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Abstract 

Eksibition is a mobile smart guide who can provide a great tour experience for visitors in 

museums and exhibitions. Our goal of the project is to implement the full features of this 

application on iOS devices. 

In this report, we will go through all the topics that we have been studied, all the 

achievements we have made and all the problems we have encountered within this semester.  

The first part is the introduction of this project, indicating the motivation of this project and 

how we are going to implement this idea. The second part is the original wireframe design of 

this application, briefly showing the features of it. Then we will describe our studying process 

of the Bluetooth Low Energy (BLE) technology. Since we are going to make use of iBeacon™, a 

sub-category of BLE device, to provide the guide service, a study on the hardware is very 

necessary. The rest part are the showcases of current features consisting of all the technical 

problems we overcame. After a semester-long development, there are still some limitations 

and features remained to be tackled in the coming semester. 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1. Introduction 

1.1. Overview 

Apple introduced a protocol called iBeacon™ at the Apple Worldwide Developers Conference 

in 2013 [1]. iBeacon™ is a protocol allowing the Bluetooth Low Energy (BLE) devices to 

broadcast their identifier information to nearby portable electronic devices including BLE 

enabled smart phones [2]. Although it seems quite simple, applications can still do a lot of 

things by taking advantage of this technology. Our application Eksibition is one of them. 

Imaging a mobile application can know where you are in a museum and introduce the item or 

artwork in front of you through both text and audio, visiting a museum could be a more 

interesting activity even without a real guide explaining what is happening. Eksibition is not 

only a tour guide, but also an integrated smart extension for the museums, which can help 

visitors buy tickets, schedule visit time and redeem tickets, etc. 

1.2. Motivation 

Nowadays, people don’t appreciate exhibitions and museums in a way it used to be. 

Sometimes when time is limited, we just go to the museum to see one or two items we are 

interested in, but we don’t know the exact location of them. Sometimes when we see our 

favorite item, it may be inconvenient for us to learn the interesting background of it unless we 

Google it or take an extra device from the museum to listen to it. Or for some people, they 

usually have a real tour guide to guide them in the museum and introduce to them, with a 

cost ranging from 20 USD/hour up. On account of these facts, we feel it is really necessary to 

have an application that can make everything easier and more interesting when visiting a 

museum.  

When we are trying to figure out how to make an application for users as if a guide will be 

walking next to them, we found the iBeacon™ and the Bluetooth Low Energy (BLE) technology 

very useful, which perfectly help to enhance the features of our application. 

Such that, we had this project started, named Eksibition - Virtual Exhibition Guide on Smart 

Phone.  
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1.3. Objectives 

As stated in the last section, we are developing an application to fulfill the demands from both 

visitors and museum organizations and also to improve the whole visiting experience. The 

features below are to be implemented: 

• Ticketing system: Users can purchase tickets within our application and retrieve the tickets 

as Ticket Pass, which can be stored in the newly introduced Apple Wallet (it’s called 

Passbook before iOS 9). The electronic tickets on the user’s side can later be redeemed at 

the entrance of the museum. We also developed a redeem application, which is a 

separated companion application distributed to museum staffs to redeem users’ tickets at 

the entrance. These whole process is paperless and environment-friendly. 

• Showing nearby items: Users can see the nearest item in our application when getting 

close to it. They can also choose any one of the already visited items to view the detail 

information, which includes more images and descriptions. Users can even listen to the 

introduction soundtrack of items. 

• Like and share: Users can like an item and share the related information to social 

networks. 

• Map view of the museum: Users can see his location and all the items on a map of the 

museum, so that one can decide where to explore his favorite items. 

• Smart route guide (to be implemented in next semester): Application can help generate a 

routine based on the items selected by users and how much time they have. 

• News notification system (to be implemented in next semester): Users can get 

notifications from the museum promoting the coming events when they are not physically 

in the museum. 

• Analyzing of users’ behavior (to be implemented in next semester): By analyzing the users’ 

behavior from the recorded cumulated time they spent on each item, we can draw the 

conclusion of which items are users’ favorites and what is the most popular routine, which 

can help the museums improve their service. 
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1.4. Milestones

To achieve those objectives above, there are some technical milestones required to be 

reached:

• A well-designed backend server with all the applications programming interfaces (API) 

implemented to handle the possible requests from the mobile client side.

• A Bluetooth signal analyzing mechanism within the application to detect the distances 

from iPhone to items.

• A map system to show the customized indoor map of the museum, which also carries 

information of the items in exhibition.

• A positioning system analyzing the users’ estimated position according to the different 

signals broadcasted by iBeacons.

• A ticketing system allowing the users to purchase and redeem tickets within our app.

• Apple Pay integration, which helps to make the purchasing process easier. 

• Supporting tickets to be added and managed by Apple Wallet. 

• An analyzing mechanism to collect the related information and analyze the users’ 

behavior.  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2. Wireframe Design 

This part shows the initial wireframe design of our application in the beginning. Some basic 

features are shown. 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Figure 1: Closest tab shows the image and 
detail introductions of the nearest item, 
allowing users to like or share the related 
information.

Figure 2: Item list tab has a zoomable map 
view on the top area showing the museum 
map and item locations. Under the map is an 
item list showing all the items in the museum.

Figure 3: Item detail page let users check the 
detail information of this item

Figure 4: News tab shows the the promotions 
of museum events



3. Study of BLE Technology 

3.1. Hardware 

Bluetooth Low Energy (BLE) is one kind of Bluetooth technology developed by the Bluetooth 

Special Interest Group. BLE devices broadcast signals in a specific area.[3] Different from the 

traditional Bluetooth technology, BLE can provide consistent signal with very low energy 

consumption. 

Devices adopting iBeacon™ protocol are typically called beacons. In our development, we use 

Estimote beacons as out BLE devices. Smartphones, tablets and other smart devices will get 

notified when they are in close proximity to a beacon.[2] 

3.1.1.Advertisement Frame 

Beacons works in an advertisement mode, in which it broadcasts its signal and notify its 

presence to those smart devices who can receive the signal.[4] The signal a beacon 

broadcasts follows a fixed format defined by Apple’s iBeacon™ protocol prefixed 

together with UUID, major and minor identifiers[5]. Here is an example of what an 

iBeacon™ advertisement frame will be like: 

fb0b57a2-8228-44 cd-913a-94a122ba1206 Major 1 Minor 2 

With this frame, we can make the signal broadcasted by each beacon carries different 

information. For example, we can set the UUID to represent the building where the 

beacon locates and set the Major and Minor numbers to represent different locations in 

this building. 

3.1.2.Ranging 

Using the strangeness of the signal broadcast by beacons, iOS SDK will give an estimated 

distance between beacons and the phone. The result is categorized into the following 3 

distinct ranges [6]: 

Immediate: within 0.5 meters. 

Near: within 3 meters. 

Far: within 70 meters. 
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3.2. Estimote Beacons 

In this project, we use Estimote beacons as the BLE devices. Estimote beacons and stickers are 

small beacons that can be attached to any location or object. By making use of the Estimote 

SDK, our application can know the proximity of nearby beacons and recognize their type, 

ownership, approximate location, temperature and motion [7]. 

Besides the Estimote SDK, Estimote also provides another SDK especially for indoor 

positioning - Estimote Indoor Location SDK, which is a set of tools for building precise, blue-

dot location services indoors [8]. We can upload the location’s map to Estimote cloud after we 

set up the target location using at least 4 beacons. 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Figure 5: Estimote beacons packaging

Figure 5: Estimote SDK



4. Study of Indoor Positioning 

4.1. Approach by Analyzing RSSI 

We started to do research on indoor positioning at the very beginning of our project. The first 

approach we did to calculate the indoor location is to analyze the received signal strength 

indicator (RSSI) from each beacon. 

4.1.1.Trilateration 

Trilateration is a positioning technique using different distances from different points to 

determine the position of a certain point. This system has to measure the distance from 

the target point to at least 3 reference points whose positions are already known. Using 

these distances, we can form 3 circles surrounding each point. Then the only 

intersection of these three circles is position of the target point. 

Theoretically,  we can get the position of the target point by collecting at least 3 relative 

distances of the reference points. As can be seen from the picture, every two circles form 

two intersection points, one of which is our target point. But in real situation, we know 

that the distance calculated from the value of RSSI may not be accurate. Thus the 3 

circles may not have a common intersection. To ensure we can get a single solution, we 

made an optimization on this approach: 
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Figure 6: Trilateration [15]



Step 1: calculate two possible position p1 and p2 by the distances from two of the 

reference points. 

Step 2: calculate the distance d3 between the target point and a third reference point. 

Step 3: get the distance d1’ between p1 and the third point, d2’ between p2 and the third 

point. 

Step 4: if d1’ is closer to d3 then p1 is the result position. If not then p2 is the result 

position. 

4.1.2.Accuracy 

As we can see, it is not difficult to get the target position from 3 distances of reference 

points, but it is still a problem to calculate the distance from the value of RSSI accurately. 

According to the researches we did, we found that the value of RSSI follows a lognormal 

distribution over distance [12]: 

So the same RSSI may result in different estimated distance in indoor environment, the 

relation between the value of RSSI and the distance is different. So that if we really want 

to get an accurate value of the distance, we need to do multiple testing under the target 

environment which is unrealistic and time-consuming. 

Finally, we gave up this approach and changed to another one. 

4.2. Approach by Using Estimote Indoor Location SDK 

As we mentioned above, Estimote provides its own SDK for developers to implement indoor 

positioning by creating their own indoor map in Estimote cloud. Estimote Indoor Location SDK 

requires the following things [9]: 

• 1 OS X computer with Xcode 7. 

• 1 iOS device preferably newer than 5. 

• 1 Estimote Account. 

• At least 4 Estimote beacons related to the account.  
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The map creation steps are as follows [9]: 

• Use the Estimote Indoor Location app to map the room into Estimote cloud and tune the 

location setups to make the positioning more accurate. 

• Install the Estimote Indoor Location SDK through CocoaPods. 

• Add Indoor Location Manager. 

• Connect the app to Estimote Cloud and then fetch and update the location. 

This approach requires at least 4 Estimote beacons while we just have 3 beacons until the end 

of this semester, so that this approach will be left to next semester’s development.  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Figure 7: The developer is mapping his room to 
Estimote Cloud using the Estimote Indoor Location 
app. [7]



5. Study of Custom Indoor Map Design 

5.1. Approach by Using Mapbox 

The first approach we did to implement our customized indoor map is to use an third party 

platform called Mapbox. Mapbox is a map platform for developers to design their own map 

customized with their own style and data. 

Basically, developers can do two things on this platform. The first one is to customize the style 

of the map. Developers can change the color and size of some geographical utilities, which 

makes the map looks different from the original one. The second one is to add their 

customized data like markers, lines and polygons over the map.  

Customized Style & Data 

Since no matter how we change the style of a map, it is still a world map with the coordinate 

system based on longitude and latitude. So we have two alternatives here. One is to set the 

Page �  of �14 42

Figure 8: Mapbox online studio interface



style to blank and transparent the world coordinate system to our own indoor coordinate 

system and then draw some data as the map of the indoor map. In another word, it is using 

the world as a room. Another solution is to keep the style on the map and draw the data on 

the exactly position of the room indicating the in door structure of it. 

During implementing this two solutions, we found the shortcomings of each solution. 

• Cons of the first solution: According to the Mapbox SDK documentation, Mapbox 

draws the data onto the map by rendering the provided geojson data so that when we 

are trying to draw an indoor map as large as the earth, it will be very CPU consuming 

and fail sometimes. 

• Cons of the second solution: There are two failures of this solution. One is that it is 

nearly impossible to location the room accurately. When we try to render our 

customized data to show the indoor map, we have to provide the border coordinates 

of the room in latitude and longitude, in which all the points owns nearly the same 

value of latitude and longitude because it will be only different in 0.00001. Another 

problem is that even though we manage to construct the room above the world’s map 

in the right position, the map cannot be zoomed to the level where the detail of the 

room is shown well. 

Finally we gave up this approach and chose a simple way to design our own indoor map. 

5.2. Approach by Using a High-resolution Image  

The reason why we chose Mapbox as the first approach is based on the following points: 

• Map box can provide a map view through its SDK implemented with the functions like 

panning, zooming and rotating. 

• The data we drew on the map will be shown in a vector way which means it won’t change 

its resolution no matter how large the user zoom it. 

• The map is stored in a JSON file which can be edited conveniently by just adding or 

deleting a few keys and values. 
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Based on the reasons mentioned above, we were looking for another solution which has the 

same advantages. At last, we chose to use a high-resolution image as the map since it can be 

zoomed smaller without losing its sharpness. 

 

From the comparison between the two images above, we can seen that this image remain 

clear after being zoomed in. 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6. Study of Developing Backend Using Node.Js 

Node.js is an open-source framework for developing network applications such as server-side 

web application. Node.js is distinguished for its cross-platform environment and event-driven 

architecture. Additional, in the framework of Node.js, developers do not have to take care of 

the thread-relative problem since Node.js is not a thread-based framework. 

6.1. Building RESTful APIs With Express4 

Express is a module in Node.js helping developers handle routing when developing APIs. 

Making use of the event-driven architecture, we can implement an API in following steps: 

• Create a .js file with the same name as the target router. 

• Handle all the possible RESTful request to this router in this .js file by implement the event 

handlers. 

• Export this .js file as a module and add pass it a handler to the Express module. 

Here is a simple code snippet implementing an API on router ‘/’. 

Up to the end of this semester, we have implemented 11 APIs over 3 routers. Here is the 

documentation for those APIs.

Router API Method Arguments Usage

/ticket /redeem PSOT name: ticketId 

type: String 

stored in: body

To let the server check is the 
ticket with ticket number ticketId 
is valid.

/getTicketId GET no To generate a ticket number for 
testing.

/generatePass POST name: ticketId 

type: String 

stored in: body

To let the server create, sign and 
return a pass according to the 
ticket number ticketId.

Router
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router.get(‘/‘, function(req, res) { 

 res.json({ message: ‘hooray! welcome to our api!’}); 

});



/orderHistory GET name: deviceId 

type: String 

stored in: body

To get all the tickets that has 
been purchased by the device 
with deviceId.

/setUp GET no To set up database of types for 
testing.

/ticket /pay POST name: stripe_token 

type: String 

stored in: body 

name: amount 

type: String 

stored in: body 

name: description 

type: String 

stored in: body 

name: contact 

type: Dictionary 

stored in: body 

name: deviceId 

type: String 

stored in: body 

name: quantity 

type: Integer 

stored in: body

To buy amount number of tickets 
from the server providing 
enough information. The server 
will return the client a string as 
ticket number if succeed.

API Method Arguments UsageRouter
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6.2. Using MongoDB to Save Data 

Different from the traditional SQL database, MongoDB is a NoSql database which is 

implemented in a document-oriented way. There are several reasons why we chose MongoDB 

to store our data instead of the traditional SQL databases: 

• MongoDB is perfectly integrated with Node.js. We can add MongoDB into our modules by 

adding just one line of code in file package.json. 

• MongoDB stores data in document with JSON style which is very readable and  editable to 

developers. JSON style data is also easy to use for client side. 

/item /:uuid/:major/:min
or

GET name: deviceId 

type: String 

stored in: headers

To get an item object containing 
all the related information. The 
argument deviceId is for server to 
know if this device has liked one 
item.

/all GET name: deviceId 

type: String 

stored in: headers

To get all the items of the 
museum in an array.

/like PUT name: deviceId 

type: String 

stored in: body 

name: _id 

type: String 

stored in: body

To indicate the server that an 
item with  identifier _id is liked by 
a device with identifier deviceId.

/share PUT name: _id 

type: String 

stored in: body

To indicate the server that an 
item with identifier _id is shared 
by a device with identifier 
deviceId.

/view PUT name: _id 

type: String 

stored in: body

To indicate the server that an 
item with identifier _id is viewed 
by a device with identifier 
deviceId.

API Method Arguments UsageRouter
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• Developers do not have to set the property like primary key or default value when creating 

a schema for a table. The only thing developers have to do is to set the index name and 

the value type of each column. 

• Updating data becomes easier. We can update a row of data by calling the method ‘save()’. 

• We do not have to care about if one of the column value is not given when adding date 

into each row of the table. 

We use MongoDB to store our item data and order data, and here is the schema of these two 

table.  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var ItemSchema = new Schema({ 

   beaconUUID: String, 

   beaconMajor: String, 

   beaconMinor: String, 

   title: String,  

   coverImage: String, 

   author: String, 

   country: String, 

   description: String, 

   soundtrack: String, 

   images: Array, 

   coordinateX: Number, 

   coordinateY: Number, 

   introduceTime: Date, 

   inExhibition: Boolean, 

   views: [String], 

   likes: [String], 

   shareCount: Number  

});

var OrderSchema = new Schema({ 

 email: String, 

 amount: Number, 

 purchaser: String, 

 generateDate: Number, 

 redeemedDate: Number, 

 generateDateObject: Date, 

 redeemedDateObject: Date, 

 ticketId: String, 

 valid: Boolean, 

 deviceId: String 

});



7. Developing Application With Swift 

7.1. Model-View-Controller 

We designed our application in a Model-View-Controller(MVC) pattern which is to separate 

objects into three roles: Model, View and Controller. Model objects is the representation of 

data. Views are what users can see and interact with. Controller objects will be in charge of 

updating model and view according to user’s actions. MVC is a good pattern to design our 

application for the following reasons. 

• It makes most of our objects reusable. The interfaces between objects are well defined. 

• Our application will become more extendable since it would be relatively easy to add new 

features by add a set of Model-View-Controller. 

• We can use many Cocoa technologies that are based on MVC pattern. 

7.2. 3D Touch 

3D touch is a new technology Apple introduced this year together with iPhone 6s / 6s plus and 

iOS 9. This technology allows iPhone 6s / 6s plus  to know how hard a user is pressing the 

screen. Integrating with 3D Touch technology can make users have more actions over our 

application. 
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Figure 9: MVC illustration [10]



7.2.1.Home Screen Quick Actions 

The traditional way to launch an application is by tap it on the home screen. With the 

help of 3D Touch, users can have quick actions on our application by pressing our icon in 

the home screen and select a quick way to launch our application, which can anticipate 

and accelerate a user’s interaction with our application. 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Figure 10: Quick Actions



7.2.2.Peek and Pop 

“Peek and Pop” is a new way for users to interact with iOS device supporting 3D Touch. It 

allows users to take a peek or have a preview of the view, which is going to be opened. 

We can make our application work in a more efficient way by implement this feature. 

From our perspective, we think a user should not spend too much time on operating his 

iPhone when he or she is visiting a museum. When a user is interested in one of the 

items in the item list, he or she can decide whether to look into detail of it by having a 

peek. This can make a user save more time and get exactly what he or she needs from 

our application.  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Figure 11: Peek and Pop



7.3. Centralized Soundtrack Player 

Our application has a function to play the item introduction soundtrack. Since we are not 

allowed to play multiple soundtracks at the same time, we need only one instance of the 

player object to do the playing job. 

We implemented a singleton player inside SoundtrackPlayer class which can only be instanced 

once. Although the player can be seen in every tab of our application, it is only controlled by 

the methods in class AppDelegate, which is the heart of the application. 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Figure 12: Centralized player



8. Summary at Midterm 

After we built up our server and implemented required APIs, our application can work fluently  

with the following functions: 

• Listing all the nearby items. 

• Preview an item by pressing harder on the item in the item list. 

• Enter the item detail page by pressing even harder on the item or simply tap on the item. 

• Every time an user entering the detail page of an item, the server will update the count of 

viewers of the item. 

• Users can like or unlike an item and the server can be notified and update the count of 

likes of the item. 

• The second tab of the application can only show view of the map, since we didn’t get 

enough beacons to implement the indoor positioning. 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9. Study of Integrating Apple Pay 

Apple first introduced Apple Pay in its 

conference in September 2014. Tim Cook, the 

CEO of Apple, illustrated that the tradition 

payment system like loading a card with a 

magnetic stripe and verifying a credit card by a 

combination of several numbers are not that 

safe. Apple Pay will be the new generation’s 

payment system that can change the whole 

payment system. Basically, if a user want to use 

Apple Pay, he or she has to first add his card into 

his Apple Wallet. After that, the user can 

authorize a payment by just verifying his Touch 

ID through Apple Pay in all the retail stores and 

online stores supporting Apple Pay.  

For developers who want to integrate Apple Pay 

with their applications, there are following 

prerequisites: 

• A developer account with payment 

processor. 

• A valid Merchant Identifier. 

• A public key and a private key for encryption and decryption. 

• Apple Pay entitlement being included in the application. 

9.1. Workflow of Apple Pay 

Below is a diagram showing the workflow of Apple Pay in one purchase. 
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Figure 13: Apple Pay



9.2.  Client-side 

What we did in the client-side: 

• Setting up the project to support Apple Pay by importing Apple Pay developer kit. 

• Getting the information of billing, cost, shipping address and others. 

• Generating an encrypted token representing this transaction. 

• Sending the token to the server and handle the callback. 

9.3. Server-side 

For the server-side, we did the following things: 
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Figure 14: Apple Pay workflow [11] 



• Creating an APIs to handle the request from client, which carries the token and other 

transaction information. 

• Decrypting the token and getting the payment credentials. 

• Making the charge and send the result of it to the client. 

9.4. Stripe 

Stripe is a third party payment gateway service provider, who provides a easy platform for 

business owners to charge clients more easily. By integrating Stripe SDK, implementing the 

payment process with Apple Pay becomes much easier. Here is the steps we had gone 

through when integrating Stripe: 

• Install the Stripe library on both client-side and server-side. 

• Get the public API key from Stripe and configure it on both client-side and server-side. 

• Get the information of the purchaser from Apple Pay. 
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Figure 15: Stripe dashboard



After these 3 steps, we can use methods in Stripe library to finish transaction. Here, Stripe 

speed up the whole development process by handling all encryption, decryption and charging 

with the banks for the developers. 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Figure 16: Stripe transaction history



10. Study of Integrating Apple Wallet 

Apple Wallet is an application introduced in iOS 8.1. Before iOS 8.1, it is called Passbook, which 

allows user to store their passes, like coupons, tickets and boarding passes. Apple introduced 

a new generation of Passbook named Apple Wallet together with Apple Pay in this year's 

conference. Users can add his own credit cards, debit cards and loyalty cards into his Apple 

Wallet. 

Since we have finished integrating Apple Pay in our 

application, users can buy tickets right within our 

application using Apple Pay. What we are going to do 

now is to enable users to add purchased tickets 

into Apple Wallet so that users can redeem their 

tickets by just showing the passes in their Apple Wallet. 

10.1.Turning a Ticket into a Pass 

Before trying to add a ticket into Apple Wallet as a pass, 

we have to learn what exactly a pass is. From a user's 

perspective, a pass is a collection of all the relevant 

information of an event. From a developer’s perspective, 

a pass is a package containing a JSON file as the template, 

which stores all the information and all the image 

resources that are required to build the pass. 
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Figure 17: “Add to Apple Wallet” badge

Figure 18: Pass structure



There are 5 different styles of passes: 

Pass Style Description Example

Boarding Pass Representing a ticket to get 

discount when buying goods 

in the certain store.

Coupon Representing a ticket to get 

discount when buying goods 

in the certain store.

Event Ticket Represent a ticket to get 

access to an event at a 

particular time and venue.

Store Card Representing the user’s 

account in a store or club.

If the purpose of the pass is 

not among the above 4 

categories.
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The JSON file in the pass package is for specifying the information and the style of the pass 

which is in a format like this: 

Taking the above code as an example, the field “eventTicket” will contain all the relevant 

information shows on the front page of the pass.  Below is a sample of a event ticket. 
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{ 
"formatVersion" : 1, 
"passTypeIdentifier" : "xxx", 
"serialNumber" : “xxx”, 
"teamIdentifier" : "HP634A2CZK", 
"organizationName" : "Eksibition Team", 
"description" : "CUHK Museum 1-Day Pass", 
"foregroundColor" : "rgb(255, 255, 255)", 
"backgroundColor" : "rgb(60, 65, 76)", 
"labelColor": "rgb(177, 189, 213)", 
"eventTicket" : {...} 

} 

"eventTicket" : { 
"headerFields" : [{ 

"dateStyle" : "PKDateStyleMedium", 
"key" : "valid_from", 
"label" : "Valid From", 
"value" : validFrom.format("YYYY-MM-DDThh:mmZ") 

}], 
"primaryFields" : [{ 

"key" : "event", 
"label" : "EVENT", 
"value" : "Paintings by CUHK Students" 

}], 
"secondaryFields" : [{ 

"key" : "loc", 
"label" : "LOCATION", 
"value" : "SHB 611, CUHK" 

},  
{ 

"key" : "ticket_type", 
"label" : "Ticket Type", 
"value" : "1-Day Pass" 

}, 
{ 

"isRelative" : true, 
"key" : "doors-open", 
"label" : "Doors Open", 
"timeStyle" : "PKDateStyleShort", 
"value" : "2015-12-10T09:30+08:00" 

}] 
}



For different styles of pass, the layout of this field is different [16]. 

Pass Style Layout

Boarding Pass

Coupon

Pass Style
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Event Ticket

Store Card

Generic

LayoutPass Style
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After specifying all these fields in the JSON file and adding all the relevant images in the 

package, we still have to sign our pass package using the registered Apple Developer private 

key. We have go through the following steps to be able to sign a pass [13]: 

• Go to iOS Developer Portal and add a pass into the pass list of our account. 

• Download the certificate from the configuration of this pass and then add the certificate to 

our Keychain. 

• Download the Apple Worldwide Developer Relations Certification Authority (WWDR) 

certificate and add it to the Keychain. 

• Sign the pass package with these two certificates. 

10.2.Sign and Distribute Passes 

Since the key is private, we can’t just have a static pass embedded in the application. We have 

to sign every single pass on our server whenever the client side request a pass. So we 

improved our server by adding a new API for signing and distributing passes according to the 

requests from the client-side. 

We use a module called “passbook” in npm to help us do this. The module passbook requires 

the two certificates in format .pem. So that we have to convert the certificated to the right 

format by using the command provided by passbook. 

node-passbook prepare-keys -p keys  

After this, we went through the following steps to sign and distribute a pass of ticket from 

server according to the request from the client-side. 

• Get the ticket number from the parameters in the request and get the related information 

about this ticket from the database providing the ticket number. 

• Create a template for this ticket and update this template according to the information got 

from the database. 

• Create a pass package with the template we got and sign this pass package with the two 

certificates. 

• Send the package to the client and delete the local file of it. 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11. Redeem System 

After implemented the function that a user can add his or her tickets into Apple Wallet, we still 

need a redeem system for the museum organizer to check if the ticket provided by the user is 

valid or not. So we designed a redeem system and built another application for museum 

organizers to check the tickets. 

As we can see from Figure 18, each pass contains a QR code at the bottom. The museum can 

use our redeemer application to scan this QR code to check the validity of the ticket. 

The redeemer application will get a ticket number from the QR code and send it to the server. 

The server will check if this tick number is in the right format and if it is still valid. The server 

will give the redeemer application a response indicating the validity of the ticket number. 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Figure 18: Sample Pass Figure 19: Redeem a ticket 



12. Limitations and Future Development 

Although we have implemented most of the function, there are still some limitations of our 

application that remain to be tackled. 

• Right now all of our functions related to the user’s behavior are device based, which mean 

all the requests sent from one device will be recognized as one user’s action. This makes 

the analyzing of user’s behavior less accurate in case of the situation that different users 

used one device to use our application. We planned to add a user management system to 

let each user has their own accounts and link their accounts to their social networks. Such 

that the analyzing of user behavior will become more accurate and meaningful.  

• On account of lacking Estimote beacons, we didn’t finish implementing the indoor 

positioning. But we did much research on how to use Estimote Indoor Location SDK to 

implement indoor position. We planned to create a coordinate transferring system to 

convert the relative position of the a certain point into the right position over the map. 

• We have not done the research on the indoor path analyzing, which is to calculate a most 

reasonable path from two given points in the map. This function is highly related to the 

smart guide function which we are going to develop in the next semester. 

• Right now, all the data related to museum items are hard coded into the database. We still 

need some more APIs for museum users to update the data of the items in the museum. 

We need to develop a user interface for museum organizers to login and manage their 

data like updating the information of an item, updating the relationship between items 

and beacons. 

• The map and the positions of the beacons are also hard coded, so we should also develop 

a system to let museum users to edit their map and the positions of the beacons. How to 

save the position of the beacons is of great importance. 

• The function of new notification is also unimplemented. In addition to the development of 

the user interface, developing the APIs for museum organizer and designing the format for 

the news are also of great importance. 

• Currently, all the description are in English. We do not support multiple language selection 

at this time. 
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• Add a news notification system to notify users about the promotions of events. 

• Develop an account management system to manage the account of the users and 

museum organizers. 

• Make our application a platform for different museums to adopt. (If time allowed.) 

Page �  of �38 42



13. Difficulty of the Project 

During doing this project, we have faced the following difficulties which took us a relative long 

time to solve. 

• When doing the research on the indoor positioning and studying on our first approach, we 

read some paper on this topic and found a solution that are relatively accuract. In order to 

understand the theory behind that approach, we did research on the features of the 

bluetooth energy in order to learn the way it broadcast and how its signals are interfered. 

At the end we got an algorithm and a plan on how to calculate the environment of one 

room and map it into a parameter for position analyzing, but we gave up this approach 

because it is nearly impossible to calculate the parameter, which represents the 

environment of a big and complex exhibition hall. 

• Designing the indoor map also cost us a lot of time. As what we have mentioned at the 

section “Study of Custom Indoor Map Design”, we spend much time on trying to use 

Mapbox as a tool to create the custom indoor map, in which most of the time were spent 

on how to draw the map as a .geojson file. At that time, we even developed a quite 

complicated method to parse the .geojson file and draw it out by ourselves. But at the end, 

we gave up Mapbox for the reasons mentioned early. 

• When building the server for signing and distributing the passes, we kept failing on the 

final point, which means we could not know what client side get from the server or 

whether the data generated by the server is correct. Since the error occurred at the final 

step, we don’t know the reason why the file failed to be downloaded and opened. After a 

long time fixing, we replaced the certificate and regenerate the .pem file using the 

command provided by passbook module and change the way we used to update the 

template of the pass. Finally, we get out pass and can successfully add it to our passbook. 
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14. Summary 

After a one-semester long development, our application has already been equipped with 

some basic features. Besides those traditional user interactions, we also took advantage of 

the latest iOS features such as 3D Touch, Apple Pay and Apple Wallet. 

We were keeping learning new technologies along the way of developing. We are getting much 

more familiar with terms like BLE, beacons, RSSI, and RESTFul and tools like Node.js, Stripe 

and MongoDB. Now we can make great use of these tools to develop better applications. After 

the learning procedure this semester, we are much more confident for the development next 

semester. We hope we can implement more powerful functions and fancy features in the 

future and makes our application better. 

At the end of this report, we would like to give our special thanks to Prof. Michael R. Lyu and 

Mr. Edward Yau, who are willing to take their time to meet with us and offering constructive 

comments on our project. Without them we wouldn’t have tackled this much difficulties.  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