

Neural Information Processing Systems Foundation

Exact and Stable Recovery of Pairwise Interaction Tensor

Tensor Completion

Tensor completion

Recover Pairwise Interaction Tensor

Object	Decomposition	Recovery
rank-k matrix $\mathbf{M} \in \mathbf{R}^{n_1 imes n_2}$	$M_{ij} = \langle u_i, v_j \rangle$	matrix completion guaranteed recovery of M from $O(nk \log^2(n))$ observations
rank-k tensor $\mathbf{T} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$	$T_{ijk} = \langle u_i, v_j, w_k \rangle$???
pairwise interaction tensor $\mathbf{T} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$	$T_{ijk} = \left\langle u_i^{(a)}, v_j^{(a)} \right\rangle \\ + \left\langle u_j^{(b)}, v_k^{(b)} \right\rangle \\ + \left\langle u_k^{(c)}, v_i^{(c)} \right\rangle$	this paper: guaranteed recovery of T from $O(nk \log^2(n))$ observations.

Previous Pairwise Interaction Tensor

Tag recommendation [1] Sequential analysis of purchase data [2]

- model data using pairwise interaction tensor instead of general low rank tensors.
- faster/more accurate/achieves state of the art performance.

Factorization Machine [3]

extend to higher order tensors.

Existing learning algorithms are prone to local optimal issues

recovered tensor can be very different from its true value!

References

1] Rendle, Steffen, and Lars Schmidt-Thieme. "Pairwise interaction tensor factorization for personalized tag recommendation." WSDM 2010.

[2] Rendle, Steffen, Christoph Freudenthaler, and Lars Schmidt-Thieme. "Factorizing personalized Markov chains for next-basket recommendation." WWW, 2010.

[3] Rendle, Steffen. "Factorization machines with libFM." TIST 2012.

¹Shouyuan Chen, ¹Michael R. Lyu, ¹Irwin King, ²Zenglin Xu ¹The Chinese University of Hong Kong ²Purdue University

Matrix Formulation

Original formulation: $T_{ijk} = \left\langle u_i^{(a)}, v_j^{(a)} \right\rangle + \left\langle u_j^{(b)}, v_k^{(b)} \right\rangle + \left\langle u_k^{(c)}, v_i^{(c)} \right\rangle$	
Equivalent formulation: $T_{ijk} = A_{ij} + B_{jk} + C_{ki}$	
for all $i i k \in [n] \setminus [n] \setminus [n]$	-

Denote $\mathbf{T} = \text{Pair}(\mathbf{A}, \mathbf{B}, \mathbf{C})$

Result: Exact Recovery

When all observations of **T** are **exact** and **noiseless**, we can **exactly recover** the pairwise interaction tensor from a subset of observations.

Solve a weighted trace norm minimization problem: $\min_{\mathbf{X}\in S_A, \mathbf{Y}\in S_B, \mathbf{Z}\in S_C} \sqrt{n_3} \|\mathbf{X}\|_* + \sqrt{n_1} \|\mathbf{Y}\|_* + \sqrt{n_2} \|\mathbf{Z}\|_*$ s.t. $X_{ij} + Y_{jk} + Z_{ki} = T_{ijk}, \quad \forall (i, j, k) \in \Omega.$

Theorem: Under mild assumptions (see below), if the number of observations is larger than $O(n_3 r \log^2(n_3))$, then, with high probability, the minimizing solution of the above objective satisfies A = X, B = Y and C = Z and therefore exactly recovers pairwise interaction tensor **T**.

Conditions of Recovery

Incoherence.

- Matrix completion is a special case of our problem (e.g. recover Pair(**A**,0,0)).
- Incoherence is an essential requirement of matrix completion.
- Our results inherit the incoherence conditions, i.e. **both theorem** require that A,B,C are incoherent.

Uniqueness.

- A pairwise interaction tensor **T** has infinite many equivalent matrix representations.
- Unique representation: for any pairwise interaction tensor $\mathbf{T} =$ Pair(A', B', C'), there exists unique $A \in S_A$, $B \in S_B$, $C \in S_C$ such that Pair(A, B, C) = Pair(A', B', C')
- Our results assume that $\mathbf{A} \in S_A$, $\mathbf{B} \in S_B$, $\mathbf{C} \in S_C$.
- Construction of S_A , S_B , S_C is related to the "bias" component.

Result: Stable Recovery

accurate.

Solve a weighted trace norm minimization problem: $\min_{\mathbf{X}\in S_A, \mathbf{Y}\in S_B, \mathbf{Z}\in S_C} \sqrt{n_3} \|\mathbf{X}\|_* + \sqrt{n_1} \|\mathbf{Y}\|_* + \sqrt{n_2} \|\mathbf{Z}\|_*$ s.t. $\|P_{\Omega}(\operatorname{Pair}(\mathbf{X},\mathbf{Y},\mathbf{Z})) - P_{\Omega}(\widehat{\mathbf{T}})\|_{E} \leq \epsilon_{2}.$

Theorem: Under same assumptions, if the number of observations is larger than $O(n_3 r \log^2(n_3))$, then the minimizing solution of the above objective satisfies

Optimization Algorithm

We use SVT to solve the trace norm minimization problem. Iterate between Step (1) and Step (2)... Step (1)

Step (2) (for exact recovery)

Recovery Problem

ven: partial observations Ω of a pairwise interaction tensor T

for all $i, j, k \in [n_1] \times [n_2] \times [n_3]$ Goal: recover matrices A, B, C and therefore T.

When the observations are **noisy**, the performance of recovery is

Let \hat{T} be the tensor perturbed by noise. Assume $\|P_{\Omega}(\hat{T}-T)\|_{F} \leq \epsilon_{1}$.

 $\|\operatorname{Pair}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) - \mathbf{T}\|_* \leq \tilde{O}\left(r^{0.5}n^{1.5}(\epsilon_1 + \epsilon_2)\right).$

$$\mathbf{X}^{k} = \operatorname{shrink}_{A}(P_{\Omega_{A}}^{*}(\boldsymbol{y}^{k-1}), \tau)$$

$$\mathbf{Y}^{k} = \operatorname{shrink}_{B}(P_{\Omega_{B}}^{*}(\boldsymbol{y}^{k-1}), \tau)$$

$$\mathbf{Z}^{k} = \operatorname{shrink}_{C}(P_{\Omega_{C}}^{*}(\boldsymbol{y}^{k-1}), \tau)$$

$$\boldsymbol{e}^{k} = P_{\Omega}(\mathbf{T}) - P_{\Omega}\left(\operatorname{Pair}\left(\frac{\mathbf{X}^{k}}{\sqrt{n_{3}}}, \frac{\mathbf{Y}^{k}}{\sqrt{n_{1}}}, \frac{\mathbf{Z}^{k}}{\sqrt{n_{2}}}\right)\right)$$
$$\boldsymbol{y}^{k} = \boldsymbol{y}^{k-1} + \delta \boldsymbol{e}^{k}.$$

The **shrinkage operator** shrink $_{\omega}$ is defined as shrink_{ω}(**M**, τ) $\stackrel{\text{def}}{=} \arg\min_{\widetilde{\mathbf{M}} \in S_{\omega}} \frac{1}{2} \|\mathbf{M} - \widetilde{\mathbf{M}}\|_{F} + \tau \|\widetilde{\mathbf{M}}\|_{*}$ The shrinkage operators can be computed efficiently using **SVD**.

- **Dataset**: MovieLens • All ratings are timestamped.
- Algorithms:

The x-axis is the ratio between the number of observations *m* and the degree of freedom. The y-axis is the rank r of the **synthetic** matrices **A,B,C**.

The color of each grid indicates the empirical success rate.

SVD truncation level

• Model: Tensor N*M*T, N: number of users, M: number of movies, T: number of different months. • size: 6040*3706*36, observations: 1M.

• MC: Matrix completion, which does not use timestamp information. • RIPT: Our algorithm, which uses timestamp information, achieves RMSE of 0.861