

Morse Code

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Final Year Project 2013 (2
nd

 Term)

LYU 1305

Real-Time Morse Code Communication App

Supervisor: Prof. LYU Rung Tsong Michael
Prepared by: LUO Xin (1155026046)

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

2

<This is a blank page>

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

3

Abstract

Real time Morse Code Communication App is an application focused on Morse Code

emission and reception in light. Our goal of the project is to implement this application in

Android devices.

In this report, we will go through the whole process related to our interesting project in this

semester. A table of content will guide us to each individual part of this report. At the

beginning, Introduction part gives a rough idea about why we do this project and what our

objectives are. In this semester, we changed the implementation of the decoding part

completely because of the different platform. We did some research on the usage of android

camera and use it to get the real time images. Some key concepts are explained so that we can

understand all the things in a reasonable way. Then we present our design and

implementation of the application. Some special functions usage and realization process

accompanied with some pictures helping explain in a detail way. Testing is always necessary

in any project. In the following Experiment and Testing part, we present how we find

problems, solve problems and improve our applicationôs performance. In the conclusion part,

we show how we implement our application step by step. Finally, contributions to the project

of each of us were described in detail.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

4

Table of Contents
Abstract .. 3

Table of Contents .. 4

Chapter 1: Introduction .. 7

1.1 Background .. 7

1.2 Motivation .. 8

1.3 Summary in Fall 2013 (Term 1) ... 11

1.4 Highlight in Spring 2014 (Term 2) .. 12

Chapter 2: Morse Code ... 13

2.1 Overview .. 13

2.2 Coding Rule .. 13

2.3 Symbol Representation ... 14

2.3.1 Letters .. 14

2.3.2 Numbers ... 14

2.3.3 Punctuation .. 14

2.4 Speeds ... 15

2.5 Instance .. 16

Chapter 3: Environment Setup ... 17

3.1 Overview .. 17

3.2 Problems in installing Eclipse and Android SDK .. 17

3.3 Problems in importing OpenCV into the workspace ... 19

3.4 Problems in building a new project ...20

Chapter 4: UI and Functionality Design ... 21

4.1 Initial Design .. 21

4.2 Final Design .. 22

4.3 Functionality ... 24

Chapter 5: Implementation Details ... 26

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

5

5.1 Overview .. 26

5.2 Stage 1 .. 27

5.2.1 Encoding ... 27

5.2.2 Decoding: using OpenCV .. 37

5.3 Stage 2 .. 53

5.3.1 Light Detection ... 53

5.3.2 Auto Tracking .. 64

5.4 Stage 3 .. 46

5.4.1 Camera Preview ... 46

5.4.2 Camera Buffer Frame .. 49

5.5 Stage 4 .. 66

5.5.1 Combine Encoding and Decoding Parts .. 66

5.5.2 Unicode Encoding and Decoding ..68

5.6 Stage 5: Auto Detection ... 72

Chapter 6: Experiments and Testing .. 73

6.1 Window size testing .. 73

Chapter 7: Conclusion .. 74

7.1 Progress .. 74

7.1.1 Encoding ... 74

7.1.2 Decoding ... 75

7.1.3 Combination ... 76

7.2 Difficulties .. 77

7.2.1 Encoding ... 77

7.2.2 Decoding ... 78

7.2.3 Combination .. 80

7.3 Limitation s ... 83

Chapter 8: Contribution ... 84

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

6

8.1 Fall 2013 ... 84

8.2 Spring 2014 ... 85

Chapter 9: Acknowledgement ... 87

Chapter 10: Reference ... 88

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

7

Chapter 1: Introduction

1.1 Background

Morse code is a method of transmitting text information as a series of on-off tones, lights, or

clicks that can be directly understood by a skilled listener or observer without special

equipment. It is initially invented by Samuel Finley Breese Morse in 1937. And it has been in

use for more than 160 yearsðlonger than any other electrical coding system. What is called

Morse code today is actually somewhat different from what was originally developed by Vail

and Morse. After some changes, International Morse Code was standardized at the

International Telegraphy Congress in 1865 in Paris, and was later made the standard by

the International Telecommunication Union (ITU). International Morse code today is most

popular among amateur radio operators
[1]

.

Morse code is useful in many fields, such as radio navigation, amateur radio, warship, the

signal lamp included in a submarine periscope and so on. Besides, Morse code has been

employed as an assistive technology, helping people with different native languages or

people with a variety of disabilities to communicate. For the general public, an important

application is signaling for help through SOS, ñĿĿĿð ð ð ĿĿĿò. This can be sent by many

ways: keying a radio on and off, flashing a mirror, toggling a flashlight and similar methods.

http://en.wikipedia.org/wiki/Electrical
http://en.wikipedia.org/wiki/International_Telecommunication_Union
http://en.wikipedia.org/wiki/Amateur_radio
http://en.wikipedia.org/wiki/Disability

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

8

This will be very useful especially when you are in wild and your phone is out of power or no

signal.

1.2 Motivation

Nowadays, there are many kinds of Android Apps of Morse Code in the android market.

Here are some examples:

Morse Code Trainer
[2]

:

This is an app helping users to learn Morse Code. One can choose either

transmitting or receiving mode to practice corresponding skill and

receive the performing feedback immediately. It includes the functions

of letter training (both transmitting and receiving), word training (only transmitting), free

mode, speed adjusting (WPM), sound effects adjusting and electronic handbook.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

9

Morse Code Translator
[3]

:

This is an app allowing users to send short flashlight text messages

using the International Morse Code.

The apps includes the features that the flashlight can transmits short

messages of lights (Morse Code); there are some template stored in the database for

emergencies. For example, SOS; allowing users to save new messages; changing frequency

of the transmitted signal.

Simple Morse Code Translator
[4]

:

This app allows users to input any text by keyboard or voice or select a

commonly transmitted word or phrase. The app translates the received

message and broadcast the translated text via camera flash.

SMS2CW - Convert to Morse Code
[5]

:

This is an app to convert incoming SMS or TXT messages into audible

Morse Code. Once the user enable it and set the options, it will

intercept incoming text messages and beep them out in Morse Code.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

10

In summary, present Morse code apps in Android market mainly includes the following

features:

 ̧ Helping users to learn Morse code;

 ̧ Allowing users to type Morse code;

 ̧ Encoding and Decoding between text message and Morse code (dot and dash);

 ̧ Decoding audible Morse code (beeps) to text message;

 ̧ Play Morse code with audible messages (beeps);

 ̧ Play Morse code with flashlight.

However, we didnôt find an app that can receive a light message and decode it to a text

message. Therefore, in addition to encoding Morse code by light sequences, we consider

developing an android app to decode the Morse code generated by light. This will be very

useful when you are in a disaster, in wild with a power-off cellphone or in other similar

situation and you want to ask for help (sending ñSOSò signal). Furthermore, in some movies,

there will sometimes appear some Morse code message generated by light. For entertainment,

if we can decode those Morse code ourselves, that would be very interesting.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

11

1.3 Summary in Fall 2013 (Term 1)

ü Morse code message encoding and decoding part separately;

ü Morse code was limited to English words base on alphabets;

ü Base time of Morse code is fixed to 0.5 second;

ü Detection area is a fixed rectangle.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

12

1.4 Highlight in Spring 2014 (Term 2)

ü A complete application including Morse code message sending and receiving part;

ü A message box showing the sending and receiving messages was added;

ü Message sending and receiving can be stopped manually;

ü Base time of Morse code can be changed by users;

ü Auto-search the light at the very beginning;

ü Enable Chinese sending and receiving;

ü Light tracking when the light is ON.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

13

Chapter 2: Morse Code
[6]

2.1 Overview

At the beginning of this report, weôve already had a rough idea about what Morse code is and

what Morse code can do. Here we introduce the mechanism of Morse code in detail, like

what Morse code is composed of and how it works. International Morse code will be

introduced and used here.

2.2 Coding Rule

 International Morse code is composed of five elements:

1) Short mark, dot or ñditò (ǒ) which is one time unit long.

2) Longer mark, dash or ñdahò () which is three times units long.

3) Inter-element gap between the dots and dashes within a character which is one dotôs

duration (one unit long).

4) Short gap between letters which is three times units long.

5) Medium gap between words which is seven times units long.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

14

2.3 Symbol Representation

2.3.1 Letters

Character Code Character Code Character Code

A ǒ J ǒ S ǒǒǒ

B ǒǒǒ K ǒ T

C ǒ ǒ L ǒ ǒǒ U ǒǒ

D ǒǒ M V ǒǒǒ

E ǒ N ǒ W ǒ

F ǒǒ ǒ O X ǒǒ

G ǒ P ǒ ǒ Y ǒ

H ǒǒǒǒ Q ǒ Z ǒǒ

I ǒǒ R ǒ ǒ

2.3.2 Numbers

Character Code Character Code

0 5 ǒǒǒǒǒ

1 ǒ 6 ǒǒǒǒ

2 ǒǒ 7 ǒǒǒ

3 ǒǒǒ 8 ǒǒ

4 ǒǒǒǒ 9 ǒ

2.3.3 Punctuation

Character Code Character Code

Period [.] ǒ ǒ ǒ Colon [:] ǒǒǒ

Comma [,] ǒǒ Semicolon [;] ǒ ǒ ǒ

Question mark [?] ǒǒ ǒǒ Double dash [=] ǒǒǒ

Apostrophe [ó] ǒ ǒ Plus [+] ǒ ǒ ǒ

Exclamation mark

[!]

 ǒ ǒ Hyphen, Minus

[-]

 ǒǒǒǒ

Slash [/] ǒǒ ǒ Underscore [_] ǒǒ ǒ

Parenthesis open [(] ǒ ǒ Quotation mark

[ñ]

ǒ ǒǒ ǒ

Parenthesis close [)] ǒ ǒ Dollar sign [$] ǒǒǒ ǒǒ

Ampersand [&] ǒ ǒǒǒ At sign [@] ǒ ǒ ǒ

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

15

2.4 Speeds

An operator must choose two speeds when sending a message in Morse code. One is the

character speed, or how fast each individual letter is sent. The other is text speed, or how fast

the entire message is sent. An operator could generate the characters at a high rate, but by

increasing the space between the letters, send the message more slowly.

Therefore, duration of a dot plays an important role in speed deciding.

For example, if dot = 0.5 seconds (one time unit), we will have:

 dash = 3 * dot = 1.5 seconds

 space = 7 * dot = 3.5 seconds.

The lower the dot duration, the higher the speed of the message is sending. Generally more

experienced operators can send and receive at faster speeds.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

16

2.5 Instance

Here is an example of phrase ñF Y Pò in Morse Code format, each letter is separated by a

space:

 ǒǒ ǒ ǒ ǒ ǒ

 F Y P

Morse Code is often spoken or written with ñdahò for dashes, ñditò for dots located at the end

of a character, and ñdiò for dots located at the beginning or internally within the character.

Thus, ñF Y Pò is orally:

Di-di-dah-dit Dah-di-dah-dah Di-dah-dah-dit.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

17

Chapter 3: Environment Setup

3.1 Overview

Our application is built in Android Operating System (OS) and developed in Eclipse

combined with Android SDK in Windows. OpenCV is used as the main library in our project.

The thing we need to do is to install Eclipse into our computer and set up all the parameters

for the project development. However, things didnôt go that smoothly. We met several

problems in the setting process.

3.2 Problems in installing Eclipse and Android SDK

Eclipse provides an integrated development platform for us to develop application in Java

basically. Android SDK is a Software Development Kit which provides a comprehensive set

of development tools for developers.

Follow the normal steps of installing software to install Eclipse and SDK, we couldnôt run the

project correctly. Then we found that if they are not installed in the same folder, several path

parameters need to be settled to ensure that the project can be built successfully which may

bring a lot of trouble.

After all the installation, open eclipse and set configuration to SDK in this way:

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

18

In the above interface, corresponding

ü Tools and

ü Versions of Android OS

need to be selected to make it possible for our application to run in a range of Android

mobile phone. At first we didnôt install necessary tools, the project couldnôt run

successfully as well. After doing things above, the lowest running environment for our

application can be ensured.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

19

3.3 Problems in import ing OpenCV into the workspace

OpenCV plays the most important role in the whole development process. Necessary libraries,

efficient algorithms, useful image processing tools are all provided by it. When we tried to

run the samples in the folder, errors like ñlibrary canôt be foundò appeared. So we found that

we need to import like this:

Only when the OpenCV folder was located in the same root directory can the later project run

successfully. Otherwise, many other cumbersome parameters need to be changed achieve the

same goal.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

20

3.4 Problems in build ing a new project

Building a new Android Application project in Eclipse is an easy thing. However, when we

tried to run it, several problems appeared, like library doesnôt exist in some path or no

appropriate Android device can be found. Thus we found that several parameters need to be

changed to build the project successfully:

ü Versions of Android OS

ü OpenCV library

Just click on the lowest version of platform we need and add OpenCV library into the Library

part, the sample project could run successfully.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

21

Chapter 4: UI and Functionality Design

4.1 Initial Design

In last semester, we divided the app into encoding part and decoding part and therefore two

user interfaces. They are just simple initial designs as followings:

In the encoding part, the UI was just a simple linear layout, including a text box for user to

type message and a button to start transmission. The limitation was that you could not stop

the transmission until it was totally finished.

In the decoding part, we used the OpenCV Library and the layout was just the camera

preview and a focus rectangle. The limitation is that the light source had to appear in the area

of the focus rectangle. Otherwise you might get incorrect message or even no message. It was

not user-friendly because the two users had to hold their devices still.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

22

4.2 Final Design

In the final design, we combine the encoding and decoding parts into one user interface (See

Figure 4.2-1 and Figure. 4.2-2).

 Chatting Record

Freq s/unit

Message

0.3

Cancel Send Detect

Linear layout 1:

Operation Panel

Frame layout:

Top: Transparent Canvas

Bottom: Camera Preview

Sub Linear layout 1-2 Sub Linear layout 1-1

Linear layout 2:

Camera Preview

Figure 4.2-2

Figure 4.2-1

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

23

We divide the UI into two linear layouts. The left one is used to do operations and includes 2

sub linear layouts. The right one is used to display the camera preview and receive the

message. It includes a frame layout which contains two layers. The bottom one is just the

camera preview. The top one is a transparent canvas used to draw the focus rectangle.

The pseudo codes of the UI structure are as follows:

<LinearLayout : O verall UI >

<LinearLayout 1: Operation Panel orientation ="vertical" weight ="1" >

 <Text : ƧChatting Record ƨ>

 <EditText : Chatting Record Box >

 <Sub- LinearLayout 1- 1: Frequency selection orientation ="horizontal" >

 <Text : ƧFreqƨ ˲

 <Spinner : Frequency selection >

 <Text: Ƨs/unit ƨ>

 </ End of Sub - LinearLayout 1- 1>

 <Text : ƧMessageƨ>

 <EditText : Message Box>

 <Sub- LinearLayout 1- 2: Buttons orientation ="horizontal" >

 <Button 1: Cancel weight ="1" >

 <Button 2: Send weight ="1" >

 <Button 3: Detect weight ="1" >

 </ End of Sub - LinearLayout 1- 2>

</ End of LinearLayout 1>

<LinearLayout 2: Camera Preview orientation ="vertical" weight ="1" >

 <FrameLayout

 <preview surface : the bottom surface />

 <Canvas surface : the top surface opacity =100%/>

 </ End of FrameLayout >

</ End of LinearLayout 2>

</ End of Overall UI LinearLayout >

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

24

4.3 Functionality

ñChatting Recordò Edit Box

 The sent messages and received messages will appear in this box.

 The message formats are:

 SENT: DATE TIME \n message

 RCVD: DATE TIME \n message

ñFreqò Selection List

 User can choose a frequency (0.2/0.3/0.4/0.5 unit/s) to send message. The frequency

means the time needed to send a dot.

ñMessageò Edit Box

 User can type the message he/she wants to send in this box.

ñCancelò Button

 When the message is sending and you want to stop it, click the ñcancelò button.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

25

ñSendò Button

 Click ñSendò button to send message. If there is no content in ñmessageò box, it will

alert that ñCannot send empty messageò and send nothing.

ñDetectò Button

 After click this button, the camera will start detecting light source and valid message. If

a valid ñstarting signalò is received, the program will start decoding.

 If the ñDetectò button is not clicked, the decoding part will not work even if a ñstarting

signalò is received.

Camera Preview

 If the ñDetectò button is clicked and there is a light source, the focus rectangle will

appear, focus on and track the light source. If it detects some valid ñstarting signalò, the

decoding part will begin to work.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

26

Chapter 5: Implementation Details

5.1 Overview

Data Flow Diagram:

Finish

Message

Ending signal

Morse code

Message Decoded

message

Message

Beginning signal

Encoded

message

Morse code Text
Text

Send ending

signal

Morse code array

Receive

ending

message
Display

ñTranslation

finishesò

Detection

button

pushed by

user

Wait for

beginning signal

Decode

message

Text message

typed by user

Translate Button

pushed by user

Push

Button
Get Text

Send beginning

signal

Encode

message

Morse code array Text array

Send

message

Ready to

receive

message

Receive

message

Display

message

Encoding Decoding

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

27

5.2 Stage 1

5.2.1 Encoding

1. Flashlight control
 [7]

1) Declaring permissions

To open the flashlight, we have to use the android API android.hardware and the

class camera.

To access the device camera, we must declare the CAMERA permissions in the

Android Manifest. Because we use the camera and flashlight features, the Manifest

includes the following:

<uses-permission android:name="android.permission.CAMERA" />

 <uses-feature android:name="android.hardware.camera" />

 <uses-feature android:name="android.hardware.FLASHLIGHT" />

 2) Open camera:

 Obtain an instance of Camera from using open(int).

private Camera camera = null ;

 if (null == camera)

 camera = Camera.open();

 3) Call startPreview() to start updating the preview surface.

http://developer.android.com/reference/android/Manifest.permission.html#CAMERA
http://developer.android.com/reference/android/hardware/Camera.html#open(int)
http://developer.android.com/reference/android/hardware/Camera.html#startPreview()

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

28

camera.startPreview();

4) Get existing (defaut) settings with getParameters(). If necessary (open and close

flashlight), modify the returned Camera.Parameters object and

call setParameters(Camera.Parameters).

Camera.Parameters parameters = camera.getParameters();

5) Open Flashlight:

To open flashlight, modify the parameter to FLASH_MODE_TORCH mode and

call setParameters(Camera.Parameters).

//open flashlight

private Parameters parameters = null ;

parameters.setFlashMode(Camera.Parameters.FLASH_MODE_TORCH);

 camera.setParameters(parameters);

6) Close Flashlight:

To close flashlight, modify the parameter to FLASH_MODE_OFF mode and

call setParameters(Camera.Parameters).

//close flashlight

http://developer.android.com/reference/android/hardware/Camera.html#getParameters()
http://developer.android.com/reference/android/hardware/Camera.Parameters.html
http://developer.android.com/reference/android/hardware/Camera.html#setParameters(android.hardware.Camera.Parameters)
http://developer.android.com/reference/android/hardware/Camera.html#setParameters(android.hardware.Camera.Parameters)
http://developer.android.com/reference/android/hardware/Camera.html#setParameters(android.hardware.Camera.Parameters)

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

29

parameters.setFlashMode(Parameters.FLASH_MODE_OFF);

 camera.setParameters(parameters);

 7) Release Camera:

Call stopPreview() to stop updating the preview surface.

Call release() to release the camera for use by other applications.

if (camera != null)

 {

 camera.stopPreview();

 camera.release();

 camera = null ;

 }

2. Time control

 1) Open duration control

 lastTime records the beginning time when the flashlight opens.

 curTime records what time it is now.

openTime records how long the flashlight has opened, that is, openTime =

curTime ï lastTime.

 codeTime is the duration that the flashlight should open.

http://developer.android.com/reference/android/hardware/Camera.html#release()

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

30

At the beginning, lastTime = curTime, flashlight opens and the program enters an

while loop. The program will not jump out of the loop until openTime = codeTime,

and then the flashlight closes.

 2) Stop duration between dit and dah:

 unit denotes the duration of one dit.

Similar to open time control, at the beginning, lastTime = curTime, flashlight closes

and the program enters an while loop. The program will not jump out of the loop

until curTime - lastTime = unit, and then the flashlight is on.

 3) stop time between symbols or words

 stopTime = unit * 0.3 for stop duration between symbols;

 stopTime = unit * 0.7 for stop duration between words.

Similar to the above, at the beginning, lastTime = curTime, flashlight closes and the

program enters an while loop. The program will not jump out of the loop until

curTime - lastTime = stopTime, and then the flashlight is on.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

31

3. Encoding Morse code

1) Save the Morse code in a two-dimensional array int [][] code. Each row of the array

save the corresponding Morse code of a symbol (a letter or a punctuation). Instead of

using dot and dash, we use digits 1 and 3 to represent dit and dah, respectively.

2) Write a function code_index(char symbol) to return an integer that points to the index

where the symbol is in the array code[][]. For example, code_indexA = 0, then we

have the modified Morse code for A is {1, 3} (See table 5.2.4-1), which means the

Morse code for A is ñdit dahò. Since we have codeTime = array[i][j] * unit, for A, the

flashlight will be on for 1 unit time, off for 1 unit time, and on for 3 units time, and

finally off. For words, for example, ñA Aò, the on-off sequence is ñon(1 unit), off(1 unit),

on(3 units), off(7 units), on(1 unit), off(1 unit), on(3 units), off(until the next decoding

process)ò.

 The entire encoding process is indicated by the Process Flow Chart 5.2.4-2.

Index Code[index] Correspon-

ding symbol

Index Code[index] Correspon-

ding symbol

0 {1, 3} A/a 27 {1, 3, 3, 3, 3} 1

1 {3, 1, 1, 1} B/b 28 {1, 1, 3, 3, 3} 2

2 {3, 1, 3, 1} C/c 29 {1, 1, 1, 3, 3} 3

3 {3, 1, 1} D/d 30 {1, 1, 1, 1, 3} 4

4 {1} E/e 31 {1, 1, 1, 1, 1} 5

5 {1, 1, 3, 1} F/f 32 {3, 1, 1, 1, 1} 6

Table 5.2.4-1: Modified Morse code Table

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

32

6 {3, 3, 1} G/g 33 {3, 3, 1, 1, 1} 7

7 {1, 1, 1, 1} H/h 34 {3, 3, 3, 1, 1} 8

8 {1, 1} I/i 35 {3, 3, 3, 3, 1} 9

9 {1, 3, 3, 3} J/j 36 {1, 3, 1, 3, 1, 3} .

10 {3, 1, 3} K/k 37 {3, 3, 1, 1, 3, 3} ,

11 {1, 3, 1, 1} L/l 38 {1, 1, 3, 3, 1, 1} ?

12 {3, 3} M/m 39 {1, 3, 3, 3, 3, 1} ô

13 {3, 1} N/n 40 {3, 1, 3, 1, 3, 3} !

14 {3, 3, 3} O/o 41 {3, 1, 1, 3, 1} /

15 {1, 3, 3, 1} P/p 42 {3, 1, 3, 3, 1} (

16 {3, 3, 1, 3} Q/q 43 {3, 1, 3, 3, 1, 3})

17 {1, 3, 1} R/r 44 {1, 3, 1, 1, 1} &

18 {1, 1, 1} S/s 45 {3, 3, 3, 1, 1, 1} :

19 {3} T/t 46 {3, 1, 3, 1, 3, 1} ;

20 {1, 1, 3} U/u 47 {3, 1, 1, 1, 3} =

21 {1, 1, 1, 3} V/v 48 {1, 3, 1, 3, 1} +

22 {1, 3, 3} W/w 49 {3, 1, 1, 1, 1, 3} -

23 {3, 1, 1, 3} X/x 50 {1, 1, 3, 3, 1, 3} _

24 {3, 1, 3, 3} Y/y 51 {1, 3, 1, 1, 3, 1} ò

25 {3, 3, 1, 1} Z/z 52 {1, 1, 1, 3, 1, 1, 3} $

26 {3, 3, 3, 3, 3} 0 53 {1, 3, 3, 1, 3, 1} @

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

33

cm[]: the array of message inputted. len: length of cm[]. ó ó: space

index: the index of Morse code array. Code[][]: The Morse code array.

T

F

T

Figure 5.2.4-2: Process Flow chart

F

N

i++

index < 54 ?
F

T

j = 0

j < code[index].length ?

Open flashlight

code[index][j]*unit seconds

j < code[index].length-1 ?

Close flashlight unit seconds

j++

i < len ?

T

cm[i] == ó ô ?

F

T

i < len ï 1 && cm[i+1] == ó ô?

Start i = 0

stopTime = unit * 7 stopTime = unit * 3

T F

index = code_index(cm[i])

End

i < len-1 ?

Close flashlight stopTime seconds

T

F
Close flashlight

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

34

Explanation of Process Flow Chart:

Set the message ñA Aò as an example again. cm[] = {óAô, ó ô, óAô}.

The variables changes as the following table.

And the descriptions of each step are introduced later.

Step i len =

cm[].length

cm[i] stopTime (s) Index =

code_index(cm[i])

j code[index].length Code[index][j]

1 0

2 0 3

3 0 3 óAô

4 0 3 óAô 7 units

5 0 3 óAô 7 units 0

6 0 3 óAô 7 units 0 0

7 0 3 óAô 7 units 0 0 2

8-9 0 3 óAô 7 units 0 0 2 1

10 0 3 óAô 7units 0 1 2

11 0 3 óAô 7 units 0 1 2 3

12-13 0 3 óAô 7 units 0 2 2

14 1 3

15 1 3 ó ó

16 2 3

17 2 3 óAô

18 2 3 óAô 3 units

19 2 3 óAô 3 units 0

20 2 3 óAô 3 units 0 0

21 2 3 óAô 3 units 0 0 2

22-23 2 3 óAô 3 units 0 0 2 1

24 2 3 óAô 3 units 0 1 2

25 2 3 óAô 3 units 0 1 2 3

26 2 3 óAô 3 units 0 2 2

27 2 3 óAô 3 units 0 2 2

28 3

29 3

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

35

1. At the beginning, i = 0. The program jumps in the first for loop.

2. Since the length of ñA Aò len = 3 and i < 3, the program continues and goes to the

next step.

3. Since cm[0] is óAô, not space, the program goes to the next conditional statement.

4. Since i < len ï 1 && cm[i+1] == ó ô, stopTime = unit * 7.

5. Since code_index(óAô) = 0, index = code_index(cm[i]) = 0.

6. Since index = 0 < 54, the program goes to the second for loop and j = 0.

7. Since code[0] = {1, 3}, code[index].length = 2.

8. Since j < 2, the flashlight is on and lasts for 1 unit second (code[index][j] = 1).

9. Since code[index].length ï 1 = 1 and j < 1, the flashlight in off for 1 unit second.

10. j = j + 1 = 1.

11. Since j = 1 < 2, the second for loop continues and the flashlight is on for 3 unit

seconds (code[index][j] = 3).

12. Since code[index].length ï 1 = 1 and j = 1, j = j + 1 = 2.

13. Since j = 2, the program jumps out of the second for loop and the flashlight closes for

7 unit seconds (stopTime = unit * 7) since i = 0 < len -1.

14. i = i + 1 = 1. The program continues the first for loop since i < 2.

15. Since cm[1] is a space, i = i + 1 = 2.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

36

16. The first for loop continues since i < len.

17. Similar to step 3.

18. Since i = len ï 1, stopTime = unit * 3.

19-26. Similar to steps 5-12.

27. Since j = 2, the program jumps out of the second for loop and the flashlight

 closes finally since i = 2 = len ï 1.

28. i = i + 1 = 3.

29. Since i = 3 = len, the program jumps out of the first for loop and ends the

 encoding process.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

37

5.2.2 Decoding: using OpenCV

1. Overview

The decode part is basically is basically an image processing thing. What we need to do

can be simply explained as gets the image and analyzes the image. Details can be

realized in this way:

The problems here are how we can address image efficiently (when the image changes

all the time) and how we can decide the light ON/OFF time precisely. Different devicesô

cameras have different fps (frames per second) as well. The emission frequency is

seriously limited by the fps value. If the emission frequency was not controlled

appropriately, the reception part may not able to receive the flash light frequency

correctly.

Detect light

ON/OFF

Determine the

ON/OFF duration

Convert duration into

dot/dash/pau se

Decode from

Morse code

Display the

result sequence

Figure 5.3.1-1

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

38

2. Open the camera

Firstly, override the LoaderCallbackInterface which add OpenCV library initialization

to our activity. The camera was activated here.

We want to make use of some efficient algorithms in OpenCV, so the class

JavaCameraView in OpenCV was used to get each frame of the real time image in an

efficient manner. Have a look on how it works:

JavaCameraView:

Itôs an implementation of the Bridge View between OpenCV and Java Camera. Through

the connectCamera which opens Java camera and sets the PreviwCallback to be

delivered, preview frame can be obtained through this callback.

When frame is delivered via the above callback, it processed via OpenCV to be

converted to RGBA32 and then passed to the external callback for later use.

Our subsequent work is mainly focused on the frame obtained here.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

39

3. Set parameters for camera

When the activity is first created, the parameters value need to be settled.

FLAG_KEEP_SCREEN_ON: Keep the screen on all the time.

setVisibility : Set the enable state of the view (which is the view created in step 1) of the

activity.

4. Process frame values

onCameraFrame is the main function here. It is invoked when the delivery of the frame

needs to be done which means, as soon as the frame changed, it will be invoked. It

provides the current camera frame for us to work on.

1) Draw rectangle on the image

Rectangle is the area we used to limit the range that light can be detected. After we

got the RGBA Matrix with frame, we need to calculate the position for the rectangle.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

40

RGBA of the input frame:

 m11 m12 m13 m14 m15 m16 é

 m21 m22 m23 m24 m25 m26 é

 mRgba = m31 m32 m33 m34 m35 m36 é

 m41 m42 m43 m44 m45 m46 é

 é é

 mx1 é

 w11 w12 w13 é

mZoomWindow = w21 w22 w23 é

 ... é

 wn1 é

The size of mZoomWindow depends on the rectangle size we want. After that, we

can decide the position the corner of the rectangle. Use Core.rectangle() combined

with mZoomWindow and its position to draw the rectangle on the image.

Get sub matrix

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

41

2) Determine the threshold value for light on and off

Weôve already got the RGBA of rectangle area: mZoomWindow. Then we need to

check the value of each point in the rectangle area under different light condition.

At first, we use Core.sumElems to compute the sum of all the elements in the above

matrix. And then we got the average value of the sum to get a rough idea about

RGBA value when the light is ON. In this way, we need to ensure that the light fully

fills the rectangle. Although the implementation is limited to that condition, we got

the rough threshold value for RGBA which can be used later.

Finally, we found a function that can extract every element value from the matrix.

Then we did some test on the pixel value and compare to the rough threshold value

we find in last method, and got this:

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

42

After analyzing the data, we found that pixels with obvious light ON state are inside

the blue circle part and pixels with light OFF state are inside the red circle part.

Thus, we choose the threshold value for each channel to be:

 V(R) = 210 V(G) = 210 V(B) = 210

Which means only when V(R) and V(G) and V(B) all exceed 210 can this pixel be

defined as light on.

Light ON

Light OFF

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

43

There are so many pixels in this rectangle area, so we need to decide how much

percent pixels are above the threshold value can the area be defined as light on. Here

we choose P = 10%.

3) Calculate the duration of light ON/OFF

According to the light ON/OFF state of the rectangle area, we record the time of the

state change to calculate the duration.

However, until now, the threshold value was not that precise which may cause error

happen when deciding the duration time. This will be discussed in the experiment

part.

Threshold

value

Light OFF

time

Light ON

time

RGB value

Time

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

44

4) Analyze the raw data

We can see that the duration time is varied in some range, so we need to classify

them into dot and dash. If we specify the value of the ñdotò time, after several tests,

we decide:

 dot 0.7 * dot < realTime < 1.3 * dot

 newTime = 3 * dot 2.5 * dot < realTime < 3.5 * dot

 7 * dot 6.5 * dot < realTime < 7.5 * dot

 (dash = 3 * dot)

Under this range limiting, the state of light can be determined in a much more

flexible manner.

Raw time

data

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

45

5. Decode

According to this tree, using if-else-if to decide whether the code exists or not and

display correct code.

When come across dot, enter the left sub tree, when come across dash, enter the right

sub tree.

Besides the tree above, we also add an end signal. In any node inside the tree, when

come across the end signal, just stop decoding.

Start Signal

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

46

5.3 Stage 2

5.3.1 Camera Preview

Generally speaking, the steps to get the camera preview are as follows
[8]

:

1. Call the function open() in Camera to open the camera.

2. Call the function getParameters() in Camera to get parameters of camera,

like resolution, exposure and so on.

3. Set Camera.Parameters and call setParameters(Camera.Parameters) to

control the camera.

4. Call startPreviewDisplay(SufaceHolder holder) to select the surface to

display the pictures.

5. Call startPreview() to get the camera preview.

6. Call stopPreview() to stop camera preview.

Actually, we implement the SurfaceHolder.Callback by overriding several

functions:
[9]

public void onCreate(Bundle savedInstanceState);

public void surfaceCreated(SurfaceHolder arg0);

public void surfaceChanged(SurfaceHolder arg0,int arg1,int arg2,int arg3);

public void surfaceDestroyed(SurfaceHolder arg0).

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

47

 In function onCreate(), we use

 previewSurfaceView .getHolder() to get the SurfaceHold of SurfaceView;

 addCallback(this) to add a callback listener for the SurfaceHolder;

setType (SurfaceHolder. SURFACE_TYPE_PUSH_BUFFERS) to set the type of

PUSH buffer, declaring that the surface data is provided by other source (here is

the camera), not the Canvas.

setRequestedOrientation(ActivityInfo. SCREEN_ORIENTATION_LANDSCAPE)

to fix the screen orientation.

In function surfaceCreated(), we use

Camera.open() to open camera when the preview surface is created;

setPreviewSize(320, 240) to set the resolution of camera;

setPreviewFpsRange(30000, 30000) to set the frame frequency;

setExposureCompensation(params.getMinExposureCompensation()) to set

exposure value.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

48

The surfaceChanged() function is used to process the preview information when

the data of surface view changes.

In function surfaceChanged(), we use

setPreviewDisplay(arg0) to set the surface view;

setOneShotPreviewCallback(this) to trigger the onPreviewFrame(byte[],

Camera) function of Class PreviewCallback ;

startPreview() to start the camera preview;

stopPreview() to stop the camera preview.

In function surfaceDestroyed(), we use

setPreviewCallback(null) to stop the preview callback, which is used to

get the frame buffer data;

stopPreview () to stop camera preview;

release() to release the camera source.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

49

5.3.2 Camera Buffer Frame

Last semester, OpenCV provides us an interface for processing each frames in real-time.

The frame data it gives to us is already in RGB format. However, the frame it provides

in every second is a little low. So we decide to use the camera that provided by android

itself.

The API only gives us the data of first frame, while what we need are those real time

frames continuously.

Trial1: Using thread to get frame-by-frame.

We define a class FRAME inherits from the class Thread:
[10]

public class FRAME extends Thread {
 @Override
 public void run() {
 while (!Thread. currentThread ().isInterrupted()) {
 try {
 long lastTime = System. currentTimeMillis ();

 if (null != myCamera)
 {
 /*Processing the frame data*/

myCamera.setOneShotPreviewCallback(MainActivity. this);

 }
 Thread. sleep (0);
 } catch (InterruptedException e) {
 // TODO Auto - generated catch block
 Thread. currentThread ().interrupt();
 }
 }
 }

}

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

50

Continuous frame can be accessed by calling:

At first, we called this function inside the thread:

setOneShotPreviewCallback(MainActivity.this)

It means that we build another thread to call the callback function iteratively.

Thread.sleep(0) was used to control the time between each thread. 0 was proved to

be wrong finally. It called the preview callback function without stopping, while

the camera can provide 30 frames in 1 second only. It caused that there are not

enough frame for the thread to process. The image is stuck now and then. We tried

to change 0 into other values that fit in the frame rate; however it was not that

accurate. Therefore, we gave up this method.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

51

Final solution:

Call the setOneShotPreviewCallback(MainActivity.this) at the end of the callback

function onPreviewFrame(byte[] data, Camera camera). It will call itself every time

it finishes the process of the frame data.

Frame provided by the camera: Byte[] data: in YUV420sp format.

YUV420sp
[11]

:

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16

Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24

Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32

U1 V1 U2 V2 U3 V3 U4 V4

U5 V5 U6 V6 U7 V7 U8 V8

From the format table, we can see that every 4 Y data corresponds to 1 U data and 1 V

data. Only when we deal with one 4x4 block Y data do we need to dead with one U data

and one V data.

YUV data is not convenient for us to use. Therefore, after we get the Y, U, V data we

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

52

need, we turn them into R, G and B format data in this way
[12]

:

y1192 = 1192 * y;

r = (y1192 + 1634 * v);

g = (y1192 - 833 * v - 400 * u);

b = (y1192 + 2066 * u);

Then we stored these RGB values in a 3-dimensional matrix in integer format. There are

3 elements in each pixel, R, G and B:

mRgb[i][j][0] = (int)(r >> 10);

mRgb[i][j][1] = (int)(g >> 10);

mRgb[i][j][2] = (int)(b >> 10);

In this way, we can use these RGB values in the same way as last semester.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

53

5.4 Stage 3

5.4.1 Light Detection

1. Algorithms for Light detection

1) Original version (asterisk represents pixel in Light ON state)

Last semester, our applicationôs detection area is fixed to the red rectangle in the

above picture. Only when light appears in this area can they be detected.

The way we determine that ñLight ONò is:

Pixel Value > threshold value ==> Pixel in Light ON state

Percentage of ñLight ONò pixel >= 10% of the pixels in red rectangle

Thatôs how we determine the ñLight ONò state last semester.

The problem is when the light attenuates, some pixelsô value will affect the

decision on ñLight ONò state which made the application misunderstood that the

Light is still ON. It caused that we canôt decode those light sequence in high

frequencies.

Therefore, we tried several ways to improve our light detection part.

* *
*

* *
*

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

54

2) 2
nd

 Version

We donôt want to fix the detection area anymore, so we need to search the light

in the whole preview window.

Firstly, find the light center for the whole screen:

(Light center is similar to the mass center):

Suppose we have:

RGB(0,0) RGB(0,1) RGB(0,2) RGB(0,3)

RGB(1,0) RGB(1,1) RGB(1,2) RGB(1,3)

RGB(2,0) RGB(2,1) RGB(2,2) RGB(2,3)

totalRGB = В В 2'"ÒȟÃ

centerRow = В В Òz 2'"ÒȟÃ) / totalRGB

centerCol = В В Ãz 2'"ÒȟÃ) / totalRGB

Using centerRow and centerCol to locate the light center: (Star represents the

Light Center)

*
*

*

* *

*

*

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

55

Cut the screen into several parts based on the light center:

Find the light center for each grid and let the grid with the largest light center

values to be next search area.

Repeat the above procedure until we find the cluster of the Light ON area.

Trial failed:

Searching in the first step already took too much time, let alone cut the screen

and repeats the procedure in the selected area. Frame showed by the camera

totally stuck. Therefore, we gave up this method.

*
*

*

*
*

*

*

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

56

3) 3
rd

 Version: By comparing grid light centerôs RGB value

Divide the screen into 3x4 grids at the beginning.

Set maxLightCenterRGB = 0; maxRow = 0; maxCol = 0;

Start from the first grid[0, 0].

While there is still grid not processed

Find Light centerôs RGB value tempLightCenterRGB of the grid and its

coordinate tempRow and tempCol, compare the tempLightCenterRGB

with maxLightCenterRGB.

If tempLightCenterRGB > maxLightCenterRGB:

maxRow = tempRow;

maxCol = tempCol;

maxLightCenterRGB = tempLightCenterRGB

*
*

*
*

*
*
* * * *

(localCenterRow, localCenterCol)

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

57

At last, we got the grid with the maximum Light Center RGB. Then we can

follow on this grid later.

Comparing to 2
nd

 Version, we can see that we only need to traverse all the pixels

in one frame one time, which saved us a lot of time.

However, taking all the pixels into consideration made the light center offset

from the light source too much. Thus we add another restriction, that is only

taking pixels whose (R + G + B) / 3.0 is bigger than 210 into consideration. The

result is better than before.

4) 4
th

 Version: Find local maximum RGB pixels and count numbers

During the test of 3
rd

 Version, we came across some problem.

If we have two grids like this:

* *

*
* *

 *

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

58

We can see that in the second grid, the Light Center still offset from the light

source which means the RGB value of the Light Center may not approximate to

the value of the light source. However in the first grid, the Light Center is inside

the white paper because of the uniform distribution of the pixelsô color.

In this way, the RGB value of the Light Center in first grid will be larger than the

RGB value of the Light Center in second grid. Itôs obviously not we want,

because the second grid is the actual grid that contain the light source. Our

algorithm misunderstood the ñwhite paperò in the middle to be the light source.

Therefore, the RGB value of ñLight Centerò doesnôt work all the time, and then

we have our 4
th
 algorithm.

Still divide the screen into 3x4 grids:

*
*

*
*

*
*
* * * *

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

59

Intra -grid :

Define local maximum RGB value of pixel: localMaxRGB = 0

local number of pixels with maximum RGB: localMaxNum = 0.

Start from the first pixel in this grid.

If pixelRGB > localMaxRGB, it means that the original local maximum RGB

value is not the maximum anymore. We need to assign pixelRGB to

localMaxRGB and reassign value 1 to localMaxNum.

If pixelRGB = localMaxRGB, it means that we have another pixel with

maximum local RGB value, then let localMaxNum = localMaxNum + 1.

Thatôs how we get the local maximum RGB value of pixel and number of them.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

60

Inter -grid :

Suppose we have localMaxRGB1 and localMaxNum1 for the first grid,

localMaxRGB2 and localMaxNum2 for the second grid.

How to determine which one is the one with light source?

Comparing localMaxRGB1 to localMaxRGB2 and comparing localMaxNum1 to

localMaxNum2.

Previous idea:

At first, we thought the relationship between maximum RGB value and number

of pixels with maximum RGB value is: (Under the condition that the light

exitsts)

No. of Maximum

RGB

25

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

61

We thought that even if the RGB value of the pixel is not 255, if it approximates

255 and the number of these pixels is very large, we can consider it to be Light

ON. However, after testing on this condition, we found that only if there is light

inside a grid, some pixelsô values must be 255.

Present solution:

Select the larger one from localMaxRGB1 and localMaxRGB2 and keep

checking localMaxRGB value for other grids. After we get the largest

localMaxRGB, assign it to globalMaxRGB, and assign its localMaxNum to

globalMaxNum.

This is how we implement the comparison part:

for (int i = pRow[m]; i <= (pRow[m] + recSide - 1); i++)
{
 for (int j = pCol[m1]; j <= (pCol[m1] + recSide - 1); j++)
 {
 data1 = mRgb[i][j];
 tmpRgb = data1[0] + data1[1] + data1[2];

 if (tmpRgb > tmpMax)
 {
 sumI = j * tmpRgb; //Initial sum of max RGB pixel
 sumJ = j * tmpRgb;
 sumRgb = tmpRgb;

 tmpMax = tmpRgb; //Local Maximum RGB
 numMax = 1; //number of maximum pixels
 }
 else if (tmpRgb == tmpMax)
 {
 sumI = sumI + j * tmpRgb;
 sumJ = sumJ + j * tmpRgb;
 sumRgb = sumRgb + tmpRgb;

 numMax++; //number of maximum pixels
 }

 }
}

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

62

If globalMaxRGB = 255 and globalMaxNum > = 10

We can determine that there is light in this area.

After we know that there is light, how to draw the detection window?

Use the method in 4
th
 Version:

Get the light center (centerRow, centerCol) of the grid with the globalMaxRGB

and globalMaxNum.

Suppose the window size is RecSize, draw the detection window around the

center: (Limit v1, v2, v3, v4 inside the screen)

v1 = centerRow ï 0.5 * RecSize

v2 = centerRow + 0.5 * RecSize

v3 = centerCol ï 0.5 * RecSize

v4 = centerCol + 0.5 * RecSize

v1

v2

v3 v4

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

63

Therefore, we got the initial detection window.

Due to the precision of the locating, we change the division into 6x8. Then the

locating area can be much smaller.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

64

5.4.2 Auto Tracking

After locating light at the beginning, we have a fixed window for it:

Fixed window means that, if the camera shook accidently, then the light may offset from

the fixed window. Decoding canôt go on anymore and tracking is needed.

Tracking procedure:

Calculating the light center of the initial detection window by:

centerRow = В В Òz 2'"ÒȟÃ

centerCol = В В Ãz 2'"ÒȟÃ

Updating v1, v2, v3, and v4 based on the centerRow and centerCol we just got.

Repeating the above procedure only if light appears in this window.

Problems:

Tracking should have meant that the application can capture the light anytime it appears.

We tried to keep searching the whole screen unless we detect the light. However, every

time it searches, the whole screen will stick and light data may lose. Therefore we

restrict the condition of tracking as follows:

*
*

*
*

*
*

*

* * * *

*

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

65

ü The application only will locate the light at the very beginning.

ü Tracking works only when the light is inside the detection window.

ü Detection window is fixed when the light is OFF.

ü Light should appear in the detection window if we have the detection window.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

66

5.5 Stage 4

5.5.1 Combine Encoding and Decoding Parts

Up to this stage, we have used the Android Class ñCameraò to display the

camera preview, get the frame buffer from the preview and also convert the

frame data from YUV format to RGB format successfully. With the RGB data

from the frames we can do the calculation and decoding. And we also have

implemented the User Interface combined with the operation panel and the

camera preview. It is time to combine the encoding part and decoding part.

We use multiple threads to achieve the bi-directional communication.

Main thread:

Get the User Interface and Camera Preview. When ñDetectò button is

pressed, it will get the frame buffer, search and track the light source and

decode the light sequences.

Child thread ñONò:

When ñSendò button is pressed, this thread is created. This thread is used to

open the flashlight, convert the message to Morse Code and send the light

sequences.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

67

 In the thread ñONò, we need to update the User Interface in following situations:

1. When the ñCancelò button is pressed, the User Interface should display the

string ñTransmission canceledò to the screen.

2. When the transmission is finished, the User Interface should put the input

message to the ñChatting Recordò box and display the string ñTransmission

finishedò to the screen.

The above operations are actually to update the User Interface. But in Android

programming, only the original thread that creates the UI view (here is the main

thread) can update the UI. Other thread cannot directly update the UI. So we use

the function runOnUiThread(Runnable) to create the UI-update codes in a

Runnable object. When the UI needs to be update, pass this Runnable object to

the Activity.runOnUiThread(Runnable). Then the Runnable object can be called

in the UI thread.
[13]

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

68

5.5.2 Unicode Encoding and Decoding

The International Morse Code can only represent 54 characters, so it cannot

communicate with Chinese. It is not convenient for Chinese users. Therefore,

we tried to use Unicode to represent Chinese.

 Unicode Representation
[14]

:

Unicode defines a space of 1,114,112 code points in the range

from 0hex to 10FFFFhex. Normally a Unicode code point is

referred to by writing "U+" followed by its hexadecimal

number. For code points in the Basic Multilingual Plane

(BMP), four digits are used (e.g. U+0058 for the character LATIN CAPITAL

LETTER X); for code points outside the BMP, five or six digits are used, as

required (e.g. U+E0001 for the character LANGUAGE TAG and U+10FFFD for

the character PRIVATE USE CHARACTER-10FFFD).

Chinese Unicode is from U+4E00 to U+9FA5 (19968 ï 17194).

Some examples of Chinese Unicode are as Figure 5.4.2-2
[15]

.

Actually, Java uses ñ\uhhhhò to represent a Unicode code point. But we cannot

use it because no code for ó\ô in Morse code set. Therefore, we still applied the

Figure 5.4.2-1

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

69

normal format ñU+hhhhò to represent Unicode code points.

Encoding of Chinese Characters:

In the encoding part, we have a function convert Chinese characters to Unicode:

public String chineseToUnicode(String str) .

This function works like this:

1. Checks every character chr1 in the input message string.

2. If (chr1>=19968&&chr1<=171941) is true, which means the character chr1

is a Chinese word, then append string "U+"+Integer.toHexString(chr1) to the

result string. Else if the character chr1 is not a Chinese word, then just

append it to the result string.

3. Return the result string.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

70

Decoding of Chinese Characters:

In the encoding part, we have another function convert Unicode back to Chinese

characters:

public String UnicodeToChinese (String str) .

This function works like this:

1. Use the Class ñPatternò to define the pattern of Unicode ñU+hhhhò:

Pattern pattern = Pattern. compile ("(\ \ U+(\ \ p{XDigit}{4}))");

2. Use the Class ñMatcherò to search the pattern ñU+hhhhò in the received

message string str:

Matcher matcher = pattern.matcher(str);

3. Whenever find the matched pattern, omit the sub-string ñU+ò and convert

the 4 hexadecimal numbers back to Chinese character.

while (matcher.find()) {

ch = (char) Integer. parseInt (matcher.group(2), 16);

 str = str.replace(matcher.group(1), ch + "");

}

4. Return the string str.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

71

Figure 5.4.2-2
[15]

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

72

5.6 Stage 5: Auto Detection

We set a start signal with different time length for auto detecting. The length of the start

signal is based on the frequency of the Morse code we want to send. After we detected the

start signal, we can calculate the base time for the Morse code according to our rule. Then,

the subsequence Morse code pattern can be decoded.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

73

Chapter 6: Experiments and Testing

6.1 Window size testing

At first, we set the detection window size to be 80x80 pixels.

Locating time (ms) 276 357

Tracking time (ms) 20 ~ 60 20 ~ 60

Then we tried the size to be 40x40 pixels:

Locating time (ms) 276 298

Tracking time (ms) 5 ~ 15 5 ~ 20

We can see that the locating time of these two are almost same. However, because of the

window size of the second one is much smaller, the tracking time of it is less than the first

one. Smaller window size also means more precise locating.

Therefore, we adopt the 40x40 pixelsô window.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

74

Chapter 7: Conclusion

7.1 Progress

The encoding part and the decoding part are implemented simultaneously.

7.1.1 Encoding

1) Study on Android programming;

2) Try to write a simple android program to open and close the flash light of android

device;

3) Try to control the on and off duration of the flash light;

4) Add the function that a user can type some text to a textbox and click the

"translate" button, and then the flash light will continue opening with different

durations of different letters;

5) Study the Morse code and try to implement the encoding;

6) Testing.

Punctuations:

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

75

7.1.2 Decoding

1) Study on Android programming and OpenCV;

2) Try to open the camera preview and know the working mechanism;

3) Obtain the average RGBA value of a limit area and obtain the RGBA value of

each pixel in the rectangle;

4) Optimize the detection area and get the threshold value of the state of the light;

5) Analyze the threshold value and determine the Light ON/OFF state;

6) Calculate the duration of the light ON state and the duration of light OFF state;

7) Analyze the raw data and classify each flashlight into ñdotò and ñdash, then letter

and word;

8) Decode the flashlight and display the result;

9) Testing.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

76

7.1.3 Combination

1) Research on the tracking algorithm to realize that the focus rectangle can track

the light source position.

2) Use the Android Camera Class instead of the library OpenCV to display the

camera preview.

3) Design the User Interface that combines the operation panel and the camera

preview display.

4) Research on how to get the frame buffer from the camera preview and how to

convert YUV to RGB.

5) Combine the encoding part and the decoding part.

6) Implement the Chinese communication by utilizing Unicode.

7) Implement the transmission frequency auto detection.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

77

7.2 Diff iculties

7.2.1 Encoding

1) At first, we didnôt know how to use android programming to control the flashlight.

We seek the solutions on the internet, but some methods were not compatible with out

device. Finally, we found a method, modified it and controlled the flashlight

successfully.

2) At the very beginning, the first symbol of one message is always decoded falsely. We

thought that the decoding part is responsible for computing the on and off durations of

flashlight, so the problem must be in the decoding part, but we were wrong. Somehow

we finally found that it was the problem about encoding. The problem is about time

variables declarations and the process procedure. At first, we declared

ñdouble lastTime = System.currentTimeMillis()/1000;ò,

but the return value of System.currentTimeMillis() should be long.

Then we modified the codes to as follows:

long lastTime = System.currentTimeMillis();

long curTime = System.currentTimeMillis();

double openTime = (double)(curTime - lastTime) / 1000.0;

3) Since when we meet a space while encoding, the flashlight should be off 7 unit

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

78

seconds, the process between two words is a little complex. At the beginning, we meet

some problem. For example, consider the input message ñcuhk cseò, the flashlight will

be off 3 unit seconds after very letter. However, there is a space after the last letter ñkò

and the flashlight will be off 7 unit seconds for that space. Overall, after ñkò, the

flashlight will be off 10 unit seconds, which is not correct. And we added some

conditional statement to fix it out.

7.2.2 Decoding

1) No idea about android programming and OpenCV, all we can do is start from scratch.

We went through every example in the OpenCV tutorial and tried to figure out what

those functions do. After that, we got functions we need and applied it to the Light

detection part.

2) At first, our program can only detect the light that totally fills the rectangle. We got

the sub matrix we need from a matrix and used functions to calculate the sum of all

the elements in that sub matrix. Then we used the result to obtain the average value

of the sum, in this way we got the average RGBA value of the rectangle area.

Finally we find a way to extract the value of each element in the matrix, so that we

can decide the RGBA value of each pixel in the rectangle area. When there are above

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

79

10% pixels in the rectangle area satisfy the Light-ON condition, the rectangle area

then can be considered as Light ON.

3) The emission Light ON/OFF time is not exactly equals to the Light ON/OFF that

was received. Then we need to determine the Light ON duration that was

corresponding to a DOT/DASH, while it is a little hard. Because in the ideal state,

the inter-element gap between dot and dash is one time unit, while the actual time

being detected fluctuated up and down with respect to the ideal one. We

experimented on it for many times and tried different time range and finally we

found an appropriate one.

4) Since the flashing frequency was determined by ourselves, at first we could only

detect the Morse code whose time unit was at least 1 second. After several

experiments on the threshold of RGBA value, Light ON/OFF duration decision and

distance testing, we can detect Morse code in higher frequency whose time unit was

0.5 second.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

80

7.2.3 Combination

1) Locating

At first, we want to locate the light after it is turned ON. The way is to recursively

search the whole screen and the grid we want. However it costs too much time and

the preview image is stuck. We changed the way by dividing the whole screen and

searching each grid, process the data at the same time.

2) Tracking

We tried to track the light even when itôs OFF during the decoding process. However,

keep locating when the light is OFF costs too much time, when the light is suddenly

ON, Light ON time data may lose. Therefore, we do the tracking only when the light

is ON. When the light is OFF during the process, it must appear in the detection

window to be decoded.

3) Detection window drawing

A canvas was used to draw the detection window. Itôs on the top surface of the frame

layout. When we got the detection window, we found that it offsets from our

expected position totally. The detection window always appeared in the upper left

corner of our preview image. Finally we found that, our preview size is 320x240,

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

81

while the canvasôs original size is 1280x960, they didnôt match with each other.

Thatôs why the detection didnôt appear in the area we want. We resized the canvas

and the problem was solved.

4) Frame Buffer

OpenCV gives us the real time frame buffer last semester, while the android only

gives the frame buffer of the first frame. We need to call function by ourselves to get

subsequent frames. At the beginning, we used thread to solve this problem, while the

interval time between threads is hard to control. Then we decide to call the callback

function immediately after we finished the processing of last frame.

5) Update UI in child thread

At first, we use the functions Toast. makeText(MainActiv ity. this , String ,0).show()

and EditText .append(String) in the child thread directly. But the program would

break down. Finally we found that in Android programming only the original thread

that creates the UI view (here is the main thread) can update the UI. Other thread

cannot directly update the UI. The function runOnUiThread(Runnable) is one way to

communicate with the UI thread (main thread) and then update the UI.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

82

public final void runOnUiThread (Runnable action):
[16]

If the current thread is the UI thread, then the action is executed immediately. If the

current thread is not the UI thread, the action is posted to the event queue of the UI

thread.

Parameters action: the action to run on the UI thread.

6) Thread declaration

When the ñSendò button is clicked, the encoding thread ñONò should be on. At first,

we declare the ñONò thread variable outside the click listener of ñSendò button

ñsend.setOnClickListener(new OnClickListener() {}); ƨ. But the problem is that

after the ñSendò button has been clicked once, the ñONò thread will not start again.

And we found the solution is to declare the thread inside the onClickListener(){} as a

local variable. Because every thread has a thread ID once it is created. If it is

declared as an global variable, its ID will not be changed. And once it is finished, it

will not be start again. But if it is declared as a local variable, every time when it is

declared, it will be assigned another ID and then can be start the encoding program.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

83

7.3 L imitation s

¶ Detection of light was easily disturbed by the environmental light.

¶ When emission frequency is too high, the app couldnôt decode precisely or even

couldnôt decode.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

84

Chapter 8: Contribution

8.1 Fall 2013

In the first term, our task was mainly to implement the preliminary functionality of real-time

Morse code communication.

1) At the very beginning, we didnôt know anything about Android programming and image

processing. So our first task was setting up the Android programming environment

(eclipse) and learning Android programming.

2) After the setting up and learning step, I was in charge of encoding part and ZOU Lei in

charge of decoding part.

1. First, I searched on the internet and tried several ways to control the camera flashlight.

And at last I applied the Android Camera Class to write a small android program to

control the flashlight on and off successfully.

2. I tried to set the parameters of Camera to control the on and off duration of the

flashlight.

3. Tried a simple experiment:

 Assign the character óaô 1s, óbô 2s, ócô 3s, so as so far.

 And then tried to input a character and made the flashlight on for the corresponding

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

85

duration.

4. Learned the representation and patterns of Morse code.

5. Wrote program to encode input message to Morse code.

6. Played the Morse code by light sequences.

8.2 Spring 2014

Since we have implemented the basic function of the Morse code communication, in this

term our task mainly is to combine the encoding part and decoding part to one application

and improve some performance.

In last term, the encoding part applied the Camera to control flashlight but the decoding part

applied the library OpenCV to display the camera preview. In order to combine the two parts,

we have to unify the implementation way. Otherwise the camera source would be demanded

by two objects and the program would break down. So our first task was to design using

which method to implement both the two parts. We tried to use OpenCV to control the

flashlight, but it didnôt work. So we tried to use the Camera class to display the preview and

get the frame buffer. It was more complicated.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

86

So in this term, ZOU Leiôs task is mainly to improve the performance and my task is to

combine the two parts.

My work is as follows:

1) Utilize the Camera Class to display the camera preview.

2) Design the User Interface that can combine the two parts.

3) Obtain the frame buffer with ZOU Lei.

4) Use multi-threads to combine the encoding and decoding parts.

5) Implement the Chinese communication by utilizing the Unicode.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

87

Chapter 9: Acknowledgement

We would like to give our sincere thanks to Prof. Michael R. LYU who met us every week to

follow our progress in the project. Prof. LYU gave many useful comments and suggestions on

our projectôs modifications and improvements.

Besides, we would also like to thank VIEW Labôs researcher, Mr. Edward YAU, without his

inspiring idea and practical instructions, our application wouldnôt be developed so smoothly.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

88

Chapter 10: Reference

[1] Wikipedia. ñMorse code,ò Wikipedia.org. [Online]. Available:

http://en.wikipedia.org/wiki/Morse_code [Last Modified: 23 November 2013, 04:22].

[2] Google Play. ñMorse Code Trainer,ò Google.com. [Online]. Available:

https://play.google.com/store/apps/details?id=hunt.morseDit [Accessed: November. 24, 2013]

[3] AppsZoom. ñMorse Code Translator,ò AppsZoom.com. [Online]. Available:

http://cn.appszoom.com/android_applications/tools/morse-code-translator_gnfkp.html [Accessed:

November. 24, 2013]

[4] AppsZoom. ñSimple Morse Code Translator,ò AppsZoom.com. [Online]. Available:

http://cn.appszoom.com/android_applications/tools/simple-morse-code-translator_grsdw.html

[Accessed: November. 24, 2013]

[5] AppsZoom. ñSMS2CW ï Convert to Morse Code,ò AppsZoom.com. [Online]. Available:

http://cn.appszoom.com/android_applications/communication/sms2cw-convert-to-morse-code_ceze.ht

ml [Accessed: November. 24, 2013]

http://en.wikipedia.org/wiki/Morse_code
https://play.google.com/store/apps/details?id=hunt.morseDit
http://cn.appszoom.com/android_applications/tools/morse-code-translator_gnfkp.html
http://cn.appszoom.com/android_applications/tools/simple-morse-code-translator_grsdw.html
http://cn.appszoom.com/android_applications/communication/sms2cw-convert-to-morse-code_ceze.html
http://cn.appszoom.com/android_applications/communication/sms2cw-convert-to-morse-code_ceze.html

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

89

[6] Wikipedia. ñMorse code,ò Wikipedia.org. [Online]. Available:

http://en.wikipedia.org/wiki/Morse_code [Last Modified: 23 November 2013, 04:22].

[7] Android. ñDevelopers,ò android.com. [Online]. Available:

http://developer.android.com/reference/android/hardware/Camera.html [Accessed: November.

24, 2013]

[8] Baidu. ñBaidu Wenku,ò baidu.com. [Online]. Available:

http://wenku.baidu.com/view/733d2268b84ae45c3b358c37.html [Accessed: April . 14, 2014]

[9] Baidu. ñBaidu Wenku,ò baidu.com. [Online]. Available:

http://wenku.baidu.com/link?url=pMWqPAjzaT7Ak9PK7NP3Fz28tf6Y7eRsd9qiv3qerCxaIvOkxQzs

_LKLm0hzgwcNZ1PmTTO-NJ_4kQDL9vkJJjz5Nwh4OuBt2ISgsG2Su3y [Accessed: April . 14,

2014]

[10] CSDN. ñC Blog,ò csdn.net. [Online] Available:

http://blog.csdn.net/yanzi1225627/article/details/8605061 [Accessed: April . 14, 2014]

[11] CSDN. ñC Blog,ò csdn.net. [Online]. Available:

http://blog.csdn.net/jefry_xdz/article/details/7931018 [Accessed: April . 14, 2014]

http://en.wikipedia.org/wiki/Morse_code
http://developer.android.com/reference/android/hardware/Camera.html
http://wenku.baidu.com/view/733d2268b84ae45c3b358c37.html
http://wenku.baidu.com/link?url=pMWqPAjzaT7Ak9PK7NP3Fz28tf6Y7eRsd9qiv3qerCxaIvOkxQzs_LKLm0hzgwcNZ1PmTTO-NJ_4kQDL9vkJJjz5Nwh4OuBt2ISgsG2Su3y
http://wenku.baidu.com/link?url=pMWqPAjzaT7Ak9PK7NP3Fz28tf6Y7eRsd9qiv3qerCxaIvOkxQzs_LKLm0hzgwcNZ1PmTTO-NJ_4kQDL9vkJJjz5Nwh4OuBt2ISgsG2Su3y
http://blog.csdn.net/yanzi1225627/article/details/8605061
http://blog.csdn.net/jefry_xdz/article/details/7931018

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Spring 2014

Department of Computer Science and Engineering, CUHK

90

[12] CSDN. ñC Blog,ò csdn.net. [Online]. Available:

http://chenweihuacwh.iteye.com/blog/571223 [Accessed: April . 14, 2014]

[13] CSDN. ñC Blog,ò csdn.net. [Online]. Available:

http://blog.csdn.net/luckyjda/article/details/8601517 [Accessed: April . 14, 2014]

[14] Wikipedia. ñUnicode,ò Wikipedia.org. [Online]. Available:

http://en.wikipedia.org/wiki/Unicode [Last Modified: 24 March 2014, 19:40].

[15] Baidu. ñBaidu Baike,ò baidu.com. [Online]. Available:

http://baike.baidu.com/view/40801.htm#12 [Last Modified: 23 April 2014].

[16] Android. ñDevelopers,ò android.com. [Online]. Available:

http://developer.android.com/reference/android/app/Activity.html#runOnUiThread(java.lang.Runnabl

e) [Accessed: April . 14, 2014]

http://blog.csdn.net/luckyjda/article/details/8601517
http://en.wikipedia.org/wiki/Unicode
http://baike.baidu.com/view/40801.htm#12
http://developer.android.com/reference/android/app/Activity.html#runOnUiThread(java.lang.Runnable)
http://developer.android.com/reference/android/app/Activity.html#runOnUiThread(java.lang.Runnable)

