
T E R M 1 F Y P R E P O R T
Prepared for: Dr. LYU Rung Tsong, Dr. Sun Hanqiu
Prepared by: LAM Chi Kit, Wong Ka Lam
FYP Title: Virtual Notice Board

Table of Contents

1. INTRODUCTION ... 4

1.1 OVERVIEW ... 4

1.2 MOTIVATION ... 6

1.3 OBJECTIVE .. 8

1.4 OS PLATFORM .. 9

2. MILESTONE ... 10

3. POST OVERVIEW ... 12

3.1 SERVER ... 12

3.2 IPHONE APP ... 12

4. POST DESIGN .. 13

4.1 SERVER ... 13

4.1.1 Server-Side System Architecture ... 13

4.1.2 Database ... 14

4.1.3 ER Diagram ... 14

4.1.4 Schema ... 15

4.1.5 Sequence Diagram .. 16

4.2 PHONE APP .. 18

4.2.1 Flow Chart ... 18

4.2.2 Modules .. 20
4.2.2.1 MVC ... 21
4.2.2.2 Class Diagram ... 23

5. POST IMPLEMENTATION .. 25

5.1 SERVER ... 25

5.1.1 Retrieving messages ... 25

5.1.2 Post Message .. 27

5.2 IPHONE APP ... 29

5.2.1 UI Design .. 29
5.2.1.1 Map View Annotations ... 29
5.2.1.2 Map View Category Menu .. 30
5.2.1.3 Post Message View .. 33
5.2.1.4 Message Display View ... 35
5.2.1.5 Range slider bar for selecting time period ... 37
5.2.1.6 Message Display .. 39

5.2.2 Modules .. 40
5.2.2.1 Implementation of Location Services: .. 41

 2

5.2.2.2 Implementation of CLLocation and CLHeading: .. 42
5.2.2.3 Implementation of Longitude-Latitude Distance .. 43
5.2.2.4 Implementation of MapViewController. ... 45
5.2.2.5 Implementation of postMsgViewController .. 49
5.2.2.6 implementation of segue ... 50
5.2.2.7 Implement of Danmaku(Message Display) ... 52
5.2.2.8 Implementation of RangeSlider ... 54

6. LIMITATIONS AND DIFFICULTIES ... 56

6.1.LIMITATION OF CLCIRCULARREGION: ... 56

6.2. LIMITATION OF DEFAULT SEGUE: ... 58

6.3. CHANGING IN SWIFT VERSION AND IOS VERSION 58

6.4. LIMITATION IN POSITIONING SYSTEM .. 59

6.5. DIFFICULTIES IN CODING ... 59

7. FUTURE WORKS (MILESTONE II) .. 60

8. CONCLUSION .. 62

9. REFERENCE: ... 63

10. ACKNOWLEDGEMENT: .. 64

 3

1. Introduction
1.1 Overview

Notice Board is a platform that let people post public message. It can

be used in many purposes. We can use it to advertise goods that for

sale, to promote events/activities, to announce information or to

express personal feelings and so on. The traditional Notice Boards are

often made of cork to make the message adding and removing easily.

At the university, there is a well known notice board call Democracy

Wall which let student express their feeling of themselves; At the

canteen or supermarket, we can often see that there is also a notice

board inside to let the customer leave their opinions in order to

improve the quality of the shop. But the traditional notice board is not

that popular nowadays. It is mainly because the inconvenience of

leaving messages and the

duration the messages can

last. Indeed, when people

want to post some

messages on the notice

board, they have to

print/write a note first. Then

use some sticker to stick

that post on the board. Indeed, there is too much things to prepare.

Because of the inconvenience of using notice board, traditional notice

board is not that popular nowadays.

 4

Apart from the traditional notice board, there is an electronic version of

notice board, Internet forums. Although using the Internet forums is

more convenient, it lost the location characteristic of it. Say, if there is

a physical notice board inside a canteen, the information on the notice

board may contain the promotion of that canteen, others’ feedback and

so on. Those characteristics cannot be replaced by online discussion

forums.

 5

1.2 Motivation

Although a traditional board is not that popular now, we still think that it

has its values. But a notice board has limitations. In case if there is a lot

of post, all the post cannot be put on the board at the same time

because of the boundary of size and the lack of space. We find that

there are always some notes on the board cover the others note.

Moreover, if someone sees a post that they don’t like, maybe related to

the complainant of an event, the haters may try to damage it in order to

make some post disappear. In addition, traditional notice board is not

environmental friendly as many paper and stickers are used for leaving

messages.

The second motivation that we want to achieve is to keep record of the

post. In the previous year, there is Lennon Wall created during

Umbrella Movement, located at Central Government Complex. There is

a large-scale notice board (the wall) that full of colorful post-it notes

with many people written message on the universal suffrage and

democracy. However, with the end

of the Umbrella Movement, the Hong

Kong government cleared the notes

that stick on the wall very soon. And

the colorful mosaic wall returned to

an empty grey wall. We observe that

many people express their feel and

 6

opinion through the notes on the wall. But that kind of physical wall can

be removed or destroyed easily.

So we consider making the notice board on an electronic way. On the

one hand, we focus on how to keep the notice board’s characteristic

and enhance it to break out its current limitation; Moreover, we hope

this app can act as a history book. When the user use this app, they can

know what have been happen on the past, from the discount of a shop,

the changing of taste of food to the student campaign the year before.

And that's why we have this project.

 7

1.3 Objective

The goal of our project is to create a virtual notice board using a

locational-based approach. We have set the following objectives for

our app to achieve the goal.

The app should

1. Keep the advantage of traditional notice board. The beauty of

traditional notice board is that the message is open to public.

Everyone can see the message on the board. And the information

of the post almost related to the things nearby.

2. Enhance the functionality of a notice board. The notice board has

its boundary of size. We have to consider about how to handle

the huge numbers of post the user post using the app

3. Has good user-experience and user-interface. User may feel

inconvenient they have bad user-experience that made user stop

using our app. A good user-experience and user interface may

make the user addicted to use the app.

 8

1.4 OS Platform

In our project, we have decided to build an IOS application in Swift.

This is our first time to build a mobile application. We found that IOS

has a more uniform app development platform; it may be easier for us

to get started on building an app then Android application.

Moreover, with a uniform development platform, standardized

environment and detail documentation of IOS, it is more convenient for

searching suitable development tools, as well as future development.

Another reason is that Apple provides CoreLocation Framework, which

contains CLLocation for outdoor positioning and CLBeacon for indoor

positioning. With this two API, we believed that our app can be built in

more efficient and can work well in both indoor and outdoor positioning.

 9

2. Milestone

In the term 1, we are going to implement the basic function of a virtual

notice board. They are the functionalities of read and write a note. The

following are the problems and consideration we going to solve in

order to implement a virtual notice board.

1. Leaving a location based message. Since a notice board is a

location-based object that people can leave a message in a

particular location, such as inside a student hostel, a restaurant

or a supermarket. So our app will record the current location of

the user who wants to leave a post. GPS outdoor positioning

system will be used to tackle this problem. GPS is widely used

most of the location-based application, as it work all over the

world with accurate positioning.

2. Locating all post. Since our target is making a virtual notice

board over the world. And the board can be placed in

everywhere. Then it comes with a problem - how can we know

the place where having messages? Based on the location record

we stored when the user post a message. We decided to make a

collection of messages’ location and point it out on the map to

make a clear view of location of each message.

3. Filtering message. The number of message the user post will be

more and more over the time. Assume there is add up over 10

thousand of message in the map. How the user find the post that

they are interested in or they want to see. The filtering process

 10

becomes important when there are a huge number of messages.

Posting message with a category is a way to filter the messages

and it can help the user know what type of messages they are

reading in a particular place. And the second filtering method we

going to use is showing message by time period. We decided to

have a range selection bar that allow user to choose messages

within a period of time.

4. Reading message. A good user interface is very important. We

have mentioned before, a well-designed interface can made the

user addict on our app. We found that most of the messenger

application has a very similar user interface. It make user feel

they are the same and not creative. We want to have some

breakthrough in displaying or reading the messages. At this

stage we decided to make application into a reading message

view with a much more simple gesture - rotate the iPhone to

landscape. User does not need even a click to switch the screen.

 11

3. POST Overview
POST is a social app that user can use it to leave message to perform

as a virtual notice board.

3.1 Server
The server is used to store and manipulate the information about the

location, category of the message and the message content. In this

project, our server is put inside cse department. It can be easy to setup

the environment by using cse and have a reliability server.

3.2 IPhone app
Our app has four major components: 1. Locate messages; 2. Post

message; 3. Filter the messages; 4. Read the messages.

The message will locate in the place that the user visited such as

lecture room, canteen, student hostel, etc. The user can leave

message in the current location. To grep the location of the users, the

user have to switch on the GPS before they post and read the

messages. The app will record the latitude and longitude information

with the direction together and send to the database.

 12

4. POST Design
4.1 Server

4.1.1 Server-Side System Architecture

The above diagram is showing the server side system architecture. The

iPhone application retrieves and uploads messages to database via

PHP and MySQL. The data transfer is mainly the message content and

message information.

 13

4.1.2 Database

The database for this app at this stage is storing all the information

related to the message and corresponding location information.

Including message content and tag, position (longitude, latitude,

heading), date of post. As the data is not complex, a single table is

good enough to handle all the data.

4.1.3 ER Diagram

The pid of each message is unique.

All message are identified by the pid.

Besides pid, others attributes can be the same.

 14

4.1.4 Schema

There is a record for each message posted on virtual notice board.

Each message has its pid, longitude, latitude, heading, message

content, tag, date of post.

Attribute Format Description

pid Non-empty positive

integer

A unique identifier for

message

longitude Non-empty real number The longitude of the

message when it post

latitude Non-empty real number The latitude of the

message when it post

heading Non-empty real number The heading of the

message when it post

msg Non-empty text The message content

tag Non-empty string with at

most 80 character

The message tag

pdate Non-empty data in the

format of

YYYY-DD-MM

The date of message post

 15

 4.1.5 Sequence Diagram

The above sequence diagram is showing how the message is get from the

database. The app first sends a http request to server, via the PHP send a

SQL command to database to retrieve all the message information. The

messages will send back to app via the PHP by an http response. The above

get message procedure will be invoked when map view is pull to the

foreground.

 16

The above sequence diagram is show how the message being post to

database. User input message and choose tag, after pressing the

submit button, the app send a http post request with message

information to the server, via the PHP a SQL insert command is send to

database. Then the server will send back http respond to indicate the

message is successfully upload. The app then refreshes the page to

map view, the get message procedure will immediately invoked to

update message information.

 17

4.2 Phone App

4.2.1 Flow Chart

Mobile app may be suspended or interrupted by various event at any

time, for example incoming phone, user pressing home button etc. In

the above program flow diagram, the suspension and interruption

problem is ignored. It only focuses on how the app works in foreground

mode.

When the app begins, it get all the messages information from the

database, then a map view with message location will shown. User can

 18

see where are the message posts before, filter the messages with

category.

When rotate to landscape mode, it goes the preview message mode

users can see the filtered message content. User can also filter

message at this mode by selecting time zone. When rotate back to

portrait mode, the app make request to server to get update

information.

In the map view, user can tap on post button to switch to post message

view. User can go back to map view, by clicking cancel button. Or user

type in the message, post to server, then get update the information

from database and back to map view.

 19

4.2.2 Modules

Basically there are two modules, get message and post message. Get

message modules is getting messages from database and showing

message to user. Post message is getting input from user and put into

database. The whole program actually is the interchanging of these

two modules.

In IOS application development, the above modules can be further

elaborate in a model-view-controller design pattern (MVC) which can

much clearly show how the programs and the whole structure behind.

 20

MVC is an object-oriented design pattern. Model object is defining the

data and logic that manipulates that data. View object is presenting

information and getting user input. Controller is performing set-up and

coordinating tasks among model object and view object.

4.2.2.1 MVC

The above diagram is showing the MVC model of our app. They are

divided into three modules, Map View, Preview Message View and Post

Message View. Each controller is having different or same model

object to serve for the purpose of that view.

Switching amount screen display / view is actually switching from one

controller to another controller. The switch mechanism in fact is a

stack; the root view controller is the entry view that is the mapView.

 21

Switching to another view is pushing the view controller into a stack.

And only top element will be shown. Switch back to previous controller

is pushing the top element out from the stack.

MapViewController is the entry of the app. It is a map view showing the

location of messages. Behind the scene, it is getting message from

database, storing the information of each data including the message

identifier, content, position. Also, it allows user to filter message. At the

same time, it is providing the location service to find the exact location

of user and determine which message user is nearby.

PreviewMsgViewController is for displaying the message content. It

contains function for filtering the message by a time selection bar and

function to handle how the message content will be shown on screen.

PostMsgViewController is for posting message to the database. User

input the message content from view, via the controller the message is

passed the post msg & location model to do the encoding with current

location, then send to database.

 22

4.2.2.2 Class Diagram

The class diagram of mapViewController

 23

The class diagram of postMessageViewController

This is the class diagram of previewViewController

 24

5. POST Implementation
5.1 Server

5.1.1 Retrieving messages

The app gets and retrieves message from database through PHP. First,

it have to add a key in info.pist which require authorization from user to

allow connection to internet as well as connect to database server.

To retrieve messages, an http request with post method is made to

server.

The getAll.php is to get all the messages from the database. The

retrieved information is stored in responseString and each information

entry is separated by a special character “#”. So the actual data can be

decoded more efficiently.

 25

The getAll.php first make a connection to the database, and then

create a SQL command to get all the data from database. As shown in

the above coding, each data is separated by “#” and concatenate as a

long string and send back to the app.

 26

5.1.2 Post Message

In order to post a message to server, another http request has to be

made to server.

After user tap the post, all of the information about this message will be

encoded into a single string postString, and send to server via http.

 27

The msg_post02.php first connect to the database, and then start

decoding the http body, which is the postString. After that, it saves the

message information to the corresponding variables. Then make a SQL

insert command with these variables.

 28

5.2 IPhone App

5.2.1 UI Design

5.2.1.1 Map View Annotations

The map view is the main view of the app. It is the first page we can see

when user open our app. It will show a map of user’s current location. If

there is a message, the map will display annotations that indicate the

actual position of that message. Also, the user can know which type the

message is by tapping on the annotation. There will be a pop up remark

for the category of the message and the date of the message being

post.

 29

5.2.1.2 Map View Category Menu

When there are a huge number of messages. It is hard for the user to

search message that they want to see. We have divided the messages

into four category, fashion, food, lifestyle and entertainment. Each

message has its own message type called tag. The app has a filtering

function to help the user search for the message that they want to see

at a quick manner. For the filtering process, the users have to tap the

menu icon on the top left corner. And the category menu will pop up.

 30

When the menu bar pops up, the background will be darker than the

normal in order to make the sense of multi-level. And when the users

tap on the dark region, the app will return to the map view.

 31

There are four categories for the messages, fashion, food, lifestyle and

entertainment. User can choose a category message they are

interested in.

As shown in the above diagram, it shows all kind of messages by

default. After pressing, FOOD button, the number of annotation on the

map is less than before, as it only shows the messages in food category.

 32

5.2.1.3 Post Message View

On map view, there is a Post button. By clicking the post button, it will

switch to postMsgView, user can write their comment about this place

at the postMsgView.

 33

At the postMsgView, there is a white text field allow user to type in

message content. The segment right below is to choose the tag

category that is related to their message content. After finish typing,

click on the enter button on the right hand side, the message will be

uploaded to server and route back to mapView. The message just post

will also be displayed on the map view.

Of course, user may want to get back to map view without posting

anything, there is a cancel button at the top left hand corner to route to

map view.

 34

5.2.1.4 Message Display View

How to read a message is a very important objective of our project.

In many existing messenger apps, almost all of them use the same way

for message reading. It provides a table of messages. The users have

to click on each message to see the details. We think it is a boring way

for message checking using in a notice board. Our goal is to make a

new and creative UI design. We have designed a fantastic way for the

messages watching. The users just need to rotate their phone and scan

the message out.

 35

This is the message checking view. We use a camera view as a

background. In the above example, we have left a message on the table

and the message content is a crying emoji that expressing my feeling

about too many things are on my desk. Then my roommate can read

this crying face by rotating his phone in landscape mode and let the

camera point to my desk. This is a new way for reading message that

can give the user the new experience when they use the app. Also, then

is an interesting method to show to messages. The message will keep

moving from the right hand side to the left hand side in order to make a

great effect.

 36

5.2.1.5 Range slider bar for selecting time period

At the bottom of the message checking view, there is a range slider bar.

Users can use that 2-sided slider bar to select the messages that post

on that interval. The above example shows that i have select all the

messages between today to 1 month ago. The camera shows the crying

emoji that is the content of message 1 post the week before.

 37

This is the second example. It shows that the user change the time

interval, but still at the same position. The message checking view

won’t show the crying message. Instead of the crying message, it

shows “There is no message” to indicate that there is no message in

that particular time interval.

 38

5.2.1.6 Message Display

The message will appear only when the user is at the right position and

face with the right angle. When the user is standing in the right position

but wrong angle, the view will not show the message. There will be two

arrow at the left and right side to remind to user to turn around their

phone, point it to the right angle to grep the messages.

 39

 5.2.2 Modules

By following the MVC discussed before, there are mainly 3 modules, the

MapViewController, PostMsgViewController and PreviewViewController. The location

service is repeatedly used among the three controllers. So the implementation of

location service function will be discussed first.

 40

5.2.2.1 Implementation of Location Services:

In IOS, there is a API CoreLocation service which provide most of the

functions and methods for building a location-based application. For

example, it provides GPS location services, region monitoring of a

defineded location, the direction of the device pointing to. This app

requires all of these services in order to get the accurate location for

user to post or read a message in a specific region.

To use this API, first set up CLLocationManager class instance that is

the central part for configuring the location related events. it is used to

control the start and stop of delivery of location events. Moreover, it is

used to retrieve most of the location data. Another function of

CLLocationManager is to request the authorization to activate the GPS

function of the iPhone from user and a key in the info.pist should also

be added to get the usage of GPS.

 41

5.2.2.2 Implementation of CLLocation and CLHeading:

A CLLocation object represents the location data generated

by a CLLocationManager object. After implemented

CLLocationManager, CLLocation can be implemented to get the

actually location of the users in longitude and latitude by writing the

event handler didUpdateLocations() to retrieve position data. It will be

invoked whenever there is a slightly change in location as we have set

the accuracy to the highest level via the CLLocatinManager. The

CLLocation works really well, it locates user position with 10-meter

variants and with a very fast respond to any changes in location.

CLHeading is also implemented in a same way as CLLocation.

didUpdateHeading() is to retrieve heading data that is computed values

for magnetic north. It works extremely sensitive to slightly changes in

direction of the device pointing to.

 42

5.2.2.3 Implementation of Longitude-Latitude Distance

To resolve the problems of declaring a region and have quick respond

in notifying user’s region. We decided to implement a longitude-latitude

distance calculator. When message’s location information is get

updated, this calculator will be invoked and distance of user current

location to each messages will be calculated immediately. Message

with distance within the certain radius will be shown, the others will be

ignored.

The equation we use for the calculator is Haversine fomula:

Haversine formula is used to calculate the great-circle distance

between two points by assuming the earth is spherical with radius 6371

km. Surely it has error due to the assumption (earth is very slightly

ellipsoidal), but the accuracy is good enough for our application.

 43

calculateDistance() is implementation of Haversine formula

programmatically , lat1 and lon1 is representing latitude, longitude of a

message location, lat2 and lon2 is representing latitude, longitude of

user current location. If the distance is within 10 meter, it returns true

indicates it’s within a region and message of that particular location

will shown, otherwise return false and message of that location will be

ignored.

 44

5.2.2.4 Implementation of MapViewController.

MapViewController main function is to get the message information

from database and show the location of each message on a map view.

Besides this, it also responsible to gain the authorization of GPS usage

and Internet access from user at the early beginning of the app.

Moreover, it has to calculate user current position to the message and

do filtering to determine which message will be displayed.

getalllocatons() is function for getting messages from database. The

data get from the database will be stored in responseString and each

data entry will be separated by “#” character. So by tokenizing the

string with “#” character, all of the message information can be

retrieved.

 45

After retrieving each message information, every data entry will pass

to getMapAnnotation() to prepare annotate that will show on map view.

The location information is need for pinning the annotation. Also, in

order to let the map view more interactive, message tag, message post

 46

date is added as title and subtitle of annotation. When users tap on

annotation, the title and subtitle will shown. After looping through the

entire message, the annotation will be add to the map view, and

location of each message can be clearly shown.

There is a sidebar in MapView as mention before to let user choose

what category of message they want to display on map, in fact, it is

remove and add of annotation.

 47

We first remove all the annotations on the map, then sort out the

required by loop through the downloaded information again. Finally,

add the required annotation back on map.

 48

5.2.2.5 Implementation of postMsgViewController

postMsgViewController is a view for user to post message together

with current location and heading information. It has implemented

location service as mentioned before.

When user click on post button, postToServer() function is invoked. It

first get message content from the text field and tag from title segment,

current position information. Then combine all these information into a

string format and update to server.

 49

5.2.2.6 implementation of segue

A segue in swift is for view transection. It controls how a user can go

from one view to another view. In swift, it can be setup by just click and

drag. It also allow programmer customizing his own segue. The default

segue is not power enough for our use, so we have to implement the

segue function by our own method instead of the given one.

 50

mySegue class is putting a new sub-layer above the current layer. We

implement it when we rotate our phone. This action will trigger the

segue and bring the user from the mapView to previewView.

The function of prepareForSeque() is work before we transit from the

mapView to the previewView. It prepare the datas that we want to pass

to previewView and let us use it in the previewView.

 51

5.2.2.7 Implement of Danmaku(Message Display)

The function addDanmakus() get an array of message as input. Then

divide it one by one.

The function addDanmaku() get a message as input. Then it will count the

available position for the message to avoid multiple messages appear on the

same level causing overlapping.

The above function set all the displaying condition. The function

playDanmaku() is enable displaying the message. When finish playing the

message, it will remove the message from the array to avoid repeating display

the same message

 52

The function countAvailablePositionForDanmaku() is the function that finding

the available position for displaying message. Our algorithm is randomly get a

position first. Then check this position to see whether it is occupied by another

message or not. If the position is free, then accept. If it is not free, then

generate a new position and check for the availability again.

 53

5.2.2.8 Implementation of RangeSlider

A rangeSlider is a combine of two class. They are the

RangeSliderTrackLayer and the RangeSliderThumbLayer.

 54

The following functions are about touching the slider bar. They record

the range that the user slide between the interval of user begin to touch

and end with touch.

Finally, based on the range between two tumb. Then use function

positionForValue() and function boundValue() to calculate the value

inside the range.

 55

6. Limitations and Difficulties
6.1.Limitation of CLCircularRegion:

In the testing phase, we have tried CLCircularRegion for locating the

messsages position. However, the region monitoring service

(CLCircularRegion) provided by IOS API have 150 to 200 meters’

variant that is not accurate enough for notifying any message nearby

the user.

We first defined a region in Shaw College Student Hostel Two with 20

meters radius, although the GPS location is showing we are near the

specific location, the region service cannot determine we are inside or

outside the specified region or not. When we arrive at Residences 3 & 4,

the region services eventually work by showing we are outside the

defined region that is about 170 meter away from student Student

Hostel Two. The performance of CLCiruclarRegion really disappoints

us. We have to find another way to build a better region effect for our

use.

 56

Finally, we have located the problem of the IOS API CLCiruclarRegion.

This API only generate events only when boundary crossing, which

means that if the user’s location is already inside the region at

registration time, the location manager doesn’t automatically generate

an event to notify the users. Users will only notify until crossing the

region boundary. Which means users’s inside that particular region

cannot be updated immediately, that does now fulfill our expectation of

updating messages in fast real time process. Also, each application

can only monitor at most 20 regions at the same time. But our app is

allowing users to leave messages in everywhere, it will encounter a big

problem when there is huge number of messages and each single

message is representing one region. Moreover, although the

CLCircularRegion allow us to declare the radius from few meters to

hundred meters, it only works well in approximately 200 meter and

require at least 20 seconds for a notification to report. The respond of

CLCiruclarRegion is quite slow, it does not meet requirement of quick

respond of location information.

 57

6.2. Limitation of default segue:

As mentioned before, IOS has it’s own set of segue for transection.

There are several problems in using the default segue.

 The major problem is that it does not have a segue for rotation.

 Although this can be done in changing the layout, it will mix the

two modules get message and display into one. We think that

separating into more modules is more convenient for further

development.

6.3. Changing in Swift version and IOS version

At the testing phase, we have build location service function in Swift1.0

and IOS8 version. However, Xcode forced us to update to Swift 2.0.

There are some changes in programming syntax and the API. In

addition, when our devices upgrade to IOS9, all of our testing program

immediately crash. We have to build most of the testing program again

and acquire the changes of the Swift version. In addition, it is hard to

find sample in Swift or detail usage report in Swift. As Swift is newly

developed programming language, it is still not widely used, the

resources in Swift as well as the Swift 2.0 is not enough. It takes us

long time in studying the documentation of Swift.

 58

6.4. Limitation in positioning System

As mentioned before, we aim at building a virtual notice board work

well in both indoor and outdoor. At this stage we are using GPS for

positioning. It works excellent is outdoor, but we found that it work with

great error when the device come into an indoor. It is a must in

improving the positioning system, so that this app can be more widely

used in every scenario.

6.5. Difficulties in Coding

As it is our first time in building a mobile application, we are not familiar

with way of building the program. We take a long time try and look for a

better way in coding or using the API. We found that we still have a lot

of space to improve the coding and programming efficiency to make

the code more readable and clear.

 59

7. Future Works (Milestone II)

So far milestone 1 is completed successfully, all the basics function

required by a notice board is built and work well. In the coming

semester, we will focus on enhancing the positioning system and

interface design.

1. Supporting indoor positioning. The app is now adopting GPS to

locate the position which with high accuracy in outdoor

positioning. However, when it comes to an indoor scenario, GPS

is really not suitable. We want virtual notice can be post message

everywhere without any limitation. So it is necessary to enhance

the positioning system that supports indoor usage.

We decided to implement beacon technology that is now widely

used in indoor positioning system.

 60

2. Fancy UI in displaying messages content. A great user interface is

very important in attracting user keep on using our app. In milestone 1,

we have decided new way of checking message by rotating the phone.

But it is still a along 2D plain text, we want more funny and

interesting way in reading the message. Instead of displaying the

message on 2D plain, we are going to build 3D displaying engines.

Our target is via Google Cardboard to build a virtual reality for

displaying message in 3 dimensional spaces.

 61

8. Conclusion

The is a very good experience in building a mobile application, from

design to implementation are all do e by ourselves.

The is our first time to build a mobile application; we have learnt a lot of

new skills and concepts in writing an IOS application that is really

useful for our future. During the development, we have encounter many

problem, for example update of Swift and IOS version, get loss in how

get start the whole development, little knowledge about IOS API, we

still can stick on our first term target.

In this semester, we have built a virtual notice board with basic

functions. It can read or write a message according to user position.

Additionally, we have implement a filtering system for users to look the

message that they. Also, we have design a segue for view switching so

that display messages is can be done by a simple rotation of iPhone.

Furthermore, we have built a server for storing all the messages post

by a user.

With great experience from this semester, we believe that our self-

learning skills and problem-solving skills have improved a lot. We are

confident that we can do better in the coming semester. The next

semester our target is improving and enhance the whole application.

Internally, we are going to improve the positioning system so that POST

can work well in both indoor and outdoor events. Externally, we will try

to make the displaying view in 3D, as we want reading messages to be

more fun and interesting.

 62

9. Reference:

[1] Calculate distance, bearing and more between

Latitude/Longitude

points[Online]

http://www.movable-type.co.uk/scripts/latlong.html

[2] Harversine Fomula, Wikipedia[Online]

 https://en.wikipedia.org/wiki/Haversine_formula#The_haversine_

formula

[3] Apple Inc. iOS Developer Library[Online]

https://developer.apple.com/library/ios/navigation/#section=Framewor

ks&topic=CoreLocation

 63

https://en.wikipedia.org/wiki/Haversine_formula%23The_haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula%23The_haversine_formula

10. Acknowledgement:

We would like to express our appreciation to our supervisor, Professor Lyu

Rung Tsong Michael, for giving valuable guidance and comments.

In addition, we would like to thank Mr. Edward Yau in ViewLab for giving

inspiring idea and advices.

 64

	1. Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Objective
	1.4 OS Platform
	1.4 OS Platform

	2. Milestone
	3. POST Overview
	3.1 Server
	3.2 IPhone app

	4. POST Design
	4.1 Server
	4.1.1 Server-Side System Architecture
	4.1.2 Database
	4.1.2 Database
	4.1.3 ER Diagram
	4.1.4 Schema
	4.1.4 Schema
	4.1.5 Sequence Diagram

	4.2 Phone App
	4.2 Phone App
	4.2.1 Flow Chart
	4.2.2 Modules
	4.2.2 Modules
	4.2.2.1 MVC
	4.2.2.2 Class Diagram

	5. POST Implementation
	5.1 Server
	5.1.1 Retrieving messages
	5.1.2 Post Message

	5.2 IPhone App
	5.2 IPhone App
	5.2.1 UI Design
	5.2.1.1 Map View Annotations
	5.2.1.2 Map View Category Menu
	5.2.1.3 Post Message View
	5.2.1.4 Message Display View
	5.2.1.4 Message Display View
	5.2.1.5 Range slider bar for selecting time period
	5.2.1.6 Message Display

	5.2.2 Modules
	5.2.2.1 Implementation of Location Services:
	5.2.2.2 Implementation of CLLocation and CLHeading:
	5.2.2.3 Implementation of Longitude-Latitude Distance
	5.2.2.4 Implementation of MapViewController.
	5.2.2.5 Implementation of postMsgViewController
	5.2.2.6 implementation of segue
	5.2.2.7 Implement of Danmaku(Message Display)
	5.2.2.8 Implementation of RangeSlider

	6. Limitations and Difficulties
	6. Limitations and Difficulties
	6.1.Limitation of CLCircularRegion:
	6.2. Limitation of default segue:
	6.3. Changing in Swift version and IOS version
	6.4. Limitation in positioning System
	6.5. Difficulties in Coding

	7. Future Works (Milestone II)
	7. Future Works (Milestone II)
	8. Conclusion
	8. Conclusion
	9. Reference:
	10. Acknowledgement:

