, indicating the possibility to choose each 

position. 

 

Figure 4.6. General Structure of Game AI 

Other minor functions include processing input and output, calling some validation 

functions to validation the move choices, managing those Neural Network models and 
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so on.  

As shown in Figure 4.6., the overall flow is: Message Receiver receives the FEN 

information from frontend via socket, and Format Converter preprocesses the 

information so that Feature Exactor can identify it and extract according features out. 

After that, Piece Selector and Move Selector together outputs the probability 

distributions of possible moves. Decision Maker will first pick up several move 

candidates, pass them to Evaluation Model and obtain scores indicating the relative 

advantage after making each move. At last, Decision Maker makes a move choice based 

on scores evaluated by Evaluation Model and Message Sender sends the choice back to 

frontend.  
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4.4.2. Piece Selector and Move Selector 

To make a move, the player needs to choose a self-side piece first and then choose a 

destination for that piece. Accordingly, our AI consists of two parts, Piece Selector and 

Move Selector, either of which is a NN model itself. [10] 

Evidently, Piece Selector is to choose a piece per the chessboard information and Move 

Selector is to choose a destination for that piece chosen by Piece Selector. So, firstly 

Piece Selector will decide which piece to move and pass this information to Move 

Selector as well. Next, Move Selector will decide where that piece to be moved to. 

Combining the outputs of two NN models together, our game AI would output a 

four-element array to denote the move choice, decided by certain selection strategy, and 

send it back to frontend. 

As different kinds of pieces should obey different rules when making moves, different 

Move Selectors were trained and used for each kind of pieces. So, Move Selector itself 

actually consists of 7 different NN models, and will use different ones to generate 

output accordingly, while Piece Selector consists of only one NN model. 
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Figure 4.7. (a) An example of Piece Selector and Move Selector 

 

Figure 4.7. (b) An example of Piece Selector and Move Selector 

As shown in Figure 4.7. above, the first picture is a real screen capture of our UI. The 

second and third ones represent the digital information that our AI receives. In the 

second one, the Knight piece in the red cycle indicates that our Piece Selector decides to 

choose this piece to move by certain selection strategy, like choosing the one with the 
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highest probability. Then with the chessboard information and the output of Piece 

Selector, Move Selector uses the NN model for Knight pieces, and decides a destination 

for that piece, i.e. the other red cycle in the third picture. And the two red arrows 

indicate the legal moves for that Knight piece. 

 

4.4.2.1. Model Structure Design 

The general structure of Piece Selector and Move Selector is basically the same, as 

shown in Figure 4.8.. Both them accepts several same features of the chessboard status 

as input while Move Selector needs one more feature indicating valid moves for the 

piece selected by Piece Selector. Several convolutional layers were used first to do 

convolution among different feature channels. At last, one softmax layer would process 

the results of convolutional layers and output a probability distribution over all the 90 

positions in a chessboard. 

In our final model, pooling layer was not used because the information in the 

chessboard was already quite sparse and it would be better for all information to be 

preserved. Since the size of input is small and every value in the input represent a piece, 

a pooling layer may greatly influence the result. For the same reason, dropout was not 

used as well. 
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Figure 4.8. Structure of Piece/Move Selector 

 

4.4.2.2. Features Extraction 

As mentioned above, several feature channels would be extracted as input feeding into 

the NN models, after converting the FEN string format into a 10*9 matrix representing 

the chessboard and getting the current player, as shown in Figure 4.9.. 
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Figure 4.9. Feature Channels 

First channel was to use ó1ô and ó-1ô to respectively denote the positions of self-side 

pieces and opponent-side pieces, and ó0ô to denote empty positions.  

For example, as shown in Figure 4.10. below, for the red side, all pieces represented by 

lowercase letters are of the opponent, so they are represented by ó-1ô in this feature 

channel, while the other pieces, which belongs to the red side, are represented by ó1ô. 

  
Figure 4.10. (a) An Example of First Feature Channel 
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Figure 4.10. (b) An Example of First Feature Channel 

For each type of pieces, there was a feature channel to denote the positions of pieces of 

that type. Still, use ó1ô and ó-1ô to respectively denote self-side pieces and opponent-side 

pieces, and ó0ô to denote empty positions. The reason for separating them into seven 

channels is that the values of different kinds of pieces are difficult to assign and they 

may vary in different situations, but we still need to find a way to tell our model that 

they belong to different categories, which is neither ordinal nor cardinal. Therefore, 

using 7 channels, one for each type, would be a good choice to distinguish different 

types of pieces.  

For example, as shown in Figure 4.11. above, for the feature channel to represent pieces 

of Cannon type, we can find ó1ô and ó-1ô for Cannon pieces of two sides respectively in 

corresponding positions. 
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Figure 4.11. An Example of Feature Channels 2 ~ 8 

For Move Selector, there was one more feature channel. In that feature channel, the 

position of chosen piece was denoted by ó1ô, and all possible valid destinations for that 

piece were denoted by ó2ô while all possible invalid destinations were denoted by ó-1ô.  

For example, as shown in Figure 4.12. below, assuming that the Cannon piece in red 

cycle is chosen, all the possible valid moves for it are represented by ó1ô, while the 
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invalid moves are represented by ó-1ô and its own position is indicated byô2ô. 

  

 

Figure 4.12. An Example of Ninth Feature Channel 

In total, 8 feature channels for Piece Selector and 9 feature channels for Move Selector 

would be extracted accordingly. 
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4.4.3. Evaluation Model 

4.4.3.1. Model Structure Design 

The general structure of Evaluation Model is as shown in Figure 4.13.. It accepts some 

features describing the chessboard status as inputs. There are three hidden layers in the 

middle, which all are fully connected layers. At last, in the output layer, it outputs a 

number as the score of evaluating the chessboard status. 

 

Figure 4.13. Structure of Evaluation Model 

Here, the input features are different from Piece Selectors and Move Selectors as 
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Evaluation Model does not need information such as valid moves, piece types and so on. 

Information such as the number of pieces is more important when evaluating a 

chessboard status.  

In Evaluation Model, we did not use Convolutional Neural Network layers. Instead, all 

the layers are fully connected. The reason is that for Piece Selector and Move Selector, 

using convolutional layers can help in recognizing patterns which is less important or 

helpful for evaluation. On the contrary, some summarized data may help evaluate 

whether a player has advantage.  

 

4.4.3.2. Feature Extraction 

As to the input of evaluation model, we extract some features out of the chessboard 

state, whose length is 213 in total. 

Feature Length 

Player Side 1 

The Number of Pieces of Each Type 14 

Pieces List (alive or not, xy-coordinates) 32 * 3 

The number of valid moves for Rock, Cannon and Knight 12 

Attack and Defend Map 90 

Figure 4.14. Features of Evaluation Model 

As shown in Figure 4.14., first feature is Player Side where we use 1 for red side and -1 

for black side. Second feature is an array storing the number of each piece type, where 

all are non-negative numbers and the order is fixed ï first red pieces then black pieces.  

Next is a list storing two kinds of information of each piece. First is whether the piece is 
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still alive or not: if yes, put 1 here; else, put 0 here. Second is the position of that piece: 

if the piece is alive, put its current xy-coordinates here; else, put 0 in it.  

Besides, we also calculate the number of possible moves for three types of pieces, Rock, 

Cannon and Knight. These pieces are quite important in Chinese chess as players 

usually use them to capture the opposite pieces and check the opponent. With more 

possible moves, these pieces can have more power to attack or defend. 

At last, we calculate a so-called attack-and-defend map, which is a 90-long array. It 

restores whether the corresponding position in the chessboard is defended by the player 

or attacked by the opponent. 
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4.4.4. Decision Maker 

With Policy Network and Evaluation Network, the strategy to make the final selection is 

also very important in our project. In our Game AI, we tried several different Selection 

Strategies to make use of and combine the outputs from both Policy Network and 

Evaluation Network. The module Decision Maker is mainly responsible for this 

selection function as well as calling the models. 

In our final AI model version, the selection strategy is as following.  

First, it will choose several moves as candidates, mainly based on the outputs of Piece 

Selector and Move Selector. These moves have high predicted probabilities and hence 

can be regarded as good moves theoretically.  

Of course, due to the training results of Piece Selector and Move Selector may not be 

perfect, these predicted values may not be very accurate. Therefore, in application, the 

AI will  sort of relax the selection limit. Basically, we first eliminate those moves with 

extremely low predicted probabilities and set a maximum number as a changeable 

parameter so that the AI can select moves up to the limit.  

Afterwards, Decision Maker pass these candidates to Evaluation Model. Evaluation 

Model can evaluate the chessboard statuses after making those moves and return scores 

back. In our final version, we implemented Minimax Searching here and used that to do 

a little searching when evaluating those moves. The depth of searching is also a 

parameter that we can adjust. By Minimax Searching, the evaluated score can better 

reflect the winning rate of making a move and thus be more reliable. 

In the end, one best move is selected based on the outputs of Evaluation Model and this 

will be the final decision of our Game AI. 
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4.5. Connection between Frontend and Backend 

We used Node.js to build the connection between server and frontend, and used 

socket.io to support the communication between our UI in JavaScript and our AI in 

Python. The connection structure is as shown in Figure 4.15.. 

 

Figure 4.15. The Connection between Frontend and Backend 

The game AI, running on the server and connecting to Node.js as a user, waits for the 

message from the frontend and sends move choice back, via socket supported by 

Node.js. To be more precise, after the server starts, every time a user opens the UI, it 

will connect to Node.js on the server through socket.io. After the player makes a move, 

the UI will generate the current FEN and send it to server via socket. The server 

receives FEN and transfers the message to the game AI. For the AI in python, we used 

the library socketIO-client to read the message because the socket in python cannot read 

message. After the AI generates the next move, it will send the coordinates in the form 

of four numbers back to frontend. And then UI will make a move to update the 

chessboard after receiving the coordinates. 

The reason we choose socket.io is that the JavaScript program cannot invoke our python 

program directly. So, socket is our solution because it can communicate between server 

and client in real-time and support programs written in different programming language. 
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5. Implementation and Development Process 

5.1. Project Schedule 

5.1.1. Schedule in First Term 

 

Figure 5.1. Project Schedule in Term 1 
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5.1.2. Schedule in Second Term 

Jan 9 ς Jan 15 Make the schedule of term 

Jan 16- Jan 22 Multiple login on the server 

Jan 23- Jan 29 Chinese New Year 

Jan 30- Feb 5 Chinese New Year 

Feb 6 ς Feb 12 Reinforcement learning design  

Feb 13 ς Feb 19 Reinforcement learning training 

Feb 20 ς Feb 26 Reinforcement learning training and test 

Feb 27 ς Mar 5 Testing the selection strategy 

Mar 6 ς Mar 12  Modify previous structure of evaluation model 

Mar 13 ςMar 19 Building and train evaluation model 

Mar 20 ς Mar 26 Build minimax search 

Mar 27- Apr 2 Combine the two parts 

Apr 2 ς Apr 8 Testing the performance of the game engine 

Apr 9 ς Apr 15 Writing report 

Figure 5.2. Project Schedule in Term 2 
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5.2. Summary of Different AI Models 

Model Remark 

001 Policy Network, Supervised Learning 

006 
Failures, Based on 001, Policy Network, Reinforcement Learning with 

positive/negative reward 

018 
Based on 001, Policy Network, Reinforcement Learning with positive 

reward only 

018.1 Policy Network and Evaluation Network 

018.2 Policy Network and Evaluation Network with Minimax Searching 

Figure 5.3. Summary of Model Versions 

 

 

Figure 5.4. Relationship of Models 
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5.3. Summary of Different Selection Strategies 

Selection Strategy 

1 
Choose the greatest one from Piece Selector and then the greatest one from 

corresponding Move Selector 

2 

Choose the greatest three/five ones from Piece Selector and then the greatest one 

from corresponding Move Selectors; Multiply the possibilities correspondingly and 

choose the greatest combination 

3 
Randomly choose according to the predicted probabilities from Piece Selector and 

then the greatest one from corresponding Move Selector 

4 

Randomly choose according to the predicted probabilities from Piece Selector and 

then randomly choose according to the predicted probabilities from corresponding 

Move Selector 

5  

Choose the greatest three/five ones from Piece Selector and then the greatest 

three/five one from corresponding Move Selectors; Multiply the possibilities 

correspondingly and randomly choose one combination by the results 

6 

According to the order of predicted possibilities from Piece Selector, choose at most 

3 moves for that piece by the predicted possibilities from its Move Selector; Choose 

the best one from all candidate moves by the outputs from Evaluation Model 

7 

According to the order of predicted possibilities from Piece Selector, choose at most 

3 moves for that piece by the predicted possibilities from its Move Selector; For all 

these candidate moves, perform Minimax Searching by the outputs from Evaluation 

Model 

8 With probability P, use Strategy 7; With probability (1-P), use Strategy 2 

Figure 5.5. Summary of Selection Strategies 
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5.4. Simple AI with Monte Carlo 

First of all, we planned to build a simple AI use MCTS. There two main reason for us to 

build these simple AI as stated following. 

One reason is that, after we finish the AI model by using Neural Network method, we 

can compare the performance between two kinds of AI. If our AI based on Neural 

Network has better performance, our AI has obtained good capability. The other reason 

is that in our Evaluation Network, we may need to calculate the winning rate of a 

chessboard using our AI. 

To build these simple AI, first we shall build chess board that can move the piece per 

our input instructions. However, we must make sure that the input is legal. So, we have 

implemented move generator and validator to examine the inputs. 

The move generator and validator works similarly in some aspects. First, we should 

define what kind of movement is allowed. Among all kinds of pieces, cannons are 

hardest to implement. For cannons, they are only allowed to capture an enemy by 

jumping over exactly one piece in a straight line no matter how many empty blocks 

exist among the line. Also, the knights of Chinese chess are slightly different from them 

on chess. If there exists a piece adjacent, it canôt move to that direction. After that, the 

move generator will apply these move patterns to the piece and use validator to 

determine whether the move is legal. 
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Figure 5.6. An Example of Move Generator and Validator 

In Figure 5.6., all the circles are generated by move generator. And the validator will 

examine all these eight moves. The blue circles represent legal move of the knight. 

Black circles represent that there is piece of red side on the point. And red circles 

represent that a pawn blocks the way for the knight to move upside. 

After we have these components, we should apply MCTS to Chinese chess by following 

steps below. For a given situation, first we find all the possible valid moves use our 

move generator. Then we shall traverse all of those moves. For every possible move, 

move forward and randomly select possible move until an end condition, usually when 

it reaches the maximum iteration depth and return the evaluation about the status. The 

evaluation of the chessboard mainly bases on the number of pieces exist, and different 

kinds of pieces have different scores, as shown in Figure 5.7.. 














































































































































































































