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Equivalent formulation: 𝑇𝑖𝑗𝑘 = 𝐴𝑖𝑗 + 𝐵𝑗𝑘 + 𝐶𝑘𝑖

for all 𝑖, 𝑗, 𝑘 ∈ 𝑛1 × 𝑛2 × 𝑛3
Denote 𝐓 = Pair(𝐀, 𝐁, 𝐂)

Temporal Collaborative Filtering

Result: Exact Recovery
When all observations of T are exact and noiseless, we can exactly 

recover the pairwise interaction tensor from a subset of observations.

Solve a weighted trace norm minimization problem:

min
𝐗∈𝑆𝐴,𝐘∈𝑆𝐵,𝐙∈𝑆𝐶

𝑛3 𝐗 ∗ + 𝑛1 𝐘 ∗ + 𝑛2 𝐙 ∗

𝑠. 𝑡. 𝑋𝑖𝑗 + 𝑌𝑗𝑘 + 𝑍𝑘𝑖 = 𝑇𝑖𝑗𝑘 , ∀ 𝑖, 𝑗, 𝑘 ∈ Ω.

Theorem: Under mild assumptions (see below), if the number of 

observations is larger than 𝑶 𝒏𝟑𝒓𝐥𝐨𝐠
𝟐 𝒏𝟑 ,  then, with high 

probability, the minimizing solution of the above objective satisfies 

𝐀 = 𝐗, 𝐁 = 𝐘 and 𝐂 = 𝐙 and therefore exactly recovers pairwise 

interaction tensor T.
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Phase Transition of Exact Recovery

Recover Pairwise Interaction Tensor
Object Decomposition Recovery

rank-k matrix 
𝐌 ∈ R𝑛1×𝑛2

𝑀𝑖𝑗 = 𝑢𝑖 , 𝑣𝑗 matrix completion
guaranteed recovery of 𝐌 from 
𝑂 𝑛𝑘 log2(𝑛) observations

rank-k tensor
𝐓 ∈ R𝑛1×𝑛2×𝑛3

𝑇𝑖𝑗𝑘 = 𝑢𝑖 , 𝑣𝑗 , 𝑤𝑘 ???

pairwise interaction tensor
𝐓 ∈ R𝑛1×𝑛2×𝑛3
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this paper: 
guaranteed recovery of 𝐓 from 
𝑂 𝑛𝑘 log2(𝑛) observations.

Recovery Problem

Given: partial observations Ω of a pairwise interaction tensor T

Goal: recover matrices 𝐴, 𝐵, 𝐶 and therefore T.

Result: Stable Recovery
When the observations are noisy, the performance of recovery is 

accurate. 

Let  𝑇 be the tensor perturbed by noise. Assume 𝑃Ω  𝑇 − 𝑇
𝐹
≤ 𝜖1.

Solve a weighted trace norm minimization problem:

min
𝐗∈𝑆𝐴,𝐘∈𝑆𝐵,𝐙∈𝑆𝐶

𝑛3 𝐗 ∗ + 𝑛1 𝐘 ∗ + 𝑛2 𝐙 ∗

𝑠. 𝑡. 𝑃Ω Pair 𝐗, 𝐘, 𝐙 − 𝑃Ω  𝐓
𝐹
≤ 𝜖2.

Theorem: Under same assumptions, if the number of observations is 

larger than 𝑶 𝒏𝟑𝒓𝐥𝐨𝐠
𝟐 𝒏𝟑 ,  then the minimizing solution of the 

above objective satisfies

Pair 𝐗, 𝐘, 𝐙 − 𝐓 ∗ ≤  𝑂 𝑟0.5𝑛1.5 𝜖1 + 𝜖2 .

Conditions of Recovery
Incoherence.

• Matrix completion is a special case of our problem (e.g. recover 

Pair(A,0,0)).

• Incoherence is an essential requirement of matrix completion.

• Our results inherit the incoherence conditions, i.e. both theorem 

require that A,B,C are incoherent.

Uniqueness.

• A pairwise interaction tensor T has infinite many equivalent matrix 

representations.

• Unique representation: for any pairwise interaction tensor 𝐓 =
Pair(𝐀′, 𝐁′, 𝐂′), there exists unique 𝐀 ∈ 𝑆𝐴, 𝐁 ∈ 𝑆𝐵 , 𝐂 ∈ 𝑆𝐶 such 

that Pair 𝐀, 𝐁, 𝐂 = Pair 𝐀′, 𝐁′, 𝐂′

• Our results assume that 𝐀 ∈ 𝑆𝐴, 𝐁 ∈ 𝑆𝐵 , 𝐂 ∈ 𝑆𝐶 .

• Construction of 𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 is related to the “bias” component.

Optimization Algorithm
We use SVT to solve the trace norm minimization problem.

Iterate between Step (1) and Step (2) .. 

Step (1)

𝐗𝑘 = shrinkA 𝑃Ω𝐴

∗ 𝒚𝑘−1 , 𝜏

𝐘𝑘 = shrinkB 𝑃Ω𝐵

∗ 𝒚𝑘−1 , 𝜏

𝐙𝑘 = shrinkC 𝑃Ω𝐶

∗ 𝒚𝑘−1 , 𝜏

Step (2) (for exact recovery)

𝒆𝑘 = 𝑃Ω 𝐓 − 𝑃Ω Pair
𝐗𝑘
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,
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𝒚𝑘 = 𝒚𝑘−1 + 𝛿𝒆𝑘 .

The shrinkage operator shrinkω is defined as

shrinkω 𝐌, 𝜏 ≝ argmin
 𝐌∈𝑆𝜔

1

2
𝐌−  𝑴

𝐹
+ 𝜏  𝐌

∗

The shrinkage operators can be computed efficiently using SVD.

• The x-axis is the ratio between the number of observations m and the degree of freedom.

• The y-axis is the rank r of the synthetic matrices A,B,C. 

• The color of each grid indicates the empirical success rate.

• Dataset: MovieLens

• All ratings are timestamped. 

• Model: Tensor N*M*T, N: number of users, M: number of movies, T: number of different months.

• size: 6040*3706*36, observations: 1M.

• Algorithms:

• MC: Matrix completion, which does not use timestamp information.

• RIPT: Our algorithm, which uses timestamp information, achieves RMSE of 0.861

Tensor Completion
Matrix completion Tensor completion

Previous Pairwise Interaction Tensor
Tag recommendation [1]  Sequential analysis of purchase data [2]

• model data using pairwise interaction tensor instead of general low rank tensors. 

• faster/more accurate/achieves state of the art performance.

Factorization Machine [3]

• extend to higher order tensors.

Existing learning algorithms are prone to local optimal issues

• recovered tensor can be very different from its true value!

References
[1] Rendle, Steffen, and Lars Schmidt-Thieme. "Pairwise interaction tensor factorization for 

personalized tag recommendation." WSDM 2010.

[2] Rendle, Steffen, Christoph Freudenthaler, and Lars Schmidt-Thieme. "Factorizing 

personalized Markov chains for next-basket recommendation." WWW, 2010.

[3] Rendle, Steffen. "Factorization machines with libFM." TIST 2012.


