Pseudoinverse Learning Algorithm for Feedforward Neural
Networks*

PING GUO and MICHAEL R. LYU
Department of Computer Science and Engineering,
The Chinese University of Hong Kong,
Shatin, NT, Hong Kong.
SAR of P.R. CHINA
pguo@cse.cuhk.edu.hk, lyu@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~lyu

Abstract: - A supervised learning algorithm (Pseudoinverse Learning Algorithm, PIL) for feedforward neural
networks is developed. The algorithm is based on generalized linear algebraic methods and it adopts matrix
inner products and pseudoinverse operations. The algorithm eliminates learning errors by adding hidden
layers and will give a perfect learning. Unlike the gradient descent algorithm, the PIL is a feedforward-
only, fully automated algorithm, including no critical user-dependent parameters such as learning rate or

momentum constant.

Key-Words: - Feedforward neural networks, Supervised learning, Generalized linear algebra, Pseudoinverse

learning algorithm, Fast perfect learning.

1 Introduction

Several adaptive learning algorithms for multi-
layer feedforward neural networks have been pro-
posed(1][2]. Most of these algorithms are based
on variations of the gradient descent algorithm,
for example, Back Propagation (BP) algorithm(1].
They usually have a poor convergence rate and
sometimes fall into local minima[3]. Convergence
to local minima can be caused by the insufficient
number of hidden neurons as well as improper ini-
tial weight settings. However, slow convergence
rate is a common problem of the gradient descent
methods, including the BP algorithm. Various at-
tempts have been made to speed up learning, such
as proper initialization of weight to avoiding local
minima, an adaptive least square algorithm using
the second order terms of error for weight updat-
ing[4]. There is another drawback for most gradi-
ent descent algorithms, namely, “learning factors
problem”, such as learning rate, momentum con-
stant. The values of these parameters are often
crucial for the success of the algorithm. Most gra-
dient descent methods depend on these parameters
which have to be specified by the user, as no the-
oretical basis for choosing them exists. Further-
more, for applications which require high precision
output, such as the prediction of chaotic time se-
ries, the known algorithms are often still too slow
and inefficient. For example, like stacked general-

*This research work was fully supported by a grant from
the Research Grants Council of the Hong Kong Special Ad-
ministrative Region (Project No. CUHK4193/00E).

ization[5], which needs to train a lot of networks to
get level 1 training samples, it is very computation-
time consuming when using BP algorithm to per-
form the required task.

In order to reduce training time and investigate
the generalization properties of learned neural net-
work, in this paper a Pseudoinverse Learning al-
gorithm (PIL) is proposed, which is a feedforward-
only algorithm. Learning errors are transferred
forward and the network architecture established.
The trained weights previously in the network are
not changed. Hence, the learning error is mini-
mized on each layer separately and not globally
for the network as a whole. By adding layers to
eliminate errors, all examples of a training set can
be perfect learned.

2 The Network Structure and
Learning Algorithm

2.1 The Network Structure

Let us consider a multilayer feedforward neu-
ral network. The network has one input layer,
one output layer and several hidden layers. While
the number of hidden layer depend on the desired
learning accuracy and the examples of a training
set to be learned in this paper.

The weight matrix W' connects layer [and layer
I + 1 with elements wi,]—. Element wﬁ,j connects
neurons ¢ of layer [with neurons j of layer I + 1.
Note that the W0 matrix connects the input layer
and the first hidden layer, the W matrix connects

321

322

the last hidden layer and the output layer. We
assume only the input layer has bias neuron, while
the hidden layer(s) and the output layer have no
bias neuron. The nonlinear activate function is
o(-) , for example, we can use so called sigmoidal

function,
1

o) = 1 1)

which output is in a range of (0,1), or a hyperbolic

function

et —e™*

Frew @
which output is in a range of (-1,1) as an activate
function.

Given a training data set D = {x%,0'}}¥,, Let
(x%,0') be the i~th input-output training pair,
where x* = (z1,22,...,2,) € R" is the input
signal vector and o' = (01,02,...,0,) € R™ is
the correspond target output vector. For given N
sets of input-output vector pairs as examples to be
learned, we can summarize all given input vectors
into a matrix X°® with N rows and n + 1 columns.
Here the last column of X° is a bias neuron of con-
stant value § Each row of X° contains the signals
of one input vector. X® = [X|6], where matrix X
consist of all signal x* as row vectors. All desired
target output vectors are summarized into a ma-
trix O with N rows and m columns. Each row of
the matrix O contains the signals of one output
vector of. In the designed network structure, the
activate function is not applied to the output layer,
so the last layer is linear.

Basically, the task of training the network means
trying to find the weight matrix which minimizes
the sum-square-error function,

tanh(z) =

N m
1) .
E=553 03 N, 0=l (3)
i=1 j=1
Where g(x,0) is a network mapping function
and © is the network parameter set. In three layer
structure case,

N n
9;(x,0) = Z wi,jUi(Z wigz +0;). (4)
i=1 =1

where 6; is a bias value for network input.
For simplifying, we can write the system cost
function in matrix form,

E= %Trace[(G -0 G-0)],)

Propagating the given examples through the net-
work, multiplying the output of layer | with the
weights between layers | and [+ 1, and applying
the nonlinear activate function to all matrix ele-
ments, we get:

YI-H — (T(YIWI), (6)

and the network output should be
G=YIwL, (M

where we use superscript L to donate the last hid-
den layer output and the last weight matrix.

By examining the above equations, reformulat-
ing the task of training, the problem becomes;

minimize ||[YZWL — Q|2 (8)

This is a linear least square problem. If we can
find the network weight parameter such that makes
[[YLWL-0|[?> = 0, we will have trained the neural
network to learn all given examples exactly, that
is, a perfect learning.

Without loss generalization, in the following dis-
cussion we drop superscript index L in equation

).

2.2 Pesudoinverse Solution
Now let us discuss the equation

YW =0, WeRP™Y¢cRN*? Q¢cRV*™

9)
When p < N, the system is underdetermined sys-
tem. Notice that such a system either has no solu-
tion or has an infinity of solutions.

If'Y € RN*¥ is invertible and has been learned
in L — 1 layer, the system of equation (9) is, in
principle, easy to solve. The unique solution for
last layer weight matrix is W = Y~10. If Y is an
arbitrary matrix in RV*?, then it becomes more
difficult to solve equation (9). There may be none,
one or an infinite number of solutions depending on
where O € R(Y) and whether N— rank(Y) > 0.

One would like to be able to find a matrix (or
matrices) C, such that solution of 9 are of the form
CO. But if O ¢ R(Y), then equation (9) has no
solution.

From linear algebra theorem, it has:

Theorem 1 The system YW = O has a solu-
tion if and only if

rank([Y, O]) = rank(¥), (10)
Proof: See reference [6].

We intend to usc pseudoinverse solution for find-
ing weight matrix, the reason is that the theorem
from linear algebra states that pseudoinverse solu-
tion is the best approximation.

Theorem 2 Suppose that X € RPX™, Ac
RN*P B € RN*™ The best approximate solution
of the equation AX =B is Xo = A*B (The su-
perscript + denotes the pseudoinverse matrix)

Proof: From reference [6], it is easy proved.

From the theorem 2, it has,

Corollary 1 The best approximate solution of
AX=IisX=A".

a
Highlight

From above analysis, we try to find the output
layer weight in this way:

Let W = Y+O, the learning problem becomes
IYY*O - O|? = 0, where Y~ is the pseudoin-
verse of Y . This is equal to find the matrix Y
50 that YY+—T =0, where I is the identity ma-
trix. So the task of training the network becomes
that of managing to raise the rank of matrix Y up
to full rank. As soon as Y becomes a full rank
matrix, the YY* will become the identity matrix
I. Note that since we multiply Y on the right by
Y, it needs only requiring the right inverse of Y
to exist, not necessarily for Y* to be a two-sided
inverse of Y. This means that Y needs not be a
square matrix, but its number of column should
not be less than its number of row. This condi-
tion requires that hidden neuron numbers should
be greater than or equal to N. If the condition is
satisfied, we can find an exact solution for weight
matrix. When we chose hidden neuron number to
be equal to N, with such a network structure, we
can find the weight matrix which can exactly map-
ping the training set.

2.3 Psudoinverse Learning Algo-

rithm

Based on the above discussion, we first let, weight
matrix W be equal to Y? which is an n x N ma-
trix. Then we apply nonlinear activate function,
that is to compute Y = o(YOW?), then compute
the (Y')*, the pseudoinverse of Y2, and so on.
Because the algorithm is feedforward only, no er-
ror will propagate back to preceding layer of neu-
ral network. We cannot use standard error form
E = 35 Trace[(G - 0)7(G - 0)] to judge whether
the trained network has reached the desired accu-
racy during training procedure. Instead, we use
the criterion [|Y*-(Y')* ~I||? < E. At each layer,
we compute |[Y'Y' — I||2, If it is less than the
desired error, we set WL = (YZ)*O and stop the
training procedure. Otherwise, let W' = (Y!)*,
add another layer, feed forward this layer output
to next layer again, until we reach the required
learning accuracy.

To use any nonlinear activate function in the hid-
den nodes is to utilize the nonlinearity of the func-
tion and to increase the linear independency among
the column vectors or, equivalently, the rank of
the matrix. It is proved that sigmoidal functions
can raise the dimension of the input space up to
the number of the hidden neurons{7]. So through
nonlinear activate action, the rank of the weight
matrix will be raised layer by layer.

With above discussion, we propose
a feedforward-only algorithm which reduce learn-
ing errors on every layer. First we establish a two
layer neural network. If the given precision can-

not be reached, a third layer is added to eliminate
the remained error. If the third layer added still
cannot satisfy the desired accuracy, then another
hidden layer is added again to reduce the learn-
ing errors until the required accuracy is achieved.
From a mathematical point of view, we can sum-
marize the algorithm into the following steps:

Step 1. Set hidden neuron number ass N, , and
let YO = XO,

Step 2. Compute (Y°)* =Pseudoinverse(Y?).

Step 3. Compute [[Y!- (YY" —IJ|2. If it is less
than the given error E, go to step 6. If not, go on
to the next step.

Step 4. Let W! = (Y!)*. Feed forward the
result to the next layer, compute Y't! = o(W! -
Yh.

Step 5. Compute (Y**1)* = Pseudoinverse
(YY), 1+ 1+ 1, and go to step 3.

Step 6. Let WL = (Y1)+. Q.

Step 7. Stop training, the network ml ping
function is g = o(. ..o (W' - (WP . Y°))) - WE

323

Deep
neural
network
Structure

3 Add and Delete Sample £

"The proposed algorithm is a batch way learning
algorithm, in which we assume that all the input
data are available at the time of training. However,
in real-time application, as a new input vector is
given to the network, the weight matrix must be
updated. Or, we need to delete a sample from the
learned weight matrix. It is not efficient at all if we

recompute the pseudoinvese of a new weight matrix
with PIL algorithm. When we assign the hidden
neuron number is equal to the number of train-
ing samples, add or delete the sample is equivalent
with add or delete hidden neuron number. Here
we use add or delete neuron algorithm to efficiently
compute the pseudoinverse matrix.

According to Griville’s theorem|[8], the first &
columns of the Y matrix consist of a submatrix,
the pseudoinverse of this submatrix can be calcu-
lated from the previous (k — 1)-th pseudoinverse
submatrix.

+ _ T
Y} = Yk—l(IbT y£b®) (11)

where the vector yy is the k-th column vector of
the matrix Y, while

A=Y 1 Y Dy,
(Y;:—l)TY:—qy*

T il
LYyl 2

ifCD#0

b= otherwise

(12)

where CD = ||II - Y1 Y{_, vl

It needs at most NV times iterative cycle to ob-
tain the pseudoinverse of a matrix if there are N
columns in this matrix.

Equal to
increase
and
decrease
hidden
neuron
number

a
Highlight

a
Highlight

a
Callout
Deep neural network structure

a
Callout
 Equal to increase and decrease hidden neuron number

324

With this theorem, we can add the hidden neu-
rons relative easy to calculate the pseudoinverse
matrix.

When a hidden neuron is deleted, the matrix
need to be update. It is not efficient at all if we
compute the pseudoinverse matrix from beginning.
Here we consider using bordering algorithm([9] to
compute the inverse of the matrix. Given the in-
verse to a k x k matrix, the method shows how to
find the inverse of a (k+1) x (k+ 1) matrix, which
is the same old £ x k¥ matrix with an additional
row and column attached to its borders.

If the column vector y; in Y is linearly inde-
pendent each other, by definition,

Yt =(YTy)y'vy? (13)

Let V = YTY,we efficiently calculate Vi),
from the prior V;l without inverting a matrix.

The algorithm is

—1 4 1yuT 1
vil= (Ve) aw
e «
where v = V;lY,Zka, and a :'V;1YZyk+1
When delete a vector from the matrix, consider
the original matrix containing k + 1 vector pairs.
The key step is to compute V* from V,:il. When
the (k + 1)—th pair is deleted from the matrix, we
rewrite V|| as the four partitions:

- A b
Vk-ll—l:(bT c>

where A is k x k, bis k x 1, and c¢ is a scalar. By
comparing equation 14, it is apparent that A =
Vit + LvwT, b=(1/a)v, and c=1/a. From thee
expressions, we find that the desired result is

(15)

vil= A—%bbT (16)

The inverse of & x k matrix now can be calculated
from (k + 1) x (k + 1) matrix. This is equivalent
with deleting the last hidden neuron and updating
the weight matrix.

This will be very useful in the case of leave
one out cross-validation partition training samples
(CVPS). Because in each CVPS data set there only
one sample is different with total sample set. We
can first compute the inverse of matrix which is
learned based on total sample set, then at each
time, move only one sample to the last column
(row) position, and use the above algorithm to
delete this sample. In this way we can obtain the
learned weight matrices with CVPS data sets effi-
ciently.

4 Numerical Examples

The algorithm is tested with the following func-
tion mapping examples.

Example 1. Consider a nonlinear mapping
problem of Sine function by neural network. For
the training set, 50 input-output signals (z;,y;)
pairs were generated with x; = 2% * /49, for
i =0,1,2,---,49, and correspond y; were com-
puted using y; = sin(x;). The given learning error
is E = 1077. If learning error E < 10~7, we re-
gard that perfect learning has been reached. For
this problem, input neuron number is n + 1 = 2
including bias one, output neuron is m = 1 and
hidden layer neuron number is N = 50. After us-
ing the PIL algorithm proposed above, we reach
the perfect learning when two hidden layers are
added. The trained network altogether has 4 lay-
ers including input and output layer. The actual
learning error is E = 7.533 x 10718,

Example 2. The nonlinear mapping of 8 in-
put quantities z; into three output quantities y;
problem, defined by Biegler-Konig and Barmann
in [10):

Y1 = (Ty %2+ T3 *Tq + Ts * Tg + Ty % 75)/4.0
Y2 = (¢ +Tz+ T3+ s+ 25 +T6+ 27 +25)/80
y3 = (1-9)*® a7

All three functions are defined for values between
0 and 1 and produce values in this range. For
the training set, 50 sets of input signals z; were
randomly generated in the range of 0 to 1, the
corresponding y; were computed using the above
equation. The desired learning error we give is
E = 1.0 x 10~7. When training is finished, only
one hidden layer is added, and the actual learning
error is E = 3.573 x 10725 for this problem.

Example 3. Another functional mapping prob-
lem is y = sin{z)cos(3z) + x/3. Like example 1,
we use 50 examples with z; in the region of 0 to
7 to train the network. Perfect learning is reached
after two hidden layers are added. Actual learning
error is E = 4.734 x 1077

4.1 Generalization

What is the generalization abilities of trained
networks? We also tested the ability of trained
networks to forecast function values of examples
not belonging to the training set. For Sine func-
tional mapping, we train the network using 20 ex-
amples with z; = 2m%4/19, for ¢ = 0,1,2,---,19,
and the corresponding y; were computed using y; =
sin(x;). After the network is trained, Ny = 100 in-
put signals z; randomly generated within the range
of 0 to 27 are used to test the network, the corre-
sponding y; were computed using trained network.
Figure la and 1b show the results for example 1

r/?w\; ' TN
i / Y i ' A
£ } 3 s Eew
’ : /j u;-’ \ N ‘
lu i t'h"‘ */ i j ! ’ir’ i \D""". sy
(a) (b)
VAN ‘ s |
AN V \
%\ s \ ,

o

T\f":ﬂ J

e 2 3 AT it PUSTTE TS T
toput Topar

(c) (d)

Fig.1. The trained network output for (a) y =
sin(z) function mapping, (b) y = sin{z)cos(z) +
z/3 function mapping, (c) for function defined in
equation (18) with 20 learning examples, and (d)
for function defined in equation (18) with only 5
learning examples. “x” is training data, “o” is test
data.

and 3. It is reasonable good. We have also tested
examples 2 and 3 with 20 examples training net-
work and using 100 randomly generated input sig-
nals for testing.

For further investigating the proposed network
architecture and learning algorithm’s response to
unlearned data, let us see another example.

Example 4. A sin(z) like nonlinear function is
defined by:

T, if0<z<n/2,
y=¢ m—z, Un/2<z<3In/2, (18)
z—2m, if3n/2<z <27

First, 20 examples with z; = 27 % /19, for i =
0,1,2,---,19, and the corresponding y; were com-
puted using above equation are used to train the
network, then 100 random input signals generated
in the range of 0 to 27 are used to test the trained
network. The result is shown in Figure lc.

When using 5 set examples {(0,0), (x/2,1),
(m,0), (37/2,-1), (27,0)} to train the network, we
get a network structure which has one hidden layer
with 5 hidden neurons. The learning error is
E = 3.314 x 10726, Afterward, 100 sets of input
signals z; which were randomly generated within
the range of 0 to 27 are used to test the network.
The result is shown in Figure 1d. From the Figure
1d, it can be seen that the network acts like a Sine
function. It should be reminded that the architec-
ture and weight matrices is the same as in example
1 and example 4 when using the above 5 set exam-

325

ples. From this result, it can be known that the
network forecast unlearned data ability is better
for smooth function when the data in the range of
training input space. When 50 set examples with
z; = 2w x3/49, for ¢ = 0,1,2,---,49, and the cor-
responding y; were computed using corresponding
equation are used to train the network, then 100
randomly generated input signals in the range of 0
to 27 are used to test the trained network. In ex-
ample 1 and 4, only WX matrix is different. The
other matrices are the same while 50 set examples
are used to train the network. But the network’s
response to the same input matrix is totally differ-
ent.

The method of stacked generalization[5] pro-
vides a way of combining trained networks together
which uses partitioning of the data set to find an
overall system with usually improved generaliza-
tion performance. The experiments show that with
smoothed function or piece wise smoothed func-
tion, the trained network generalization perfor-
mance is good with stacked generalization. How-
ever, for noise data set, if the network is over-
trained, the generalization ability will be poor. Us-
ing stacked generalization can not improve the net-
work performance when over trained networks are
used. When overfitting to the noise occur, stacked
generalization not a suitable technique for im-
proving network generalization performance. We
should seek other generalization techniques such as
ensemble networks[11][12] to improve the network
performance, but this topic is beyond the scope of
this paper.

5 Discussion

On examining the algorithm, it can be seen that
we do not need to consider the question of how
the weight matrix should be initialized to avoid
local minima. We just feedforward examples to
get a weight matrix and the solution will not con-
verge to local minima. This is different from the
BP algorithm. It can also be seen that training
procedure is in fact the processing of raising the
rank of weight matrix. When a matrix of some
hidden layer output becomes full rank, the right
inverse of the matrix can be obtained, and we end
the training procedure. From the learning proce-
dure, it is obvious that no differentiable activate
function is needed. We only require that the acti-
vate function can perform nonlinear transform to
raise the rank of the weight matrix. Because the
PIL algorithm is based on the nonlinear function
transformation to raise the matrix rank, it will fail
if there two or more input vectors are identity in
the input matrix. But this case can be eliminated
through preprocessing input patterns.

326

The BP as well as other gradient algorithm re-
quires user selected parameter, such as step size or
momentum constant. These parameters have ef-
fect on the learning speed. There is no theoretical
basis which guides us how to select these param-
eters to speed learning. In PIL, such a problem
does not exist.

Another characteristics is that if the input ma-
trix has rank N then a right inverse exists, and
we will get a linear network with only two lay-
ers. For most problems, with two hidden layers,
the network can reach the perfect Iearning. From
the examples, we see that network layer number is
not only dependent on learning accuracy, but also
on the examples to be learned. The algorithm is
suitable for some applications which require high
precision output, in which case the network struc-
ture is less important than precision output.

One of the algorithm’s important feature is that
desired output matrix T is embedded in the weight
matrix W% which connects last hidden layer and
output layer. This give us a very easy and fast
way to get the weight matrix for different target
output, as long as input matrix is the same. For ex-
ample, after we have trained the network to learn-
ing Sine function mapping in the region from 0 to
27, we only need recalculate the WL, in order to
get Cosine function mapping problem in the same
region with Sine function. For BP algorithm, it
is necessary to train whole network again to get
all weight matrices for Cosine function mapping,
though input matrix is the same with Sine func-
tion.

We have not compared the overall performance
of this algorithm with others. Obviously, the num-
ber of iterations is not a valid metric considering
the fact that the calculation complexity per iter-
ation is not the same for any of the algorithms.
However, if we consider the CPU time cost on
training network to reach the high learning accu-
racy using the same machine, the PIL algorithm
is obviously fast than other gradient descent algo-
rithms in its learning speed.

6 Summary

The pseudoinverse learning algorithm was intro-
duced in this paper. The algorithm is more effec-
tive than the standard BP and other gradient de-
scent algorithm for most problems. The algorithm
does not contain any user-dependent parameters
whose values are crucial for the success of the al-
gorithm. The mathematical operations are simple,
it is only based on generalized linear algebra and
adopt pseudoinverse and matrix inner product op-
erations. On considering its learning speed and ac-
curacy, the PIL algorithm is most competitive to

other gradient descent algorithms in real or near
real time practical use. With the PIL algorithm, it
allows us to investigate the computation-intensive
techniques such as stacked generation more effi-
ciently.

References:

(1] D. E. Rumelhurt, G. E. Hinton, and R.
J. Williams, “Learning Internal Representa-
tion by Error Propagation”, in Parallel Dis-
tributed Processing, Vol. 1, D.E.Rumelhart and
J.L.McClelland, Eds. (MIT Press, Cambridge,
MA), Chapter 8, 1986.

[2] E. Barnard “Optimization for training neural
nets”. IEEE Transactions on Neural Networks,
Vol.3, No.2, pp232-240, 1992.

3] F. A. Zodewyk, Wesswls and B. Etienne,
“Avoid False local minima by proper Initial-
izations of connections” , IEEE Transaction on
Neural networks, Vol. 3, pp899-905, 1992.

[4] S. Kollias, and D. Anastassiou, “An adaptive
least squares algorithm for the efficient training
of artificial neural networks”, IEEE Transac-
tion on Circuit and System, CAS-36, pp1092-
1101,1989.

[5] D.H. Wolpert, “Stacked Generalization”, Neu-
ral Networks, Vol.5, pp241-259, 1992.

[6] Thomas L. Boullion and Patrick L. Odell,
“Generalized Inverse Matrices”, John Wiley
and Sons, Inc. (New York), 1971.

[7] S. Tamura, “Capabilities of a Tree Layer Feed-

- forward Neural Network” , Proceedings of Inter-
national Joint Conference on Neural Networks,
pp2757-2762, (Seattle), 1991.

[8] C.R.Raoand S. K. Mitra, Generalized Inverse
of Matrices and Its Applications, Wiley, (New
York), 1971.

[9] Jon F. Claerbout, “Fundamentals of Geo-
physical Dada Processing with applications
to petroleum prospecting”, McGraw-Hill Inc.
L(USA), (TN 271, P4C6), 1976.

[10]F. Biegler-Konig, and F. Birmann, , “A learn-
ing Algorithm for Multilayered Neural Net-
works Based on Linear Least Squares Prob-
lems”, Neural Networks, vol. 6, ppl27-131,
1993.

[11]M. P. Perrone and L. N. Cooper, “When net-
works disagree: ensemble methods for hybrid
neural networks”, in R. J. Mammone Ed., Ar-
tificial Neural Networks for Speech and Vi-
sion, Chapman and Hall, pp126-142, (London),
1993.

[12]Ping Guo, “Averaging ensemble neural net-
works in parameter space”, In Proceedings of
fifth international conference on neural infor-
mation processing, pp486-489, (Japan), 1998.

a
Highlight

a
Highlight

https://www.researchgate.net/publication/293477570

