
Pseudoinverse Learning AIgorithm for Feedforward N eural
Networks*

P I N G G U O and M I C H A E L R. L Y U
Department of Computer Science a n d Engineering,

T h e Chinese University of H o n g Kong,
Shatin, NT, H o n g Kong.
S A R of P.R. C H I N A

rvlyu

supervised learning (Pseudoinverse Learning Algorithm, PIL) for feedforward neural
networks is developed. The algorithm is based on generalized linear algebraic methods and it adopts matrix
inner products and pseudoinverse operations. The algorithm eliminates learning errors by adding hidden
layers and will give a perfect learning. Unlike the gradient descent algorithm , the PIL is a feedforwardｭ
only, fully automated algorithm, including no critical user-dependent parameters such as learning rate or
momentum constant

Key- Words: -Feedforward neural networks, Supervised learning, Generalized linear algebra, Pseudoinverse
learning algorithm, Fast perfect learning.

1 Introd uction
Several adaptive learning algorithms for multi-
layer feedforward neural networks have been
posed[1][2]. Most of these algorithms are based
on variations of the gradient descent algorithm,
for example, Back Propagation
They usually have a poor convergence rate and

into local minima[3]. Convergence
to local minima can be caused by the insufficient
number of hidden neurons as well as improper
tial weight settings. However, slow convergence
rate is a common problem of the gradient descent
methods, including the B P algorithm. Various

have been made up learning, such
as proper of weight to avoiding local
minima, an adaptive square algorithm using
the second order terms of error for weight updatｭ
ing[4]. There is another drawback for most gradiｭ
ent descent algorithms, namely,“learning factors
problem" , such as learning rate, momentum conｭ

The values parameters are
crucial for the success of the algorithm. Most graｭ
dient descent methods depend on these parameters
which be specified by the user, as no theｭ
oretical basis for cll Oosing them exists. Furtherｭ
more, for applications which require high precision
output, such as the prediction of time seｭ
ries, the known algorithms are often still too slow
and inefficient. For example, like general-

research work was fully supported by a
Research G of the Hong Kong Special Adｭ

ministrative Region No.

which needs to train a lot of networks to
get levell training samples, it is very computationｭ
time consuming when using B P algorithm to perｭ
form the required task.
In order to reduce training time and investigate
the generalization properties of learned neural netｭ
work, in this paper a Pseudoinverse alｭ
gorithm (PIL) is proposed, a feedforwardｭ
only algorithm. Learning errors are transferred
forward and the network architecture established
The trained weights previously in the network are
not changed. Hence, the learning error is miniｭ
mized on each layer not globally
for the network as a whole. B y adding layers to
eliminate errors , all examples of a training set can
be perfect learned.

2 T h e N etwork Structure and
Learning Algorithm

2.1 T h e N e t w o r k Structure
Let us consider a multilayer feedforward neuｭ
ral network. The network has one input layer,
one output several hidden layers. While
the number of hidden layer depend on the desired
learning accuracy and the a training
set to be learned in this paper.
The weight matrix W l connects layer 1 and layer
1 + 1 with elements wL. Element w!, j connects
neurons i of layer 1 with neurons j of layer 1 + 1.
Note that the W O matrix connects the input layer
and the first hiddenlayer, the W L matrlx connects

321

322

the hidden layer and the output layer. W e
assume only the input layer has bias neuron, while
hidden the output layer have no

bias neuron. The function is
, for example, we so called sigmoidal

function,

Lu r
ny vv a

r

o

)

-
2
i
e

4
1
r

go
--u

DA
t

h
a

W
F
M
x-x

tanh(x) (2)

which output is in a of (-1,1)
function.
Given a training data set D =
(x"o') ¥>11 the i-th input-output prur,
where x' R n is the input

0 ' = is
the correspond target output vector. For given N
sets of input- Dutput pairs as examples to be
learned, we can summarize all given input vectors
into a matrix X O with N rows and n + 1 columns.
Here the last column of X O is a bias neuron of
stant value 8 Each row of X O contains the signals
of one input vector. X O = [XI8], where matrix X
consist of all signal x' as row vectors. All desired
target output vectors are summarized into a maｭ
trix 0 with N m columns. Each row of
the matrix 0 contains the signals of one output
vector 0'. In the designed network structure, the
activate function is not applied to the output layer,
so the last layer is linear.

task of training the network means
trying to find the weight matrix which minimizes
the sum-squar• error function,

N m
(3)

Where g(x, e) is a network mapping function
and e is the network parameter set. In three layer

case,
N n

gj(x,e) + 8i). (4)
i=1 1=1

where 8i is a bias value for network input.
For simplifying, we the system cost
function in matrix form,

-

Propagating the given examples through the netｭ
work, multiplying the output of layer 1 with the
weights between layers 1 + 1, and applying
the nonlinear activate function to all matrix ele-
ments, we get

(6)

and the network output should be

G = y L WL. (7)

where we use superscript L to donate the last hidｭ
den layer output and the last weight
B y exaJ.nining the above equations, reformulatｭ
ing the of training, the problem becomes;

minimize I l y L WL - 011 2 • (8)

This is a linear least problem. If we
find the network weight such that makes
I l y L W L _ O W = 0, we will havetrained theneural
network to learn all given examples exactly,
is, a perfect
Without loss generalization, in the following disｭ
cussion we drop superscript index L in equation
(7).

2.2 Pesudoinverse Solution
N o w let us discuss the equation

E R N x m

(9)
W h e n the system is
tem. Notice that such a system either has no soluｭ
tion or of solutions.

is invertible and has been learned
in L - 1 layer, the system of equation (9) is, in
principle, easy to solve. The unique solution for
last layer weight matrix is W = y -10. If Y
arbitrary matrix in RNx p, then it becomes more
difficult to solve equation (9). There m a y be none,

number of solutions depending on
where and whether N - >0.
One would like to be able to find a (or

matrices) C , such that solution of 9 are of the form
C O . But if 0 rt R(Y) , then equation (9) has no
solution.
Fro m linear algebra theorem, it has:
T h e o r e m 1 The system Y W = 0 has a soluｭ
tion only if

rank([Y, O]) = (10)

Proof: See reference [6].
W e intend to usc pseudoinverse solution for findｭ
ing weight matrix, the reason is that the theorem
from linear algebra states that pseudoinverse soluｭ
tion is the best approximation.
T h e o r e m 2 Suppose that A E

The best approximate solution
of the equation is X o = A + B (The suｭ
perscript + denotes the pseudoinverse
Proof: Fro m reference [6] , it is easy proved.

the theorem 2, it has,
Corollary 1 The best approximate solution of
A X = I i s X = A + .

a
Highlight

above analysis, we try to find the output
layer this way:
Let W = 0 y+O, the learning problem becomes

- O W = 0 0, where y + is the pseudoinｭ
verse of Y . This is equal to find the matrix Y
so that = 0 0, where 1 is the identity maｭ
trix. So the task of training the network becomes
that to raise the rank of matrix Y up
to full rank. As soon as Y becomes a full rank
matrix, the y y + will become the identity matrix
1. Note that since we multiply Y on the right by

needs only requiring the right inverse of Y
to exist, not necessarily for y + to be a
inverse of Y. This means that Y needs not be a
square matrix, but its number of column should

less than its number of row. This condiｭ
tion requires that hidden neuron numbers should
be greater than or equal to N . If the condition is
satisfied, we solution for weight
matrix. W h e n we chose hidden neuron number to
be equal to N , with such a network
can find the weight matrix which mapｭ
ping the training set.

2.3 Psudoinverse Learning
r i t h m

above we first let weight
matrix to which x N m aｭ
trix. Then we apply nonlinear activate function.
that is to compute y l then
the (yl)+ , the pseudoinverse of yl , and so on.
Because the algorithm is feedforward only, no erｭ
ror will propagate back to preceding layer of
ral network. W e cannot use error form

whether
the trained network has reached the desired accuｭ
racy during training procedure. Instead‘ we use
the criterion At each layer,
we compute lIy l yi+ - IW , If
desired error, we set W L = 0 (yL)+O and stop the
training procedure. Otherwise, let W l = 0 (yl)+ ,
add another layer, feed forward this layer output
to next layer again, until we reach the required
learning accuracy.
To use any nonlinear activate function in the hidｭ

den nodes is to utilize the nonlinearity of the funcｭ
tion and to increase the linear
the column vectors or, equivalently, the rank of
the matrix. It is proved that sigmoidal functions

the dimension input space up to
the number of the hidden neurons[7]. So through
nORImeuactivate action, the rank of the weight
matrix will be raised layer by layer.
With above discussion, we propose

a feedforward-only algorithm which reduce learnｭ
m g errors on every layer. First we establish a two
layer neural network. If the given precision

not be reached, a third layer is added to eliminate
the remained error. If the third layer added still
cannot satisfy the desired accuracy, then another
hidden layer is added again to reduce the learnｭ
ing errors required accuracy is achieved.
Ffo m a mathematical point of view, we can sumｭ
marize the algorithm into the following steps:
S!ep 1. hidden neuron number ass N , and

let y O = 0 X O.
Step 2. Compute .
Step 3. Compute - is less

than the given error E , go to step 6. If not, go on
next step.

Step 4. Let W l _ (yl)+. Feed forward the
to the next layer, compute yl+l = 0 cr(W I .

Y').
Step 5. Compute

(Yl+l), l • 1 + 1, and go to step 3.
Step 6. Let W L = 0
Step 7. Stop training, the network mapping

function is g :.u(W1 . yO))) . W L

3 A d d and Delete Sample
The proposed algorithm is a batch way learning

algorithm, in which we assume that all the input
data are available at the time of training. However,
in real-time application, as a new input vector is
given to the network, the weight matrix must be
updated. Or, we need to delete a sample from the
learned weight matrix. It is not efficient at all if w e
recompute the pseudoinvese of a new weight matrix
with PIL algorithm. W h e n we assign the hidden
neuron number is equal to the number of
ing samples, add or delete the sample is
with add or delete hidden neuron number. Here
we use add or delete neuron algorithm to efficiently
compute the pseudoinverse matrix.

Griville's theorem[8], the first k
columns of the Y matrix consist of a submatrix.
the pseudoinverse of this submatrix can be calcuｭ
lated from the previous (k - 1)-th pseudoinverse
submatrix

Y L (1 : y k bT) 1 k = 0 I I (11)

where the vector y k is the k-th column vector of
the matrix y , while

I y t- l)Yk , if C D 0
l l+IIY;;_lYkI!"

where C D = 0 111 -
It needs at most N times iterative cycle to obｭ

tain the pseudoinverse of a matrix if there are N
columns in this matrix.

323

a
Highlight

a
Highlight

a
Callout
Deep neural network structure

a
Callout
 Equal to increase and decrease hidden neuron number

324

With this theorem, we can add the hidden neuｭ
rons relative easy to calculate the pseudoinverse
matr喆.
When a hidden neuron is deleted, the
need to be update. It is at all if we
compute the pseudoinverse matrix from beginning.
Here we consider using bordering algorithm[9] to
compute the inverse of the matrix. Given the inｭ
verse to a k x k matrix, the method shows how to
find the inverse of a (k + 1) x (k + 1) matrix, which
is the same old k x k matrix
row and column attached to its borders.
If the column vector Yi in Y is linearly ind•
pendent each other, by definition,

y + = (yTy) - l yT (13)

Let V = yTY,we calculate
from the prior V ; I without inverting a
The algorithm is

, 1 .._.T 1 _. ¥ l Yk _'1.$ V -_r) (14)

where v = V ;l Yk and
When delete a vector from the matrix, consider
the original matr喆 containing k + 1
The is W h e n
the (k + 1)-th pair is deleted from the matrix, we

four partitions:

) (15)

where A is k x k , b is k x c is a scalar. B y
comparing equation 14, it is apparent that A =
V;I + Fro m thee
expressions, we find that the desired result is

The inverse of k x k matrix now calculated
from (k + 1) x (k + 1) This is equivalent
with deleting the last hidden
the weight matrix.
This will be very useful in the case of leave
one out cross-validation partition training samples
(CVPS). Because in each C V P S data set there only
one sample is different with total sample set. W e

inverse of matrix which is
learned based on total sample set, then at each
time, move only one sample to the last column
(row) use the above algorithm to
delete this sample. In this way we the
learned with C V P S sets effiｭ
ciently

4 N umerical Examples
The algorithm is tested with the following funcｭ
tion mapping examples.
Example 1. Consider a nonlinear mapping
problem of Sine function by neural network. For
the training set, 50 (Xi , Yi)
pairs were generated with i/49, for
i = ,49, and correspond Yi were
puted using Yi = sin(x;). The given
is E = 10-7. If learning error E < 10-7, we reｭ
gard that perfect learning has been reached. For
this problem, input neuron number is n + 1 = 2
including bias one, output neuron is m =
hidden layer neuron number is N = 50. After usｭ
ing the PIL algorithm proposed above, we reach
the perfect learning when two hidden layers are
added. The trained network altogether has 4 layｭ
ers including input and output layer. The actual
learning error is E = 7.533 X 10-18.
Example 2. The nonlinear mapping of 8 inｭ
put Xi into three output quantities
problem, defined by
in [10]:

Yl = (Xl * X2 + X3 * X4 + + X 7 *x8)/4.0
Y2 - (Xl + X2 + + X6 + X7 + xs)/8.0
Y3 = (1 - yt)O.5 (17)

All three functions are defined for values
1 and produce values in this range. For

the training set, 50 of input signals Xi were
randomly generated in the of 0 to 1, the
corresponding Yi were computed using the above
equation. The desired learning error we give is
E = 1.0 X 10-7. W h e n training is finished, only
one hidden layer is added, and the actuallearning
error is E = 3.573 X 10-25 for this problem.
Example 3. Another functional mapping probｭ
lem is Y = + x/3. Like example 1,
we use 50 examples with Xi in the region of 0 to

train the network. Perfect learning is reached
after two hidden layers are added. Actuallearning
error is E = 4.734 X 10-17

4.1 Generalization
What is the generalization abilities of
networks? W e also ability of trained
networks to forecast function values of examples
not belonging to the training set. For Sine funcｭ
tional mapping, we train the network using 20 exｭ
amples with Xi = i/19, for i =
and the corresponding Yi were computed using
sin(Xi). network is trained, N 1 = 100 inｭ
put signals Xi randomly generated within the range
of 0 to used to test the network, the correｭ
sponding Yi were computed using trained network.
Figure lb show the results for example 1

325

ples. Fro m this result, be known that the
network forecast unlearned data ability is better
for smooth when the data in the range of
training input space. W h e n 50 with

i/49, for i = ,49, and the corｭ
responding Yi were computed using corresponding
equation are used to train the network, then 100
randomly generated input signals in the ofO
to used to test the trained network. In exｭ
ample 1 and 4, only W L matrix is different. The
other matrices are the same while 50 set examples
are used to train the network. network's

the same input matrix is totally differｭ
ent.
The method of stacked generalization[5]
vides a way of together
which uses partitioning of the data set to find an
overall system with usually improved generalizaｭ
tion performance. The experiments show that with
smoothed function or piece wise smoothed funcｭ
tion, the trained network perforｭ
mance is good with stacked generalization. Howｭ
ever, for noise data set, if the network is overｭ
trained, the generalization ability will be poor. Usｭ
ing stacked generalization can not improve the netｭ
work performance when over trained networks are
used. W h e n overfitting to the noise occur, stacked
generalization not a suitable technique for imｭ
proving network generalization performance. W e
should seek other generalization techniques such as
ensemble networks[1l][12] to improve the network
performance, but this topic is beyond the scope of
this paper.

i l k I \.,
sJ/‘\. /' ¥ ,

",'

,r ,
1

-kfl

)

L
U

(

1 V ¥ /
i

(a)

ij/¥
j l r

(c) (d)
Fig.l. The trained network output for (a) Y -
sin(x) function mapping, (b) y = sin(x)cos(x) +
x/3 (c) for function defined in
equation (18) with 20 learning examples, and (d)
for function defined in equation (18) with only 5
learning examples. “*" is training data,“0" is test
data.

3. It is reasonable good. W e have also tested
examples 3 with 20 examples training netｭ
work and using 100 randomly generated input sigｭ
nals for testing.
For further investigating the proposed network
architecture and learning algorithm's response to

let us see another example.
Example 4. A sin(x) like nonlinear function is
defined by:

O n examining the algorithm, it seen that
we do not need to consider the question of how
the weight matrix should be initialized to avoid
local minima. W e just feedforward examples to
get a weight matrix and the solution will not conｭ
verge to local minima. This is different from the
B P algorithm. It can also be seen that training
procedure is in fact the processing of raising the
rank of weight matrix. W h e n a matrix of some
hidden layer output becomes full rank, the right
inverse of the can be obtained, and we end
the training the learning proceｭ
dure, it is obvious that no differentiable activate
function is needed. W e only require that the actiｭ
vate function nonlinear
raise the rank of the weight matrix. Because the
PIL algorithm is based on the nonlinear function
transformation to raise the matrix rank, it will fail
if there two or. more input vectors are identity in
the input matrix. But this case can be eliminated
through preprocessing input patterns.

Discussion 5
if

if
M
M

(18)

First, 20 examples with X i - for
0,1,2, . . . , 19, and the corresponding Yi were comｭ
puted using above equation are used to train the

100 random input generated
in the range of 0 to used to test the trained
network. The result is shown in Figure lc.
W h e n using 5 set examples

-1) , (27r, O)} to train the network, we
get a network structure which has one hidden layer
with 5 hidden neurons. The learning error is
E = 3.314 X 10-26 • Afterward, 100 sets of input
signals X i which were randomly generated within
the range of 0 to used to test the network
The result is shown in Figure ld. Fro m the Figure
ld, it can be seen that the network acts like a Sine
function. It should be reminded that the architecｭ
ture and weight matrices is the same
1 and example 4 when using the above 5 set exam-

326
The B P as well as other gradient algorithm
quires user selected such as step size or
momentum constant. These parameters have
fect on the learning speed. There is no theoretical
basis which guides us how to select these paramｭ
eters to speed learning. In PIL, such a problem
does
Another characteristics if the input maｭ
trix has N then a right inverse exists, and
we a linear network with only two layｭ
ers. For most problems, with two hidden layers,
the network can reach the perfect learning. Fro m
the examples, we see that network layer number is
not only dependent on learning accuracy, but also
on the examples to be learned. The algorithm is
suitable for some applications which require high
precision output, in which case the network strucｭ
ture is less important than precision output
One of the algorithm's feature is that
desired output matrix T is embedded in the weight
matrix W L which connects last hidden layer and
output layer. This give us a very easy and fast
way to get the weight matrix for different target

as long as input matrix is the same. For exｭ
ample, after we have trained the network to learnｭ
ing Sine function mapping in the region from 0 to
we only need recalculate the W L , in order to

get Cosine function mapping problem in the same
region with Sine function. For B P algorithm, it
is necessary to train whole network again to get
all weight matrices for Cosine function mapping,

input matrix is the same with Sine funcｭ
t卲n.
W e have not compared the overall performance
ofthis algorithm with others. Obviously, the numｭ
ber of iterations is valid metric considering
the fact that the calculation complexity per iterｭ
ation is not the same of the algorithms.
However, if we consider the C P U time cost on
training network to reach the high learning accuｭ
racy using the same the PIL algorithm
is obviously fast than other gradient descent
rithms in its leaming speed.

6 S u m m a r y
The pseudoinverse learning algorithm was
duced in this paper. The algorithm is more effecｭ

the standard B P and other gradient deｭ
scent algorithm for most problems. The algorithm
does any user-dependent parameters
whose values are crucial for the success of the alｭ
gorithm. The mathematical operations are simple,
it is only based on linear algebra and
adopt pseudoinverse and matrix inner product opｭ
erations. O n considering its learning speed and acｭ
curacy, the PIL algorithm is most competitive to

other gradient descent algorithms in real or near
real time practical use. the PIL algorithm, it
allows us to investigate the
techniques such as stacked generation more effiｭ
ciently.

References:

[1] D. E. Rumelhurt, G. E. and R.
J. Williams,“Learning Internal Representaｭ
tion by Error in Parallel Disｭ
tributed Processing, Vol. 1,
J.L.McClelland, Eds. (MIT Cambridge,
MA) , Chapter 8, 1986.

[2] E. for training neural

Vo1.3, No.2,
[3] F. A. Zodewyk, B. Etienne,

“Avoid False local rninima by proper Initialｭ
izations of connections" , I E E E on
Neural networks, Vol. 3,

[4] S. D. Anastassiou,“An adaptive
squares algorithm for the efficient training

of artificial neural networks" , I E E E Transacｭ
tion and System, CAS-36,
1101,1989.

[5] D. H. Wolpert,“Stacked Generalization" , Neuｭ
Networks, Vo1.5, pp241-259, 1992.

[6] Thomas L. Boullion and Patrick L. Odell,
“Generalized Inverse Matrices" , John Wiley

Sons, Inc. (New York) , 1971.
Tamura,“Capabilities of a Tree Layer Feedｭ

forward Neural , Proceedings of Interｭ
Joint Conference on Neural Networks,

(Seattle) , 1991.
[8] C. R. S. K. Mitra, Generalized Inverse

Its Applications, Wiley, (New
York) , 1971.

F. Claerbout,“Fundamentals of
physical Dada Processing with applications
to petroleum prospecting" , McGraw-Hill Inc.
,(USA) , (TN 271 , P4C6) , 1976.

[10] F. F. ,“A
ing Algorithm for Multilayered Neural Netｭ
works Based on Linear Least Squares Probｭ
lems" , Neural Networks, vol. 6, pp127-131 ,
1993.

[l1]M. P. L. N. Cooper,“When netｭ
works clisagree: ensemble methods for hybrid
neural networks" , in R. J. M a m m o n e Ed., Arｭ

Neural Networks for Speech and Viｭ
sion, Chapman and Hall, (London) ,
1993.

[12] Ping Guo,“A veraging ensemble neural netｭ
works in In Proceedings of
fifth international conference on neuml inforｭ

processing, pp486-489, 1998.

View publication statsView publication stats

a
Highlight

a
Highlight

https://www.researchgate.net/publication/293477570

