

The Chinese University of Hong Kong

Department of Computer Science and Engineering

vPresent
Collaborative Presentation System on Mobile Devices

Fall 2012

Final Year Project Report

 Project Code: LYU1203

 Students: Sinn Lok Tsun (1155002358)

 Leung Chak Hang (1155000316)

 Supervisor: Professor Michael R. Lyu

vPresent 2

vPresent – Collaborative Presentation

This is a blank page.

vPresent 3

vPresent – Collaborative Presentation

Abstract
vPresent is a project promoting a new concept of presentation – Collaborative

presentation. Collaborative presentation is the concept of presentation allow

multiple presenters and views to make contribution to presentation, and

making the presentation more interesting and unique. With raising popularity

of mobile operating systems and mobile applications, we implement

applications on mobile platform for promoting collaborative presentation. The

application demonstrate, but not limiting the concept of collaborative

presentation. The concept of collaborative presentation do not limit or require

form of presentation, but pointing to a new direction for improving

presentation style.

vPresent 4

vPresent – Collaborative Presentation

Table of Contents

CHAPTER 1. INTRODUCTION 6

1.1 BACKGROUND 6
1.2 MARKETING RESEARCH 7
1.2.1 PRESENTATION SOFTWARE 7
1.2.2 PRESENTATION RECORDING 8
1.2.3 SUMMARY 11
1.3 MOTIVATION AND OBJECTIVE 12

CHAPTER 2. COLLABORATIVE PRESENTATION 14

2.1 CONCEPT OF COLLABORATIVE PRESENTATION 14
2.2 KEY FEATURES 15
2.2.1 COLLABORATE WITH OTHER PRESENTERS 16
2.2.2 COLLABORATE WITH VIEWERS 16
2.3 FUNCTIONALITY 18
2.4 DEPLOYMENT SCENARIOS 19
2.4.1 SMALL GROUP MEETING 19
2.4.2 CLASS AND LECTURE 20
2.4.3 CONFERENCE 21
2.5 IMPLEMENTATION PLATFORM 22
2.5.1 CRITERIA 22
2.5.2 MOBILE APPLICATIONS AND MOBILE OPERATING SYSTEMS 23
2.5.3 OUR DECISION – IOS 24

CHAPTER 3. SYSTEM DESIGN 26

3.1 SYSTEM STRUCTURE 26
3.1.1 SYSTEM STRUCTURE DIAGRAM 26
3.1.2 UML DIAGRAM FOR MODERATOR 28
3.1.3 UML DIAGRAM FOR PRESENTER 30
3.2 EXTERNAL SCREEN 32
3.3 DRAWING PAD / CANVAS 34
3.4 INTER-DEVICE: CONNECTION AND MESSAGE PROTOCOL 36
3.4.1 OVERVIEW 36
3.4.2 MESSAGE PROTOCOL 37

CHAPTER 4. USER EXPERIENCE 47

4.1 INITIAL APPROACHES 47
4.2 POSSIBLE SOLUTION 48
4.3 FINAL DECISIONS 49

vPresent 5

vPresent – Collaborative Presentation

CHAPTER 5. IMPLEMENTATION DETAIL 53

5.1 OVERVIEW 53
5.2 DRAWING PAD / CANVAS 53
5.3 EXTERNAL DISPLAY / PROJECTOR CONNECTION 54
5.4 NETWORK CONNECTION 56
5.5 FILE READ / WRITE 57
5.6 USER INTERFACE 60
5.6.1 SPLIT VIEW 60
5.6.2 TAB BAR 62
5.6.3 TABLE VIEW 63

CHAPTER 6. PROGRESS AND EVALUATION 66

6.1 PROGRESS REPORT 66
6.2 OUTCOME 67
6.3 ISSUES 68

CHAPTER 7. CONCLUSION 71

CHAPTER 8. FUTURE DEVELOPMENT 72

CHAPTER 9. ACKNOWLEDGEMENT 73

CHAPTER 10. REFERENCE 74

vPresent 6

vPresent – Collaborative Presentation

Chapter 1. Introduction

1.1 Background

Presentation systems was a large market for both education, business etc. In education

aspect, teachers, lectures and professors use slides show and presentation software for

lecture. Commonly used presentation software include Microsoft PowerPoint and Apple

Keynote. Some lecturers also use portable document format, as known as PDF format, for

packing multiple images as slides for lecture. Other than lecture, presentation system is

also used in conferences. Presenting a thesis, researchers and scholars would also use

slides to present their thesis in conference. Presentation is widely used in transferring

knowledge on educational purpose.

Regarding business use, presentation is also widely use: people use presentation slides to

promote their products; staff make presentation slides to report his / her latest work;

company use slides show to presenter company’s status to shareholder. Moreover, press

conference also use presentation and presentation slides for introducing the new products

or statistics of company.

Attending and watching lots of presentation, we found presentation composed of two

components: presentation style and presentation slides. In most presentation, we can see

the presentation style is unidirectional and presenter dominate the presentation; and the

presentation slides are just image with limited animation. We are going to do some

marketing research of existing presentation systems, looking at the presentation style and

presentation slides format.

vPresent 7

vPresent – Collaborative Presentation

1.2 Marketing Research

We are going to discuss the following systems:

 Presentation Software

 Microsoft PowerPoint

 Prezi

 Presentation Recording System

 Opencast Matterhorn

 Echo 360

 Camtasia Relay

1.2.1 Presentation Software

Microsoft PowerPoint

It is one of the most famous presentation software in the world. The main presentation

structure is sequential and linear, which mainly deliver the presentation contents by slides.

Also, PowerPoint supports importing graphics and video into the slides.

During presentation, the mouse pointer can be changed into pen pointer, which allow

handwrite marking on the slides during presentations. It provides various type of handwrite

marking style, including the ball pen pointer with different colors, and also the highlighter

style.

Fig.1 Microsoft PowerPoint 2008 for Mac Screenshot

vPresent 8

vPresent – Collaborative Presentation

Typically, to control the flow of a PowerPoint slides presentation, a list of slides and the

animation sequence of the slides have to be obtained. If our application needs to support

PowerPoint presentations, the controlling protocol has to obey the flow control rationale

of PowerPoint.

Prezi

Prezi was found only a few years ago, but the popularity increased drastically in the past

2-3 years. This brand new presentation software mainly distribute their services through

the Internet and edit the presentation content mainly through the web browsers, it

introduced another approaches of presentation style.

One of the main feature of Prezi presentations is that Prezi disposed the idea of slides, but

expressing the presentation content using zooming in and out. If our application needs to

support Prezi presentations, the controlling protocol will have to be tailor-made for them,

for example the zooming ratios and delivery of presentation file contents.

1.2.2 Presentation Recording

Opencast Matterhorn

Opencast Matterhorn is an open source project for presentation recording and video

management. The project is initiated by University of California Berkeley, coordinating with

several universities and institution.

Fig.2 Screenshot of Prezi Editing Screen

vPresent 9

vPresent – Collaborative Presentation

The system is composed of a server and capture agents as client. Server is used for

encoding of presentations, and also a web server for management panel, based on Linux

or Mac OS X Server. In contrast, capture agent is an add-on box to the presentation

computer using Linux. The presentation computer split the output video signal to two, one

to projector and another to the capture agent, feeding into VGA2USB card of capture agent

computer.

Presentation record can be done by ad hoc, issuing command to capture agent from server,

or according to schedule. After recording of presentation is done, files is sent to server via

internet. Receiving the files, server would encode the files and stored on it. After encoding,

presentation can be viewed by access a web player hosted on server. The server manage

all encoded presentation as video repository.

As an open source system with media and encoding functions, there are many dependency

on other multimedia libraries. Fixing outdated dependency is difficult and time consuming

during installation, requiring extensive experience on Linux. In addition, the system only

provide functions on recording, managing and replaying presentations, without other

features enhancing learning or communication with audience.

Regarding to presentation style, it tries to capture the lecture and podium screen in

recording, which is good for unidirectional presentation. And discussing about the

presentation slides, the capture agent capture the entire screen, no matter what kind of

slides using.

Fig.3 Logo of Opencast Matterhorn

vPresent 10

vPresent – Collaborative Presentation

Echo 360

Echo 360 is a client-server presentation recording system with rich functionalities. As we

cannot obtain a license for the system, we could not have extensive practical experience

on it. We here only giving a brief idea on the system.

Echo 360 aimed at educational purpose, mainly lecture recording. The system can record

a lecture by ad hoc, or on scheduled time. Recording could be done using an external box

produced by Echo 360 Company, or directly on podium computer. In addition, Echo 360

support video broadcasting, and able to interact with students by asking questions.

However, we are not able have experience in broadcasting function.

After recording or broadcasting, the original files upload to server, followed by encoding

into package of files. The presentation then can be played with the web player, bundled

with bookmarking and note taking functions.

A highlight about Echo 360 system is synchronization of multiple tracks. The

synchronization is done by a XML-liked file, recording the offset between echo tracks.

During encoding and packing, the offset would be used for synchronization.

We found a lot to inspiration about functionalities from Echo 360, including note taking,

bookmarking, broadcasting etc. Moreover, the use of XML give us direction for

synchronizing multiple tracks.

In conclude, the presentation style is still presenter-dominated, with limited viewer

involvement features like viewer raising questions. Regarding presentation slides, again,

recording is capturing the entire screen thus there is not limitation on slides format.

Fig.4 Logo of Echo 360

vPresent 11

vPresent – Collaborative Presentation

However, Echo 360 is able to capture content of PowerPoint and image-based slides for

better integration.

Camtasia Relay

Camtasia Relay is a system focused in recording and encoding of presentations. It provide

installed and portable recorder running on presenter computer. Recorded presentation is

uploaded to encoding server for encoding, and publish to storage.

Focusing on recording features, Camtasia Relay do not have other features for

communication or broadcasting with interaction. However, the recording features with

complete and clear flow of presentations with comprehensive encoding features is worth

for reference. It do not limited or require any presentation slides format. But regarding to

presentation style, the camera is still only capturing single presenter and not good for

multiple presenter use.

1.2.3 Summary

To summarize, we found most presentation software provide more functionalities for

image-based slides, but still able to support other type of presentation slides by capturing

entire screen. In addition, we found there is another type of presentation slides named Prezi.

Fig.5 Screenshot of Camtasia Relay Recorder

vPresent 12

vPresent – Collaborative Presentation

Prezi use zooming animation and not strictly divide slides by different images. Prezi is a

new type of presentation showing application.

There is another type of presentation slideshow or content showing application. However,

the presentation style is still remaining the same, only single presenter dominate the

presentation. Therefore, we are going to focus on presentation style, tackling the problem

that single presenter always dominate the presentation.

1.3 Motivation and Objective

In traditional slide-based presentation, usually only one presenter dominate the whole

presentation. If there are two or more presenters responsible for the presentation, they

have to either use their partner’s machine and continue to present with the set of slides; or

disconnect their partner’s machines from the projector and connect their own device back

to the projector. Both methods introduce inconveniences and interruptions towards the

presentation flow, especially for the second one, not only because that is time consuming

for the projector itself to recalibrate for the newly connected device, but may also induced

many unnecessary errors during the exchange of machines, such as the device cannot

detect the projector, or the aspect ratio is not correct after the device connected to the

projector.

Secondly, we found there are not enough interaction between presenters and viewers. In

traditional presentations, presenters dominate the presentation, talking at all the time. We

have try other software and systems of presentation and make some review in the previous

section. However, features involving viewers are few, limited to allow viewer post questions,

or calling a vote among viewers. Therefore we can observe the following: even with

different group of viewers, the presentation is similar when the presenter and slides is

same. The presentation is just similar to video playback and viewer involvement is few:

viewer is not affecting or changing presentation content, and the presentation do not

vPresent 13

vPresent – Collaborative Presentation

change even the viewer not presence. In addition, listening to presenter’s speech and

reading presenter’s slides, viewers only receive information. Presentation is just a

unidirectional information transferal.

Therefore, we are trying to promote a new concept of presentation, namely collaborative

presentation. Collaborative presentation aimed at preventing single presenter dominate

whole presentation by allowing others join and contribute to presentation, and the ultimate

goal is to vague the boundary between presenters and viewers. Promoting the new concept

of presentation, we are going to develop an application on iOS, demonstrating

characteristics of collaborative presentation.

vPresent 14

vPresent – Collaborative Presentation

Chapter 2. Collaborative Presentation

2.1 Concept of Collaborative Presentation

Collaborative presentation is trying to make as more as people presence in presentation to

join and contribute the presentation. We first divide people presence in presentation to

three types: moderator, presenter and viewer.

Moderator should be unique in presentation. The main role of moderator is to monitor the

presentation, and coordinating the presentation with presenters and viewers. Device of

moderator will also act as server, connecting to external monitor or projector. For some

Fig.6 Collaborative Presentation Conceptual Diagram

vPresent 15

vPresent – Collaborative Presentation

special circumstance, moderator may be able to act as presenter, presenting his / her own

set of slides.

Presenter can be a group of people. Those people responsible to present their own content

during presentation. Therefore they would bring their own set of slides to presentation,

storing in the device. During presentation, each presenter may take turn to present his /

her own slides, becoming active presenter. The remaining others may be inactive and can

act as a viewer.

Viewer is people coming to listen to the presentation. They would not bring any own

material. The viewer would be allowed to make short presentation, but still stick to

presenter’s materials, and making remark or commentary on presenter’s material. By

having the control of presentation and giving short presentation, viewer can contribute to

presentation and the ultimate goal would be enhancing communication.

In order to make the connection easier, all connection between devices would be using

wireless connection. The only cable connection should be connection to external monitor

from moderator device. The connection to external display can be done with converters

and existing video cables such as VGA, HDMI etc. Converting including 30-pin or lightning

to VGA or HDMI for iOS mobile devices; for Android devices, MHL for micro-USB to HDMI,

requiring device chip support, and mini-HDMI to HDMI could be used. There are plenty

choices in market and most devices would be able to connect to external monitor.

2.2 Key Features

Collaborative presentation contains two features, contribute by other presenters and

collaborate with viewers.

vPresent 16

vPresent – Collaborative Presentation

2.2.1 Collaborate with Other Presenters

Collaborating with other presenters means during the presentation, there are multiple

presenters and forming a group of presenter. As mentioned above, there might be multiple

presenters in single presentation, but most cases are limited to four presenter, and they

have to make slides together. Collaborative presentation can make the slide do not need

to centralize to single machine before presentation starts, and also making seamless

handover of presentation control.

Each presenter would bring their own device to the presentation. Their own slides are

stored in his/her own device. Before the presentation start, it do not need to send their own

slides to server, in most circumstance. When one of presenter start presentation, he / she

connect to moderator machine. Connecting to moderator machine, the slides will send to

server machine wirelessly. Then the presenter can start his / her presentation as usual.

After current presenter finished his / her part of presentation, another presenter may start

the presentation. The flow is similar, presenter would send the slides to moderator, and get

control of presentation. The next presenter then can start the presentation. During

handover of presentation control, presenters do not need to make any cable connection or

data exchange physically, but the presentation can proceed seamlessly with another

presenter’s device and slides.

2.2.2 Collaborate with Viewers

For collaborating with viewers, we are allowing user to interrupt the presentation after

permitting by presenter and moderator.

For sake of discussion, we name the active presenter by presenter A. During presentation

of presenter A, a viewer namely B, might have question or comment about current content.

In such case, B can send a request to server, asking for control permission. The permission

would be grant only when both active presenter A and moderator agree to pass the

vPresent 17

vPresent – Collaborative Presentation

permission. Getting the permission, viewer B can get control of presentation, add drawing

on slides and give commentary on slides. However, the right is strictly monitored and

presenter and moderator is able to withdraw the permission from viewer immediate, or with

few seconds countdown. After viewer B finish the question or remark, the permission is

passed back to presenter A and presenter A can continue the presentation with his / her

content.

By adding remark and giving

short commentary, viewer is

able to contribute to

presentation. In optimal case,

this could enhance

communication between

presenter and viewer, and also

discussion among viewers.

Note that as inactive presenter

is similar to viewer when he /

she is not presenting, they also

able to contribute to the

presentation in this way.

Fig.7 Presentation flow of Collaborative Presntation

vPresent 18

vPresent – Collaborative Presentation

2.3 Functionality

Regarding the functionalities, we are going to divide it into two categories. Firstly, functions

for controlling the presentation flow and other related system status of collaborative

presentation definitely needed to be included. Secondly, we would also include some

common presentation software functions.

In addition to those collaborative presentation-related functionalities, we also include
functionalities of basic presentation which would be useful in presentation:

Seamless handover of presentation control

• Since the moderators is responsible for controlling the whole presentation flow,
which have the power to start or cut any presentations delivering by the
presenters, this function should be granted to the moderators.

Temporary passing control to others during presentation

• During the presentation delivering by the presenters, other inactive presenters may
contribute to the current presentation by sending requests to both the active
presenter and the moderator. If both of them accept the request, the inactive
presenter would be activated to participate on the presentation originally belongs
to another presenter.

Showing slides in External Monitor

• This allow all viewers able to read the slides

vPresent 19

vPresent – Collaborative Presentation

With those functionalities, we provide all-round features for application.

2.4 Deployment Scenarios

2.4.1 Small Group Meeting

One of the most common scenarios that suitable to deploy collaborative presentation will

be a small group meeting that happen every day at offices and campuses. We define “small

group” as a group of participants that will not exceed a total number of 10, and among this

group of participants, one of them will lead the presentation and this person will be the

moderator. Since other participants will have the right to speak, they will all be the

presenters.

After the moderator connected his/her own device to the external displaying unit, other

presenters can start to connect to a common Wi-Fi access point, and directly connect to

the moderator’s device thought the IP address and listening port. Once connected, the

Support of type of Slides

• We are going to support image as slides at first

• With modularization, it is easy to substitute the image with another slide engine
by substituting the original image class

Drawing Pad and Canvas

• Allowing presenter to draw control

Recording of Presentation

• As each presentation is unique after collaboration of viewers, recording is
important

• We could store metadata instead of capture entire screen

• e.g. Storing command type and timestamp

Making the entire screen black (or white)

• As whiteboard or blackboard for drawing

• Shielding inappropriate content by presenter or viewer

vPresent 20

vPresent – Collaborative Presentation

moderator can see all the connected presenters. Assume all participants can see and hear

each other easily, the moderator can simply ask who wish to be the first one to present,

and handover the external screen control to the first presenter.

During the handover processes, no external files needed to be exchanged between the

presenters’ and moderator’s device. This saves the overhead when performing handover

actions in traditional presentation, either transmitting files between the two devices or

reconnecting the external displaying unit. Once the presenters have been granted the

control, they can use their own machines and prepared material just have the same

experience as their devices have been directly connected to the projectors.

When other inactive presenters want to express some ideas about the content of the

current presentation, they can send a request to the moderator and the current presenters,

and if both of them allow this inactive presenter to have the control, this inactive presenter

will become active and he/she will be allowed to contribute on the presentations with the

original presenter. After that, the new presenter can also present their presentation

contents and become the main presenter.

For a group size in less than 10 participants, direct connect between moderator and

presenters is a feasible solution, as the iPad can theoretically accept much more

connections simultaneously, still the battery usage would be the major concern after a

prolong time to maintain the states of the connections and needed to process the output

to the external displays. So if there are too many presenters, direct connections will not be

a favorable solution.

2.4.2 Class and Lecture

In this scenario, usually only the lecturer will be the presenter. Other students will be at the

role of viewers. Viewers can have the right of getting the presentation contents, contribute

vPresent 21

vPresent – Collaborative Presentation

by making request to the presenters and moderator, but they are not allowed to upload

their own content and dominant the presentation.

As a result, this scenario will have a small number of presenters, but large amount of

viewers. Comparing to the previous deployment scenarios, some modification can be made

in order to increase the performance and efficiency of the overall system. A separate server

can be setup only for storing the presentation content provided by the presenters, so that

to ease the network traffic of the moderator device by reducing the upload content amount.

2.4.3 Conference

Another suitable deployment scenario would be council meetings or conference meetings

in very larger scale. For example, the meetings of the general assembly hold at the hall of

United Nation in Geneva. There are nearly 200 countries participating the conference, in

average every nation will send out 2 delegates to represent their own countries. If we

include the delegates from the observer countries and other participants, over 500

participants can be expected in the same assembly hall.

That would be definitely impossible for all participants to directly connect to the Secretary-

General’s device. This deployment scenario stated out the connectivity limitation of a

single device. So we need another deployment strategy to overcome this bottleneck.

In this large-scale case, we need another standalone server to serve as a registration

server and presentation content delivery server. All participants, no matter in which role,

connect to this server with a valid credential, and they will be assigned with different

access rights and power. Still, the chairmen have the power to control the whole

conference flow by managing and counting the speech time of each delegate, which act as

the role of a moderator. Delegates from different countries can send request to the

chairmen for requesting a time slot for giving out speeches, and the observers can connect

to the network and obtaining the materials from different presenters.

vPresent 22

vPresent – Collaborative Presentation

2.5 Implementation Platform

2.5.1 Criteria

Regarding implementation of server, we have to ensure all viewers are able to read the

presentation slides during presentation. Ways include broadcasting slides to all viewers

and projecting slides onto large screen. Broadcasting slides is a good option but difficult

in practical. This assume all viewers are holding a device, able to connect with current

presenter or server. The server loading would be heavy during broadcasting. Another

option would be using web server and web application for broadcasting but this would be

difficult to make active communication. In addition, interactive web application using latest

technology may give different experience to user using different browser. Therefore, we

device to use project or external monitor for viewers to read slides, and we need server

implementation support external monitor.

Regarding implementation for client application, as we want to allow more viewer to join

the presentation, the platform should be as common as possible, and preferably one

person one device with the platform. If we develop the application based on rare platform,

viewer would have to bring a specify device in order to join the presentation, which is

inconvenient. In order to lower to entrance to join the presentation, the platform should be

common to everyone. Becoming popular in these years, mobile applications based on

mobile operating systems would be a good choice.

vPresent 23

vPresent – Collaborative Presentation

2.5.2 Mobile Applications and Mobile Operating Systems

There are several mobile operating systems in market, including Apple iOS, Google Android,

Microsoft Windows Phone, RIM Blackberry, Samsung Bada, Symbian etc. We have found

some statistics about the market share about those mobile devices.

Operating
System

Thousands of Units
sales in 2012 Q2

Thousands of Units
sales in 2011 Q2

Android 98,529.3 46,775.9
iOS 28,935.0 19,628.8
Symbian 9,071.5 23,853.2
RIM 7,991.2 12,652.3
Bada 4,208.8 2,055.8
Microsoft 4,087.0 1,723.8
Others 863.3 1,050.6
Toal 156,686.1 107,740.4

The number is based on statistics by Gartner published on August 2012 1 . From the

statistics, we have two observation: firstly, the sales of mobile devices have increased by

50% from 2011 Q2 to 2012 Q2, which proved mobile devices becoming popular in these

1 From http://bgr.com/2012/08/14/mobile-phone-q2-2012-market-share-sales/

Android
64%

iOS
19%

Symbian
6%

RIM
5%

Bada
3%

Microsoft
3%

Others
0%

Mobile Devices Sales by Operating System

Fig.8 Mobile Devices Sales by Operating System in 2012 Q2

vPresent 24

vPresent – Collaborative Presentation

days, as stated in previous section; secondly, the top sales by of mobile devices

categorized by operating systems are Android and iOS. Therefore, we narrow down the

choices to two: Android and iOS.

As discussed before, presentation relies on projector and external display a lot, and we

need the server to support external monitors. Despite Android is having large market share

in Q2 2012, it do not support multiple display until Android 4.2, announced on late October

2012. Android 4.2, with code name Jelly Bean, is an update to Android 4.1 with same code

name announced on June 2012, providing new API level on 17 with some new features.

Before release of Android 4.2, connecting to external monitor can only mirror device screen

to external monitor. As our project starts on May 2012, and there is no official support of

at that moment, we decided not using Android as our development platform. In addition,

upgrade of Android major version is slow, as this would involve varieties of devices and

manufacturers. It takes long time for Android version to become popular, usually after next

major version upgrade. Therefore, it is not worth to develop based on latest version within

a short time.

Therefore, we have decided to develop our applications based on iOS with tablet devices

based on iOS which is iPad.

2.5.3 Our Decision – iOS

iOS is the mobile operating system developed by Apple from 2007. Latest version of iOS is

iOS 6, announced in June 2012 and released in September 2012. iOS only come with iPhone,

iPod touch and iPad where interface in iPad is differ from that in iPhone and iPod touch,

optimized for large screen tablet experience. As there is increasing trend of using iPad as

computer replacement, paperwork and presentation, we focus our development to iPad

interface at first.

vPresent 25

vPresent – Collaborative Presentation

iOS applications based on Cocoa Touch, a specialized application environment of Cocoa

framework. Writing Cocoa applications, or iOS application, Objective-C is most common

programming language being used. Objective C is an object oriented programming

language, based on and also superset of ANSI C with Smalltalk-liked syntax. Moreover,

Cocoa application prefer using MVC design pattern, separating program logic and user

interface.

vPresent 26

vPresent – Collaborative Presentation

Chapter 3. System Design

3.1 System Structure

3.1.1 System Structure Diagram

Fig.9 Structural Diagram of vPresent System

vPresent 27

vPresent – Collaborative Presentation

vPresent 28

vPresent – Collaborative Presentation

3.1.2 UML Diagram for Moderator

Fig.10 UML Class Diagram of Moderator

vPresent 29

vPresent – Collaborative Presentation

3.1.2 UML Diagram for Moderator (Continue)

vPresent 30

vPresent – Collaborative Presentation

3.1.3 UML Diagram for Presenter

Fig.11 UML Class Diagram of Presenter

vPresent 31

vPresent – Collaborative Presentation

3.1.3 UML Diagram for Presenter (Continue)

vPresent 32

vPresent – Collaborative Presentation

3.2 External Screen

The device for server would connect to external screen or projector, and show the slides

on external screen. While the projector showing slide, screen on device should also show

the slide so the user can focus on the device screen and audiences, without frequently

looking at projection. In addition to slide, there should be presentation control and

configuration detail shown only in device but not projecting to screen. Therefore, we have

to make slide synchronizing in device and screen, and controls only showing in device.

Fig.12 Scaling and Best-fitting for External Screen

vPresent 33

vPresent – Collaborative Presentation

Synchronizing device screen and external screen, we can copy the view after each

operation, or maintaining two views and perform action on each view when message

received. The former method use more computational power for copying but use less

space for storing two views, while the latter one use more space for maintaining two views

but do not need computational heavy deep copy action. Finally, we decide to use method

mixing two: when adding subviews into the view, we copy the view into two copy; then for

any further action, it perform on both original view and copied view. This balance

computational and space efficiency.

Another concern is the resolution and resizing. Resolution of iPad, iPad 2 and iPad Mini is

1024 × 768 while resolution of the New iPad is 2048 × 1536. However, typical resolution of

projector or external screen is 1280 × 1024 and 1920 × 1080 (1080p). We separate the

problem into two cases: same aspect resolution and different aspect ratio. If the aspect

ratio is the same, simply resize the image by multiplying size by a constant ratio. However,

if the aspect ratio is different, we need to handle re-calculate the size in order to maintain

the aspect ratio. Moreover, center the image and handling of extra space is another

concern when making best-fit resizing.

Fig.13 (a) Copying View when adding to external

Fig.13 (a) Copying View when adding to external

vPresent 34

vPresent – Collaborative Presentation

3.3 Drawing Pad / Canvas

Writing and drawing on slide is a famous feature of a presentation software. During the

design, we have to think about how we serialize the shape, and represent it with minimal

size, serving for data transmission through network and saving and storage. We focus the

shape to regular shapes and arbitrary path, together with text. Those features in drawing

pad cover most needs for users.

Representation of regular shape is simple. Using rectangle as example, we can simple

represent it using a point, upper right corner, and a size, height and width of rectangle, with

stoke color and fill color. Circle could be represented as center and radius; ellipse could be

represented as center, major axis and minor axis. Those regular shape could be

represented using geometric properties.

Shape Storing Data Special Cases

Line Start Point, End Point
Rectangle Upper right coordinate, Height, Width Square
Ellipse Center, Semi-major axis, Semi-minor axis Circle
Star Center, two radii: Outer radius and Inner radius N/A
Regular Hexagon Center, Radius

Fig.14 Representation of some regular shapes

vPresent 35

vPresent – Collaborative Presentation

Regarding arbitrary path, we can consider it as collection of point. As the points in path

should not duplicate, or we can represent it once even the path is overlapping with its own,

and also the sequence of point is not a matter when we are storing the whole path, we can

use set for storing the path. However, when we consider synchronizing between devices

during presentation, we could not use the set serialization. Serializing as set, we have to

get the whole path and the set would represent whole path without drawing sequence. The

whole path will appear on external screen without drawing animation if we try to use this

method, which is not intuitive and difficult for presenter to keep referencing while drawing.

Therefore, we decide to serialize it with single point each during presentation, being

discussed in the next section.

In addition, we can also allow user to change the fill color, stoke color, thickness of stoke

and transparency of shape and path. Those can be serialize as several variables and bytes.

Moreover, we can apply transformation to those shapes in order to satisfy users’ needs.

Transformation including translation, scaling, rotation, shearing etc. Those transformation

should also be able to serialize for storage and transmission. We can store serialize those

transformation with following value:

Transformation Value Assumption
Translation x-Coordinate, y-Coordinate
Scaling x-scale, y-scale Centered by reference point
Rotation Angle Centered by reference point, anticlockwise

Shearing x-Scale, y-Scale

Using the serialization, we can further allow user to undo and redo operation. Serializing it

as storage form, we simply push the shape or operation into the stack. By the first-in-first-

out property of stack, we simply pop a shape out from stack can make undo. By storing the

popped shape into another stack, we can also implement redo, as undo of an undo

operation. However, a technical issue is how we could erase a rendered content on canvas.

vPresent 36

vPresent – Collaborative Presentation

An additional features is showing pointer on screen. When user touch a point in slide, the

screen can show the point touching by a circle. Tracking the point of touching, the pointer

move so presenter can emphasize the point or area talking about. However, this might

involve erasing a point drawn on screen, and redraw another point. The erasing step might

be difficult and need further investigation of APIs together with rendering behavior.

3.4 Inter-Device: Connection and Message Protocol

3.4.1 Overview

As a client-server system, we have to consider about connection

between clients and server. Regarding networking and Open

Systems Interconnection (OSI) model, there are 7 abstract

layers in communications system or network.

Despite it is an abstract concept, it is still worth to make

decision about message transmission based on few layers

which is more in practical, including data link layer, transport

layer and application layer.

Regarding the data link layer, there are much implementation including Wi-Fi and Bluetooth,

which are both native supported by iOS devices. We have considered both data link

interfaces to implement the inter-device communication, and we decided to use Wi-Fi as

our data link layer interface. The data transfer rate of Wi-Fi is generally faster than

Bluetooth, as most of the mobile devices are only installed with Bluetooth 2.1+EDR

adapters. This Bluetooth standard can give out 3 Mbps of maximum data transfer rate.

Comparing to the Wi-Fi standard (IEEE 802.11a/b/g), which have 54 Mbps of maximum

data transfer rate, Wi-Fi should have a better performance. In addition, Wi-Fi also supports

longer effective distance.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

vPresent 37

vPresent – Collaborative Presentation

There are two main implementation of transport layer, user datagram protocol (UDP) and

transmission control protocol (TCP). In short, UDP is a best effort protocol, lightweight but

no guarantee on correctness of data, neither order of data. In contrast, TCP guarantee

correctness, order of data, with congestion control and flow control for large amount of

data. However, the overhead of TCP to transmit small amount of data is large.

In current implementation, we use TCP instead of UDP because TCP could ensure that

received data is correct. This is important when user send slides from own device to server.

In addition, this can also avoid a possibility of error and bug during development process.

In the applications, there are some message which is tiny and also, directly user driven.

Aiming at performance, we may switch to UDP for those message transferal in future.

Application layer protocol is important for message being understand by both devices. As

it is self-defined, the information would be more and we will discuss it in the next session.

3.4.2 Message Protocol

Sending message on network is a costly operation, therefore we have to minimize the size

of message by considering the protocol in byte.

There are several type of message being sent. During the design of protocol, we should

make the type be easily differentiated and distributed to other object for processing.

Therefore, we first list out how many type of message we are going to pass between clients

and server:

 Register

 Unregister

 Sending slides (as image)

 Control Signal

 Drawing

vPresent 38

vPresent – Collaborative Presentation

Message Header and General Specification

We decided to make an application layer header for easy distinguishing command and

presenter. The following is the application layer header format

Fig.15 Common Message Structure with Header

Fig.16 Common Message Sending Chart

vPresent 39

vPresent – Collaborative Presentation

F
ig

.1
7

 U
M

L
 S

e
q

u
e

n
c

e
 D

ia
g

ra
m

 fo
r H

a
n

d
lin

g
 C

o
n

tro
l S

ig
n

a
l

vPresent 40

vPresent – Collaborative Presentation

The header is total of 8-byte long, including command, presenter ID, checksum and

message size.

Command is used to distinguish which type of message is. Adding this field ease the

difficulty in partitioning message. Each type of message is associated with a single-byte

command value, as shown in the following table:

Type Action Source Command (in hexadecimal)
Register Request Client 0x01

 Success Respond Source 0x02

 Failure Respond Server 0x03

Unregister Request Client 0x04

 Respond Server 0x05
Control Permission Request Client 0x06
 Respond to Request Server 0x07

 Grant Permission Server 0x08

 Withdraw Permission Server 0x09

Slides Exchange Slide data Client 0x0A

 Acknowledge Server 0x0B
Control Signal Request Client 0x0C

 Success Respond Server 0x0D

 Failure Respond Server 0x0E

Drawing Path Request / Respond Client / Server 0x10

Regarding the presenter ID, it is a single byte unique value for each presenter. The range of

presenter ID is from 1 to 254 inclusively, and 0 is reserved for server, 255 is reserved for

unregistered presenter. In usual, presenter ID in a message would not be 0 as the value in

message means the client communicate with server. The only case for presenter ID equals

0 is moderator is broadcasting message to all registered presenter.

Checksum is a two-byte length value for ensuring no error during transmission. As we are

using TCP in current version, and TCP guarantee correctness of received data, the

checksum field is not used. The reserved checksum is going to use if we are optimizing by

vPresent 41

vPresent – Collaborative Presentation

using UDP for small packet. Before checksum calculation, the field in message need to be

zeroed.

Message length is a four-byte integer for the length of whole message, including the 8-

byte header. It is used for buffering and ensure arrival of whole message before processing.

Following is specification of content in each type of message.

Command (Command value)

Direction (Source) (Destination)
Argument Count (Argument count)
Argument (number) (Length of argument) (Content of argument)
… … …

Register Request

Command 0x01

Direction Client Server
Argument Count 2
Argument 1 4 Bytes Number of byte

for Name
Argument 2 Vary Name

Register Success Respond

Command 0x02

Direction Server Client
Argument Count 0

Register Failure Respond

Command 0x03

Direction Server Client
Argument Count 0

Unregister Request

Command 0x04

Direction Client Server
Argument Count 0

vPresent 42

vPresent – Collaborative Presentation

Unregister Respond

Command 0x05

Direction Server Client
Destination Client
Argument Count 0

Control Permission Request

Command 0x06

Direction Client Server
Argument Count 0

Control Permission Request Respond

Command 0x07

Direction Server Client
Argument Count 0

Grant Control Permission

Command 0x08

Direction Server Client
Argument Count 0

Withdraw Control Permission

Command 0x09

Direction Server Client
Argument Count 0

Slide Data

Command 0x0A

Direction Client Server
Argument Count 4
Argument 1 2 Bytes Height of Slide
Argument 2 2 Bytes Width of Slide
Argument 3 4 Bytes Number of byte of

Slide Data
Argument 4 Vary Slide data

vPresent 43

vPresent – Collaborative Presentation

Slide Data Acknowledgement

Command 0x0B

Direction Server Client
Argument Count 1
Argument 1 2 Bytes Slide number

Control Signal Request

Command 0x0C

Direction Client Server
Argument Count 2
Argument 1 1 Byte Control Signal Type
Argument 2 3 Bytes Control Signal Parameters

We further define control signal type by the following:
Type Description Parameters
0x01 Next Slide N/A
0x02 Previous Slide N/A
0x03 Jump to a slide First byte: Slide number

0xF0 Black the screen First byte if non-zero White screen
0xFD Handover control to viewer
0xFE Withdraw control from viewer First byte: Countdown value
0xFF Return control N/A

Control Signal Success Respond

Command 0x0D

Direction Server Client
Argument Count 0

Control Signal Failure Respond

Command 0x0E

Direction Client Server
Argument Count 2
Argument 1 1 Byte Error Code (Reserved)
Argument 2 3 Bytes Error Detail (Reserved)

vPresent 44

vPresent – Collaborative Presentation

Drawing Path

The message for path drawing is a bit complicated. First, there is a single-byte bitmap for
flag of message, defined as following:
0 SET If message contain content used for setting path property,

i.e. argument 4 – 8
1 NEW If this point represent start point of new path
2 END If this point represent end point of current path
3 SYN If message sender ask for synchronization of this point
4 ACK If message sender acknowledge of previously synchronization request
5-7 Unused Reserved for further use

If SET flag is clear (0), the message is 12-byte long, specified as following:
Command 0x10

Direction Client Server / Server Client
Argument Count 3
Argument 1 1 Byte Flag bitmap
Argument 2 12 Bits x-Coordinate for Point of Path, range: [0, 4095]
Argument 3 12 Bits y-Coordinate for Point of Path, range: [0, 4095]

The x-coordinate and y-coordinate is limited in range [0, 4095]. As resolution of current

machine or projector is at most 2048 × 1536 for iPad with retina display, and resolution of

2160p ultra HD is 3840 × 2160, and should be enough for next few years.

vPresent 45

vPresent – Collaborative Presentation

If the SET flag is set (1), there are four bytes of arguments appended at the end of message:
Command 0x10

Direction Client Server / Server Client
Argument Count 8
Argument 1 – 3 4 Bytes (Same as above)
Argument 4 1 Byte Red component of Color, range: [0, 255]
Argument 5 1 Byte Green component of Color, range: [0, 255]
Argument 6 1 Byte Blue component of Color, range: [0, 255]
Argument 7 4 Bits Alpha of Color, range: [0, 127]
Argument 8 4 Bits Size of Path (or Point3), range: [0, 127]

Regarding the SYN and ACK flag, we have

implemented a SSH-liked echo mechanism.

When a client send a message of path drawing

to sever with SYN flag set, it do not immediate

update, but wait for server process and update

after receiving server echo message, of which

the ACK is set.

Using echo mechanism, we can ensure the

path drawing request and content is valid

before the path appear in presenter’s device. In

addition, it can guarantee path seen from

projector is same as that in presenter’s device.

 Fig.18 Message Send Chart for Path Drawing

vPresent 46

vPresent – Collaborative Presentation

F
ig

.1
9

 U
M

L
 S

e
q

u
e

n
c

e
 D

ia
g

ra
m

 fo
r H

a
n

d
lin

g
 P

a
th

 D
ra

w
in

g

vPresent 47

vPresent – Collaborative Presentation

Chapter 4. User Experience

4.1 Initial Approaches

During the earlier phases of the project, there was less design on the user interface. All

interface items were displayed on one single main view, as shown in the following:

Before long, as the functionality and system status increases, the interface layout become

more and more messy and unorganized. So we need to redesign the interface by reordering

all the items.

Fig.20 Initial Interface Design

vPresent 48

vPresent – Collaborative Presentation

4.2 Possible Solution

We have considered making use of the tab bar at the bottom of the screen, to organize the

objects on the screen. The tab bar consists of some tab bar items, each of them was

responsible for a category of functions, for example the status and switch for external

monitors can group into the same group named “Screen”.

These items would only be visible when the respective tab bar button was touched, then a

pop up dialog box would appear and overlay on the screen. This dialog box would fade out

if the user tab outside the window of the screen, as illustrated in the following figure:

Fig.21 Interface design with Portrait

vPresent 49

vPresent – Collaborative Presentation

This approach can effectively solve the problem of unorganized controlling items and it

improved the effectiveness of limited screen spaces. But soon we discovered a major

problem of this interface design. The problem is that the dialog boxes of the active tabs

would partially cover the slide screen. For the moderators, although it would not affect the

view output to the external screen, it would definitely affect the effectiveness of the flow

controlling ability. For example, if the current presenter displayed some inappropriate

contents on the slide screen but the moderator was busy in handling some requests

displaying on the dialog box of an active tab, the dialog box may covered the banned

contents and the moderator was not noticed. Moreover, this is a portrait-based interface,

which is not able to use when the orientation of the device is landscape. Due to the above

issues, we need to redesign the interface.

4.3 Final Decisions

Finally, we decided to use the “split view” framework design. This kind of interface is

officially supported by iOS and only available on iPad. This kind of user interface design is

currently using by many iPad applications. Actually, we are inspired by the iPad version of

Dropbox client. Split View (or Master-Detail View) is suitable for applying applications

relating to file management. In the Dropbox client-side application, the master view can

show file and folder lists of clients’ Dropbox, and also the display usage of Dropbox. On the

other hand, detail view on the right display the content of the chosen file from the master

view. When the iPad is holding on landscape orientation, performing actions to control the

Dropbox files on the master view, the content displaying on the detail view are not neither

affected nor covered.

This feature of split view is suitable for our application as the slides screen on the detail

view is not favorable to be covered by some other windows or view. The following figure

shows the general layout of iOS Split Views.

vPresent 50

vPresent – Collaborative Presentation

Based on the split view controller framework, we have extended the view hierarchy as

shown the following chart:

Split View Controller
(Root View)

Master View Controller
(Tab Bar Controller)

Detail View
Controller

Fig.22 Landscape view of a split view controller

vPresent 51

vPresent – Collaborative Presentation

And the following is the final interface design:

As shown in the figure, the monitor display is divided into two parts. In our design, master

views are used to show the controlling options and show the system status. On the other

hand, the detail view shows the slide contents and the items related to the presentation

flow, such as the current presenter, timer, etc.

The master view controller is containing a tab bar controller, which allows multiple tabs to

be displayed on the master view by selecting the respective tab bar items. The content in

the master view controller in the moderator version application is different from that in the

presenter version. The moderator version consists of the IP address and the listening port

of itself, a request list, connected presenter list, and the external screen control, etc. The

Fig.23 Overview of the user interface of our application

vPresent 52

vPresent – Collaborative Presentation

presenter version consists of the presenting file list, connection status, drawing pen style,

etc.

Both versions of the application show the presentation status on the detail screen. For the

server version, it will show the current presenter of the presentation (empty if no presenter

is presenting), and show the total time used of that presenter. For the presenter version, it

will also show the total time used and the connection status with the moderator.

vPresent 53

vPresent – Collaborative Presentation

Chapter 5. Implementation Detail

5.1 Overview

In Fall 2012, we have implemented a subset of function and feature. The goal of this

semester is to demonstrate the concept of collaborative presentation, as well as

implementing some simple function of presentation system.

5.2 Drawing Pad / Canvas

We did not implemented a full-function drawing pad in this stage. We have implemented

only arbitrary path drawing with color and stoke size setting. We choose arbitrary path

drawing as we have to test on iPad capability and computational power on large amount

of data transmission, as well as frequent update of canvas.

The implementation of arbitrary path drawing is intuitive: when user start touch on canvas,

it drawing a point on that position, and storing the point in object as private variable. When

the user move his / her finger on canvas, it send message to canvas with parameter of the

new point. Then the canvas draw a line between the previous point and the new point, and

also store the new point into it private field. When user ends the touch, it clear the class

variables storing previous point. The pseudo-code is given as following:

1 penDown: point
2 join(point, point)
3 prevPoint <- point
4
5 penMove: point
6 join(prevPoint, point)
7 prevPoint <- point
8
9 penUp: point

10 join(prevPoint, point)
11 prevPoint <- nil

vPresent 54

vPresent – Collaborative Presentation

The drawing is done using Core Graphics, library provided by Cocoa framework. The Core

Graphics handle the rendering detail of drawing and provide some drawing utilities such

as CGContextAddLineToPoint(), for drawing line between two points. In addition, the

Core Graphics framework also provide utilities for serializing image to common image

format such as JPEG and PNG. If have tried to use the utilities to store the drawing as PNG,

then make a simple undo-redo function. However, we found saving image to PNG takes

lots computational power and make the device freeze for a second. Therefore, we did not

add the undo and redo function to current prototype, until we optimize it by storing the path

and erasing current content.

5.3 External Display / Projector Connection

When implementing the external display, we have two concerns: detection of external

display and drawing on external display.

To detect the external display, we, again, use the NSNotificationCenter for detecting

broadcast. Registering handleScreenDidConnectNotification and

handleScreenDidDisconnectNotification, we can handle the external screen

immediately when it is connected or disconnected.

After the connection of external monitor, we have to manage the content of external

monitor. The setup of external monitor involve two classes, UIScreen and UIWindow.

UIScreen contain settings of the connected external monitor including resolution and

brightness. In addition, UIScreen contains available resolution setting of connected

monitor. Based on the resolution available, of which preferred resolution is used in

prototype, we create an instance of UIWindow. Adding root view to the created UIWindow

object, we are able to add subview on it, showing custom content to external screen.

The next step is to make content to show in external screen, synchronizing with device

view. To manage those actions, we have create a new view controller, handling operations

vPresent 55

vPresent – Collaborative Presentation

regarding external screen called VPSlidesViewController. Moreover, we are trying to

hiding that there are two view hierarchies in the controller. Thus classes using this

controller may only consider it as normal view controller. As discussed in design

section302, we are going to make two operations to view: copying and performing.

Copying a view, we found a view may not be able to make deep copy and sometime may

need custom copying in order to have a deep copy of view. To handle different class in

VPSlidesViewController for copying, we have use introspection for determining class of

an object, then handle each class differently. We have only handle few classes such as

UIImageView and VPCanvas for copying, which is enough with currently implemented

functionalities. But we will add support on more classes later.

To perform an operation on a view, we try to add a method which use block as parameter.

A block of code is to abstract the programming logic in the block. The block basically

having one parameter, the view, and the block content assume valid view is passed into it

and able to perform operation on the block. However, we found having only one parameter

is not enough. When the block is containing some coordinate and position related value,

the position in device may not be the same as that in view, due to resizing and translating

of view when fitting to external monitor. Therefore, we further write a method of block with

two input, view and point, and do resizing and translating within controller, making the

point is relative to external screen. Thus the position of point is still same as viewing in

device.

vPresent 56

vPresent – Collaborative Presentation

1 - (void) perform: (void (^) (UIView *)) action onTag:
(NSInteger) tag {

2 action([self.deviceView viewWithTag: tag]);

3 action([self.externalView viewWithTag: tag]);

4 }

5

6 - (void) perform: (void (^) (UIView *, CGPoint)) action
onTag: (NSInteger) tag withPoint: (CGPoint) point {

7 action([self.deviceView viewWithTag: tag], point);

8 action([self.externalView viewWithTag: tag],
CGPointMakeScale(point, 1, self.externalViewZoomRatio));

9 }

Remark 1: tag is used for retrieving a view from view hierarchy

Remark 2: CGPointMakeScale() map and scale a point with prevRatio and newRatio.

Normally, prevRatio is set to 1

5.4 Network Connection

As discussed in design section 3.4.1, we are going to use TCP/IP connection.

As Objective-C is superset of C, and iOS has implemented interface on Berkeley sockets,

as known as BSD sockets, we can use the recompile codes written in C and developed

based on Linux. However, we tried to avoid some low level referencing and try using Core

Framework calls and NSFileHandle.

Core Framework of iOS provides family of CFSocket* methods for some socket operations.

We have used including CFSocketCreate(), CFSocketSetAddress(),

CFSocketInvalidate() and CFRelease() for replacing system calls such as socket(),

bind(), connect(), listen(), close() etc. In addition, we have wrap the socket file

descriptor to NSFileHandle, providing more utilities for operations. Therefore we could

avoid storing variables in low level, making use of object oriented paradigm and API

provided in Cocoa foundation.

vPresent 57

vPresent – Collaborative Presentation

Wrapping the file descriptor to NSFileHandle, we can use more API of Coca foundation

and avoid complicated codes. In Linux environment with C implementation, we have to use

read() for reading data from foreign host. As a blocking call, read() in socket usage

always come with thread programing using POSIX pthread_*() and some mutex or

semaphore to prevent race condition. Those implementation make code complex and

difficult in development. Using NSFileHandle together with NSNotificationCenter, a

global broadcasting class within program. By sending message

waitForDataInBackgroundAndNotify and adding

NSFileHandleDataAvailableNotification to notification center, we can wait data in

background. Once the run loop found there is data available, it would send selector

message to observer and therefore we can wait data in background, and handle data with

another method.

We have write a class of TCPServer and TCPConnection. Both class only making method

such as connectTo:, listenTo: public to call. Classes use TCPServer or TCPConnection

do not need to consider the internal implementation and simply register callback when

receiving data.

During testing, we found and problem with waiting data in background with notification

center: the handing method is called for each packet received. Therefore we cannot get

data in the method if the message size is larger than one packet, and the data we received

is at most 1448 bytes. This is a serious problem it is impossible to limited the slide image

be 1448 bytes. Therefore we tried to implement a buffer for storing incomplete message.

The message handling method will be called only if the message is completed.

5.5 File Read / Write

Comparing to other mobile device OS like Andriod, iOS adopts the “Sandbox” file storage

approaches for each application, which is more secure because the file imported for one

vPresent 58

vPresent – Collaborative Presentation

application will not affect other application installed on the same iOS machine. But

definitely, for iOS applications developers, this file storage approaches limits the flexibility

of file handling.

2

On the Internet, one of the most frequently asked questions made by iOS application

developers is: How can we interact (import/export) data files with the application? The

answer would be through iTunes developed by Apple.

First of all, a variable is added into the preference list (one of the project file with file

extension “.plist”):

Application supports iTunes file sharing = YES

This property triggered out the file sharing ability of the iOS application. Then the iTunes

will show the connected iPad and allow to put files into the application, as shown below

2 Image Source: http://www.iphoneroots.com

Fig.24 An illustration of the iOS Sandbox storage approaches

vPresent 59

vPresent – Collaborative Presentation

But, this file sharing approaches has a great limitation on it. That is users are only allow to

add files into the document folder, but neither the users nor the developers can add, create

or access any sub-folders in this file sharing folder; neither through this interface, nor

through program coding. Things getting worse is, developers are also not allowed to create

any folders at the application home folder.

Nevertheless, it highly limited the file accessibility of iOS application. Still there is an old

saying: “When God closes a door, somewhere he opens a window”. In our case, that is

“When Apple disables the sub-folder storage of the document folder, they allow another

fully functional folder to use.” Actually, each application will have a special folder to use,

named “Library” in iOS 5.1.1. This folder is not visible to the users, since they will not be

able to see the contents of these folders through iTunes. But it can be fully controlled by

the application developers through program codes.

Fig.25 File sharing interface in iTunes

vPresent 60

vPresent – Collaborative Presentation

The following shows the program code to get the shared folder path of the current
application:

1 //---init a file manager---

2 NSFileManager * filemgr = [NSFileManager defaultManager];

3 //---get the path of the Documents folder---

4 NSArray *paths =
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);

5 NSString *documentsDirectory = [paths objectAtIndex:0];

Then, for our implementation, we can make use of the file sharing ability provided by iOS

and iTunes, to allow the presenters to import their prepared presentation materials. Then

we can copy it into the “Library” folder and to make further processing without changing

the original contents imported by the users.

5.6 User Interface

5.6.1 Split View

Fig.26 Split View Representation display in Xcode interface builder

vPresent 61

vPresent – Collaborative Presentation

As mentioned at the previous sections, split view controller is one of the famous user

interface design framework, widely using by the application on iPad. This framework itself

have already support and pre-implemented lots of animations and segue actions

concerning the two main subviews of it, namely Master View and Detail View, from left to

right respectively. As defined in class UISplitViewController, the two subviews are

stored in an NSArray, with object index 0 and 1 respectively.

Because of this design, the reference of both subview controllers can be obtained easily by
accessing the property of the split view controller. The following code demonstrate how to
the reference of the subview controllers:
1 // in subclass of UISplitViewController
2 // Getting the master view controller
3 UIViewController* mvc = [self.viewController objectAtIndex :0];
4 // Getting the detail view controller
5 UIViewController* dvc = [self.viewController objectAtIndex :1];

On the other hand, the subviews will also holds a property to the reference of the nearest

split view controller ancestor in the view hierarchy. That means the subview controllers

can easily access the property of the split view controller. This is essential for different

view controllers to communicate and passing values and variable as we often use the

controlling items in the master view to control the interface items possessed by another

view controller.

Other than the references of view controllers, a number of inherited method from the

UISplitViewController and the delegate methods after implemented the

UISplitViewControllerDelegate protocol are worth mentioning. These methods

involve to control the interface behaviors when the device is in various orientation, the

action of the master view controller, etc. In our implementation, since we only support

landscape orientation layout, the major task carry out by the

UISplitViewControllerDelegate protocol is minimal because we do not need to reorder

or resize the interface items on the detail view.

vPresent 62

vPresent – Collaborative Presentation

One of the major problems for iOS developers who are unfamiliar with the split view

controller framework is to control the action of the application when the orientation

changes. We have spent a significant among of working hours to figure out the working

principle.

-(BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)toInterfaceOrientation
This method have to be implemented to all view controllers which are under the view

hierarchy of the split view controllers before the whole application can perform rotation

correctly.

5.6.2 Tab Bar

Tab bar is used to divide the same view space into different pages. It can be achieved by

linking the respective tab bar items with respective view controllers. Similar to the split

view controllers, the tab bar controller can contains its subviews in an NSArray, with object

index from 0 to (n-1) when there is n tabs defined.

Again, the subview controllers will also hold a property of object reference of their nearest

tab bar controller ancestor. One of the features we found this useful is to change the title

view of the top navigation bar when switching between tabs. Also, it is common that there

are different layouts of navigation bar view, and it can be changed easily by directly change

the navigation bar behaviors.

Fig.27 Tab Bar View display in Xcode interface builder

vPresent 63

vPresent – Collaborative Presentation

5.6.3 Table View

Here shows two style of table view, from left to right, namely plain style and grouped style

respectively.

In our implementation, the table view controllers under each tab bar item are stored in the

tab bar controller as mentioned above. The interface builder in Xcode can in fact generate

a static type of table view with static contents, number of cells and sections. But that is

definitely not suitable for our implementation, as the contents in the table views are used

Fig.28 Table View display in Xcode interface builder

vPresent 64

vPresent – Collaborative Presentation

to display the system status, which the data needed to be obtained and updated in real

time.

Then the table needed to be configured into dynamic type table view, which that all the

contents, number of rows and sections are defined by program code. Although the program

code can define all the cell layout properties such as fonts and colors, the interface builder

also support to build “prototype cells” to configure the cell layout.

Every prototype cell have to assign a unique “reuse identifier” for the table view controller

to maintain a “pool” of reusable cells. Cells that use the same identifier will be generated

based on the same prototype cells.

UISwitch and UITextField

Here shows two types of them, from left to right, a UISwitch and UITextField (the upper

cell) respectively.

Fig.29 Prototype cells defined in the interface builder

Fig.30 A controlling item added as a subview of a grouped cell.

vPresent 65

vPresent – Collaborative Presentation

This kind of cell is actually very common on the set up screens and scenarios, which is one

or more grouped cells with the titles on the left, and the switch on the right. This

modification is not possible to be defined on the interface builder. So the control items

have to be defined and added to the cell by program code. UITableViewCell objects have

a property called accessory view, which can accept any instance created by subclass of

UIView. The UISwitch can be added by this method.

The method to add the text field is a little bit different from that of the switch, since

UITextField itself does not have a standard size, so the text field need to be first initialize

with a frame which used to define the size of it, then add the text field into the subview of

the cell. Here is the code snippet how we implemented this:

1 // init. of text field
2 UITextField *filenameTextField = [[UITextField alloc]

initWithFrame:CGRectMake(130, 12, 185, 30)];
3 // add text field to the cell
4 [aCell addSubview:filenameTextField];

vPresent 66

vPresent – Collaborative Presentation

Chapter 6. Progress and Evaluation

6.1 Progress Report

The project was started from June 2012.

As we are newbie to iOS programming

and application development, we have to

learn the syntax of Objective-C, design

pattern of iOS application, user interface

as well as APIs of Cocoa framework and

NextStep API (NS*). We study iOS

programming according to Apple’s

developer site and manual, online tutorial

and course of Stanford University, which

is available in iTunes U. In addition to

study iOS programming, we set up

environment of development in summer,

and also work on marketing research

about presentation software and

systems.

Starting from September, we draft the

specification of project, including

features and functions being included,

and plan the schedule of semester.

With draft of specification, we make some demonstrations with use of APIs provided.

Demonstrations include the use of external screens, making connection between devices

and also drawing on screen as path. Each demonstration make use of UIKit and user

• iOS Programming

• Development
environment setup

• Marketing Research

Jun - Aug
2012

• Specifications DraftSep 2012

• API Testing

• External View

• Inter-device
Connection

• Drawing Pad

Sep - Oct
2012

• User Interface

• Integration of
Classes

Oct - Nov
2012

• Testing and
Debugging

• Documentation

Nov - Dec
2012

vPresent 67

vPresent – Collaborative Presentation

interface items of iOS, and also making us conformable with development environment and

Objective-C syntax. In addition, the demonstration make classes or model separate from

user interface, allowing us to import the classes for prototype without modification of class.

The development is modularized and bottom-up approach, solving small problems then

integrate to whole solution.

After testing of APIs with demonstration, we integrate classes done in each demonstration

as well as developing user interface with integrating to classes. The user interface items,

provided by UIKit, use lots of delegation and design pattern of Cocoa framework. In addition,

we evolve the user interface a few times in order to making the application more user

friendly. Therefore this progress used more time than expected.

After integrating classes and features into the applications, we have tested the application

with correctness, also optimizing some code for better performance. In addition, we have

to tidy up documents written before.

6.2 Outcome

In this semester, we have developed two prototypes of iOS application to demonstrate the

basic idea of collaborative presentation. The two prototypes are moderator and presenter.

The two prototypes able to communicate with each other under local area network, and

practically be able to communicate via internet.

Regarding the moderator, it support making slides show display on external screen with

scaling to best fit, and also can handle messages from presenter. Messages able to handle

including registration of presenter, un-registration of presenter, requesting control of

presentation, slides data and path drawing command. In addition, the moderator itself is

also able to load slides and do presentation with timer and full presentation control.

vPresent 68

vPresent – Collaborative Presentation

On the presenter side, it is able to connect to moderator, and also send message and

present with moderator. After presenter register to moderator, it can request presentation

control permission. Receiving control grant message, the slide data can be send to

moderator and show in external monitor, as well as synchronizing drawing with echoing

mechanism.

In conclude, we can make a wireless presentation will multiple presenters with

synchronizing slides data and path drawing. Multiple presenters and seamless

presentation is done under moderator control and moderator itself also able to present.

6.3 Issues

The current prototype are having some issues not yet been solved. Issues including

When a path is becoming long and position change rapidly, the drawing become lag and

some point is missing. Observing the issue, we use Instruments, a debugging and analyzer

of iOS application, to analyze the applications during such case. In time profiler of

Instruments, we found the problem is due to huge CPU time in drawing path between two

points in Core Graphics. We believe this is because Core Graphics drawing operation is

computationally expensive. When the drawing involve rendering of large area and rapid

changes, the CPU time shapely increase.

Fig.31 Time Profile of Testing Path Drawing in Local Device Screen

vPresent 69

vPresent – Collaborative Presentation

The problem become more apparent when the device is connected to external monitor. We

believe the reason is the application have to render two views and, the scaling function for

each point involve many floating point calculation. When connecting to external monitors,

the CPU time increase much more and the path is not smooth when we disable the echo

mechanism.

We have disables the echoing mechanism, drawing directly to screen and ignoring the echo

message in presenter. Therefore the presenter view shows all points detected and send to

Fig.32 Time Profile of Testing Path Drawing when Synchronizing with External Screen

Fig.33 Canvas on Presenter (Left) and Moderator (Right)

vPresent 70

vPresent – Collaborative Presentation

moderator. However, it is obvious in Fig.33 that the left canvas, which is device view of

presenter, is smooth but the canvas on moderator, showing at the right of Fig.33, is not

smooth.

Another issue is when we use presenter to write large amount of points in short period of

time, the moderator would force quit. The problem is, again, due to high computational time

in Core Graphics. In such case, the moderator is not able to handle the large amount of

data is short time. The received message is kept in buffer but not able to process. When

the large amount of point is sent quickly, the memory usage of application raise rapidly

and receive memory warning, then force quit due to memory management of kernel. We

use instrument to monitor the memory usage as well as network connection, with result in

Fig.34. At the end the graph, the application force quitted.

Addressing the issue, we now handle every three points touched instead of handling each

point. Thus the lag issue and force quit issue is solved. However, we are still worry about

when more shape and content is available and need to handle.

Fig.34 Connection Monitor, VM Tracker showing Memory Usage and CPU Monitor
about CPU loading of Moderator when Receive Large Amount of Point

vPresent 71

vPresent – Collaborative Presentation

Chapter 7. Conclusion

In the semester, we have defined collaborative presentation, a new concept of presentation

style. The collaborative presentation development is still at starting phase, and we are still

improving the concept with more rigid definition, examples and features.

Moreover, we have implemented two prototypes for demonstrating collaborative

presentation, for moderator and presenter respectively. Despite we have only implement a

subset of functions stated in our design, we are able to demonstrate the idea of

collaborative presentation, as well as proof the feasibility of implementing collaborative

presentation application on iOS.

Apart from works related to collaborative presentation, we also learn and used to develop

iOS application and the development environment. We get used to Xcode, storyboard,

Objective-C and APIs provided by Cocoa framework. As a newbie of iOS programming from

Summer 2012, we are now able to write an application with network communication on iOS.

We are also able to use Core Graphics APIs to draw and render on iOS. Our learning ability

have been improved, as well as the problem-solving skills.

Finally, we tried designing applications starting from zero. As application development

involve many aspect including software design, user interface and experience designing,

implementation of application, testing, debugging and also profiling of application, aiming

at optimization, we have an experience of whole software engineering cycle. This is a

valuable experience for us.

The prototypes are still not ready to market, in terms of performance, user experience and

functionality. We will continue the development in the next semester.

vPresent 72

vPresent – Collaborative Presentation

Chapter 8. Future Development

We are going to continue the project in next semester. Our work and target of next semester

can be categorize to two group: improving and optimizing existing functions; and also

adding new features into our applications.

Regarding optimizing existing function, the critical issue would be computation-heavy

Core Graphics rendering causing lag and force quit of application. In order to solve the

problem, we planned to implement the canvas using OpenGL ES, a subset of OpenGL for

mobile devices. As OpenGL is supported by GPU of iPad, we hope the performance could

be improved by re-implementing with OpenGL.

The second issue being addressed is transmitting path-drawing point one-by-one using

TCP connection. Using TCP to transmit little amount of data frequently is not efficient, and

the TCP overhead cause performance issue and therefore slow down the synchronizing

latency, as well as over-loading the kernel of iPad. We planned to modify the

implementation, transmitting some small amount data with UDP, the best-effort protocol

without guarantee of correctness and successful delivery. We need to use more time on

considering the balance of performance and correctness.

Regarding new features, there are features stated in the design but not yet been

implemented, such as recoding, blanking the screen and support of other presentation

slides type. Those would be in our schedule of next semester.

Last but not least, we still have to implement another applications for viewer other than

moderator and presenter. We also have to implement a back-end server for handling large

scale conference.

vPresent 73

vPresent – Collaborative Presentation

Chapter 9. Acknowledgement

Firstly, we would like to thank our supervisor Prof. Michael R. Lyu. He provided us valuable

comments and guidelines throughout the whole project.

Secondly, we would like to thank the researchers from ViewLab, Mr. Edward Yau Hon Hei

and Mr. Un Tze Lung provided great amount of hardware supports and remarkably ideas

to make our project become more fruitful and interesting.

Last but not least, we would like to thank our lab technicians to provide the accessibility of

using the developing tools of Mac OS machines in our department computer laboratory.

vPresent 74

vPresent – Collaborative Presentation

Chapter 10. Reference

[1] Apple Inc. iOS Developer Library [Online]. Available:

https://developer.apple.com/library/ios/navigation/index.html

[2] Object Management Group. UML Specification [Online]. Available:

http://www.omg.org/spec/UML/

[3] Opencast Matterhorn

 http://opencast.org/matterhorn/

[4] Echo 360. Higher Education’s First Active Learning Platform | Echo360 [Online].

Available: http://echo360.com/

[5] Microsoft. Microsoft PowerPoint [Online]. Available:

http://office.microsoft.com/zh-hk/powerpoint/

[6] Stack Overflow [Online]. Available: http://stackoverflow.com/

