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Abstract 
 
Software reliability modeling has, surprisingly to many, been around since the early 
1970s with the pioneering works of Jelinski and Moranda, Shooman, and Coutinho. The 
theory behind software reliability is presented, and some of the major models that have 
appeared in the literature from both historical and applications perspectives are described. 
Emerging techniques for software reliability research field are also included. The 
following four key components in software reliability theory and modeling: historical 
background, theory, modeling, and emerging techniques are addressed. These items are 
discussed in a general way, rather than attempting to discuss a long list of details. 
 
 
 
 
Software reliability modeling has, surprisingly to many, been around since the early 
1970s with the pioneering works of Jelinski and Moranda (1972), Shooman (1972, 1973, 
1976, 1977), and Coutinho (1973). We present the theory behind software reliability, and 
describe some of the major models that have appeared in the literature from both 
historical and applications perspectives. Emerging techniques for software reliability 
research field are also included. We address the following four key components in 
software reliability theory and modeling: historical background, theory, modeling, and 
emerging techniques. We describe these items in a general way, rather than attempting to 
discuss a long list of details. For a comprehensive treatment of this subject, see Lyu 
(1996). 
 
 
1.  Historical Background 

1.1. Basic Definitions  
Software reliability is centered on a very important software attribute: reliability. 
Software reliability is defined as the probability of failure-free software operation for a 
specified period of time in a specified environment (ANSI, 1991). We notice the three 



major ingredients in the definition of software reliability: failure, time, and operational 
environment. We now define these terms and other related software reliability 
terminology. 

1.1.1. Failures  
A failure occurs when the user perceives that a software program ceases to deliver the 
expected service. 
 
The user may choose to identify several severity levels of failures, such as catastrophic, 
major, and minor, depending on their impacts to the system service and the 
consequences that the loss of a particular service can cause, such as dollar cost, human 
life, and property damage. The definitions of these severity levels vary from system to 
system. 

1.1.2. Faults  
A fault is uncovered when either a failure of the program occurs, or an internal error 
(e.g., an incorrect state) is detected within the program. The cause of the failure or the 
internal error is said to be a fault. It is also referred as a “bug.” 
 
In most cases the fault can be identified and removed; in other cases it remains a 
hypothesis that cannot be adequately verified (e.g., timing faults in distributed systems). 
 
In summary, a software failure is an incorrect result with to the specification or 
unexpected software behavior perceived by the user at the boundary of the software 
system, while a software fault is the identified or hypothesized cause of the software 
failure. 

1.1.3. Defects  
When the distinction between fault and failure is not critical, “defect” can be used as a 
generic term to refer to either a fault (cause) or a failure (effect). Chillarege and co-
workers (1992) provided a complete and practical classification of software defects 
from various perspectives. 

1.1.4. Errors  
The term “error” has two different meanings:  
1. A discrepancy between a computed, observed, or measured value or condition and the 

true, specified, or theoretically correct value or condition. Errors occur when some 
part of the computer software produces an undesired state. Examples include 
exceptional conditions raised by the activation of existing software faults, and 
incorrect computer status due to an unexpected external interference. This term is 
especially useful in fault-tolerant computing to describe an intermediate stage in 
between faults and failures. 

2. A human action that results in software containing a fault. Examples include omission 
or misinterpretation of user requirements in a software specification, and incorrect 
translation or omission of a requirement in the design specification. However, this is 
not a preferred usage, and the term “mistake” is used instead to avoid the confusion. 



 

1.1.5. Time  
Reliability quantities are defined with respect to time, although it is possible to define 
them with respect to other bases such as program runs of number of transactions. We 
discuss the notation of time in the next session. 

1.1.6. Failure Functions  
When a time basis is determined, failures can be expressed in several ways: the 
cumulative failure function, the failure intensity function, the failure rate function, and 
the mean-time-to-failure function. The cumulative failure function (also called the 
mean-value function) denotes the expected cumulative failures associated with each 
point of time. The failure intensity function represents the rate of change of the 
cumulative failure function. The failure rate function (or called the rate of occurrence of 
failures) is defined as the probability that a failure per unit time occurs in the interval [t , 
t + Dt], given that a failure has not occurred before t. The mean time to failure (MTTF) 
function represents the expected time that the next failure will be observed. (MTTF is 
also known as MTBF, mean time between failures.) 

1.1.7. Mean Time to Repair and Availability  
Another quantity related to time is mean time to repair (MTTR), which represents the 
expected time until a system will be repaired after a failure is observed. When the 
MTTF and MTTR for a system are measured, its availability can be obtained. 
Availability is the probability that a system is available when needed. Typically, it is 
measured by  
   

 
 
 

1.1.8. Operational Profile  
The operational profile of a system is defined as the set of operations that the software 
can execute along with the probability with which they will occur. An operation is a 
group of runs that typically involve similar processing. 
 
SOFTWARE RELIABILITY ENGINEERING in this encyclopedia provides a detailed 
description on the structure, development, illustration, and project application of the 
operational profile. In general, the number of possible software operations is quite large. 
When it is not practical to determine all the operations and their probabilities in 
complete detail, operations based on grouping or partitioning of input states (or system 
states) into domains are determined. 

1.2. The Advantages of Using Execution Time  
Three kinds of time are relevant to software reliability: execution time, calendar time, 
and clock time. The execution time for a software system is the CPU time that is 
actually spent by the computer in executing the software, the calendar time is the time 



people normally experience in terms of years, months, weeks, days, etc.; and the clock 
time is the elapsed time from start to end of computer execution in running the software. 
In measuring clock time, the periods during which the computer is shut down are not 
counted. If computer utilization, the fraction of time the processor is executing a 
program, is constant, clock time will be proportional to execution time. 
 
In 1972 Shooman published a study where the behavior of a key parameter in his model 
was related to how the project personnel profile varied over time. Several different 
mathematical forms were proposed for the project personnel profile, and the choice of 
the best one depended on the particular project. Similarly, Schneidewind (1972) 
approached software reliability modeling from an empirical viewpoint. He 
recommended the investigation of different reliability functions and selection of the one 
that best fit the particular project in question. He found that the best distribution varied 
from project to project. 
 
Up to 1975, the time domain used in software reliability modeling was exclusively 
calendar time. The lack of modeling universality resulting from using calendar time 
caused Musa (1975) to question the suitability of this time domain. He postulated that 
execution time was the best practical measure for characterizing failure-inducing stress 
being placed on a software program. Calendar time, used by Shooman and 
Schneidewind, did not account for varying usage of a program in a straightforward way. 
It turned out that the removal of this confounding factor greatly simplified modeling and 
yielded better model prediction results. 
 
There is substantial evidence showing the superiority of execution time over calendar 
time for software reliability growth models (Trachtenberg, 1985; Musa and Okumoto, 
1984a; Hecht, 1981). Nevertheless, many published models continue to use calendar 
time or do not explicitly specify the type of time being used. Some models, originally 
developed as calendar-time models or without regard to the type of time, are now being 
interpreted as execution-time models. If execution time is not readily available, 
approximations such as clock time, weighted clock time, staff working time, or units 
that are natural to the application, such as transactions or test cases executed, may be 
used. Musa et al., 1987 developed a modeling component that converts modeling results 
between execution time and calendar time. Huang et al., (2001) proposed the 
incorporation of testing effort into the modeling process, which can be measured by the 
human power, the number of test cases, or the execution-time information. 

1.3. Two Data Types in Time-Domain Modeling  
Software reliability models generally fall into two categories depending on the domain 
they operate in. By far the largest and most popular category of models is based on time. 
Their central feature is that reliability measures, such as failure intensity, are derived as 
a function of time. The second category of software reliability models provides a 
contrasting approach by using operational inputs as their central feature. These models 
measure reliability as the ratio of successful runs to total number of runs. However, this 
approach has some problems, including the fact that many systems have runs of widely 
varying lengths (so that the proportion may give inaccurate estimates) and that the 
resulting measures are incompatible with the time-based measures used for hardware. 



Because of this and the amount of research currently being devoted to time-based 
models, the second model category will not be considered further here. (See Software 
Reliability Engineering.) 
 
The time-domain modeling approach employs either the observed number of failures 
discovered per time period or the observed time between failures of the software. The 
models therefore fall into two basic classes depending on the type of data the model 
uses: (1) failures per time period or (2) time between failures. 
 
These classes are, however, not mutually disjoint. There are models that can handle 
either data type. In fact many of the models for one data type can still be applied even if 
the user has data of the other type. For instance, if the user has only time between 
failures data and wants to apply a particular model that uses only failures-per time 
period, the user needs only to set a specified time length (e.g., a week) and then 
superimpose the failure history over these time intervals and observe how many fell 
within each interval. Conversely, if one had only failures-per-time period data, one 
could randomly assign the fault occurrences within each period and then observe the 
time-between-failures data created when the periods are linked. Either of these 
procedures from “transforming” from one data type into another requires that the user 
test the applied model to determine the adequacy of the resulting fit. 
 
These classes can themselves be considered part of the larger “time domain” approach 
to software reliability modeling in contrast to the “error seeding and tagging” approach 
and the “data domain” approach. Space limitations do not allow us to address these 
other important approaches as well as time-series models in this chapter. The reader is 
referred to Farr (1983) and Xie (1991), among others, where these alternative 
approaches are described. 
 
For the failures-per-time-period data, the unit of time could represent a day, week, etc., 
over which the software is being tested or observed. For the class based upon time 
between failures, we have recorded either the elapsed calendar time or execution time 
between each software failure. Typical failures-per-time period data are shown in Table 
1, and typical time-between-failures data are shown in Table 2.  

  

Table 1. Failures-per-Time-Period Data  

 
Time (hours) Failures per Time Period Cummulative Failures 

 
  8 4   4 
16 4   8 
24 3 11 



32 5 16 
40 3 19 
48 2 21 
56 1 22 
64 1 23 
72 1 24  

 
 

  

Table 2. Time-between-Failures Data  

 
Failure Number Failure Interval (hours) Failure Times (hours) 

 
  1 0.5 0.5 
  2 1.2 1.7 
  3 2.8 4.5 
  4 2.7 7.2 
  5 2.8 10.0 
  6 3.0 13.0 
  7 1.8 14.8 
  8 0.9 15.7 
  9 1.4 17.1 
10 3.5 20.6 
11 3.4 24.0 
12 1.2 25.2 
13 0.9 26.1 
14 1.7 27.8 
15 1.4 29.2 
16 2.7 31.9 
17 3.2 35.1 
18 2.5 37.6 
19 2.0 39.6 
20 4.5 44.1 
21 3.5 47.6 
22 5.2 52.8 



23 7.2 60.0 
24 10.7 70.7  

 
 
 

1.4. Software Reliability Modeling and Measurement  
Software reliability measurement includes two types of activity, reliability estimation 
and reliability prediction:  

 Estimation.    This activity determines current software reliability by applying statistical 
inference techniques to failure data obtained during system test or during system 
operation. This is a measure regarding the achieved reliability from the past until the 
current point. Its main purpose is to assess the current reliability, and determine whether 
a reliability model is a good fit in retrospect. 
 Prediction.    This activity determines future software reliability based on available 
software metrics and measures. Depending on the software development stage, 
prediction involves different techniques: 

 When failure data are available (e.g., software is in system test or operation stage), 
the estimation techniques can be used to parameterize and verify software reliability 
models, which can perform future reliability prediction. 

 When failure data are not available (e.g., software is in the design or coding stage), 
the metrics obtained from the software development process and the characteristics of 
the resulting product can be used to determine reliability of the software upon testing 
or delivery.  

The first definition is also referred to as “reliability prediction” and the second 
definition, as “early prediction.” When there is no ambiguity in the text, only the word 
“prediction” will be used. 
 
Most current software reliability models fall in the estimation category to do reliability 
prediction. A software reliability model specifies the general form of the dependence of 
the failure process on the principal factors that affect it: fault introduction, fault removal, 
and the operational environment. Figure 1 shows the basic ideas of software reliability 
modeling.  

 

 

Figure 1. Basic ideas on software reliability modeling. [Full View] 

 
 
If the reliability improves over time, as faults are discovered and corrected, one would 
expect that the number of failures detected per unit of time would be decreasing and the 



time between failures would be increasing. It is this behavior that the software reliability 
models attempt to capture. In Figure 1, the failure rate of a software system is generally 
decreasing due to the discovery and removal of software faults. At any particular time 
(say, the point marked “present time”), it is possible to observe a history of the failure 
rate of the software. Software reliability modeling forecasts the curve of the failure rate 
by statistical evidences. The purpose of this measure is twofold: (1) to predict the extra 
time needed to test the software to achieve a specified objective and (2) to predict the 
expected reliability of the software when the testing is finished. If an adequate fit to the 
past data is achieved and the testing or operation of the software doesn't radically 
change in the future, the fitted reliability curves can be used to make various reliability 
predictions. 

1.5. Relationship between Hardware and Software Reliability  
Hardware reliability is a generally understood and accepted concept with a long history. 
Early during the much shorter history of software reliability it became apparent to 
researchers that a division (often perceived to be large) exists between hardware 
reliability and software reliability. Software reliability is similar to hardware reliability in 
that both are stochastic processes and can be described by probability distributions. 
However, software reliability is different from hardware reliability in the sense that 
software does not wear out, burn out, or deteriorate; i.e., its reliability does not decrease 
with time. Moreover, software generally enjoys reliability growth during testing and 
operation since software faults can be detected and removed when software failures occur. 
On the other hand, software may experience reliability decrease because of abrupt 
changes of its operational usage or incorrect modifications to the software. Software is 
also continuously modified throughout its life cycle. The malleability of software makes 
it inevitable for us to consider variable failure rates. 
 
At first these differences raised the question of whether reliability theory can be applied 
to software at all. It was discovered that the distinction between hardware and software is 
somewhat artificial. Both may be defined in the same way, so that hardware and software 
component reliabilities can be combined to get system reliability. Traditionally, hardware 
reliability focused on physical phenomena because failures resulting from these factors 
are much more likely to occur than design-related failures. It was possible to keep 
hardware design failures low because hardware was generally less complex logically than 
software. Besides, hardware design failures had to be kept low because of the large 
expense involved in retrofitting of manufactured items in the field. However, when 
hardware tests show that reliability is not within specified design limits because of 
problems or faults in the original design, a sequence of engineering changes may be 
necessary to improve reliability. Thus hardware reliability can and has been modeled like 
software reliability when the failures are the result of design faults, such as the highly 
visible Pentium floating-point division fault that resulted in massive callbacks in 1994 
(Wolfe, 1994). 
 
Perhaps the first hardware reliability model that can also be used as a model of reliability 
for software was developed in 1956 by Northrop Aircraft (Weiss, 1956). This model 
considers complex systems where engineering changes are made to improve system 
reliability. It was used to determine the level of system reliability, how rapidly reliability 



was improving, and the expected reliability at the end of the projected development 
program. Two other early hardware reliability models along similar lines consider the 
problem of estimating reliability of a system undergoing development testing and 
changes to correct design deficiencies (Corcoran, et al., 1964; Barlow and Scheuer, 1966). 
 
It is now also generally accepted that the software failure process is random. This 
randomness is introduced in many ways. The location of design faults within the software 
is random because the overall system design is extremely complex. The programmers 
who introduce the design faults are human, and human failure behavior is so complex 
that it can best be modeled using a random process. Also, the occurrence of failures is 
dependent on the operational profile, which is defined by input states. It is usually not 
known which input state will occur next, and sometimes an input state may occur 
unexpectedly. These events make it impossible to predict where a fault is located or when 
it will be evoked to cause a failure in a large software system. 
 
In an attempt to unify hardware and software for an overall system reliability, software 
reliability theory has generally been developed in a way that is compatible with hardware 
reliability theory, so that system reliability figures may be computed using standard 
hardware combinatorial techniques (Shooman, 1990; Lloyd and Lipow, 1984). However, 
unlike hardware faults that are mostly physical faults, software faults are design faults 
that are harder to visualize, classify, detect, and correct. As a result, software reliability is 
a much more difficult measure to obtain and analyze than hardware reliability. Usually 
hardware reliability theory relies on the analysis of stationary processes, because only 
physical faults are considered. However, with the increase of systems complexity and the 
introduction of design faults in software, reliability theory based on stationary process 
becomes unsuitable to address nonstationary phenomena such as reliability growth or 
reliability decrease experienced in software. This makes software reliability a challenging 
problem that requires an employment of several methods to attack. We now describe the 
theory behind software reliability. 
 
2.  Theory 

2.1. Reliability Theory  
Since the development of software reliability models was based on concepts adapted 
from hardware reliability theory, we need to define some reliability functions and 
concepts that show the relationships among these different functions. 
 
Because the failure time of a software system is a random variable, which we'll denote 
as T, this variable has an associated probability density function, fT(t), and cumulative 
distribution function, FT(t), where  
   

 
 (1)   

 
The reliability function, RT(t), which is the probability the software has not failed by 
time t, is then calculated as  



   

 

 (2)   

 
A third function that is important in reliability modeling is the hazard rate function, ZT(t). 
It is the conditional probability that the software will fail in an interval (t , t + Dt), given 
that it has not failed before time t. If T is the time at which the failure occurs, then  
   

 
 
Dividing both sides by Dt, expressing the probability in its conditional form, and letting 
Dt approach zero, we have  
   

 

 (3)   

 
   

 
 (4)   

 
From Equation (3) we see that the hazard rate function is simply the conditional 
probability density function for the failure of the system given no failures have occurred 
up to time t. From Equation (4) and the fact that RT(t) = 1 – FT(t), we have the following:  
   

 
 
or  
   

 
 
or  
   

 



 
thus  
   

 
 (5)   

 
The reliability function, in turn, can be related to the mean time to failure, (MTTF), of 
the software;  
   

 

 (6)   

 
All of these relationships hold for the corresponding conditional functions as well. One 
simply replaces the hazard, reliability, cumulative distribution, or probability density 
function for a “single” fault, T, by the associated conditional functions. For example, 
suppose the system has failed at time ti, then the conditional hazard rate function is 
denoted as ZT(t|ti), where t ≥ ti and  
   

 
 
The last important functions that we will consider are the failure intensity function and 
the mean value function for the cumulative number of failures. We'll denote the failure 
intensity function as l(t). This is the instantaneous rate of change of the expected 
number of failures with respect to time. Suppose we let M(t) be the random process 
denoting the cumulative number of failures by time t and we denote m(t) as its mean 
value function:  
   

  (7)   
 
The failure intensity function is then obtained from m(t) as its derivative:  
   

  (8)   
 
In order to have reliability growth, we should have (d l(t)/dt) < 0 for all t ≥ t0 for some t0. 
The failure rate function may also exhibit a zigzag type behavior but it must still be 
decreasing to achieve reliability growth. 

2.2. Random Point Processes  
The reliability of software is influenced or determined mainly by three factors: fault 
introduction, fault removal, and the operational profile. Fault introduction depends 



primarily on the characteristics of the developed code (code written or modified for the 
program) and the development process. The code characteristic with the greatest effect 
is size. Development process characteristics include the software engineering 
technologies and tools employed and the average level of experience of programmers. 
Note that code is developed when adding features or removing faults. Fault removal is 
affected by time, the operational profile, and the quality of the repair activity. Since 
most of these factors are probabilistic in nature and operate over time, the behavior of 
software failures with execution time is usually modeled using some kind of random 
point process. The upper portion of Figure 2 shows an example of such a process where 
each failure epoch is represented by an X. A counting process giving the number of 
failures experienced by execution time t is associated with every point process. Figure 2 
also shows a typical counting process, denoted by M(t), having a unit jump at each 
failure epoch. 
 
If we let M(t) be the random number of failures that are experienced by time t with 
mean value function m(t), i.e., m(t) We remark that the failure counting process being 
considered here is strictly nondecreasing. Furthermore, if limt → ∞ m(t) < ∞ i.e., is 
finite, we have a finite failure model category; otherwise we have a model of the infinite 
failures category. 
 
We will now relate some important properties of the Poisson and binomial processes. 
These processes play a key role in the unification and classification of many published 
models, and there are some central theoretical results that come into consideration. We 
will make use of these properties for specific classes of models in subsequent sections.  

 

 

Figure 2. A random point process and its associated counting process. [Full 
View] 

 
 
First for the Poisson type models, we consider that we have a Poisson process over time. 
By this we mean that if let t0 = 0 , t1 ,   ¼  , ti – 1 , ti ,   ¼  , tn = t be a partition of our time 
interval 0 to t and let m(t) be as defined as above, then we have a Poisson process if 
each the number of failures detected in the ith interval, ti – 1   to   ti), are 
independent Poisson random variables with means, . We make 
the following assumptions:  
1. The probability of failure (failure intensity) depends on time t and the number of past 

failures M(t). 
2. Failures do not occur simultaneously. 
3. Failures do not occur at preassigned times. 
4. There is no finite interval in [t , ∞] where failures occur with certainty. 



5. There is no failure in the beginning of the process. 
Then for each of the random variables t ′ i   values ,    i = 1 ,   ¼  , n, the probability mass 
function is:  
   

 
 
[Note: If m(t) is a linear function of time, i.e., m(t) = at for some constant, a > 0, we say 
that the Poisson process, M(t), is a homogeneous Poisson process (HPP). If, however, it 
is nonlinear, we refer to the process as being a nonhomogeneous Poisson process 
(NHPP).] 
 
If we have a Poisson process model, we can show a relationship between the failure 
intensity function and the reliability function (hence the hazard rate and the probability 
density function using the relationships established in the previous section). Suppose 
that we denote R(   t + Dt|t) as the conditional reliability function that the software will 
still operate after t + D given that it has not failed after time t. Then  
   

 
The relationship between the failure intensity function and the hazard rate for a Poisson 
process can also be derived. It can be shown that  
   

  (9)   
 
where ti – 1 is the time of the (i – 1)st failure and Dt is any point such that ti – 1ti + Dt < ti. 
This shows that the conditional hazard rate and the failure intensity function are the 
same if the failure intensity function is evaluated at the current time ti – 1 + Dt. 
 
Another relationship that one can establish for the Poisson type of models is that  
   



  (10)   
 
where a is some constant and Fa(t) is the cumulative distribution function of the time to 
failure of an individual failure a. From this, if we consider also distributions that belong 
to the finite failure category, i.e.,  lim t → ∞ m(t) < ∞ we have that  lim t → ∞ m(t) = a 
since  lim t → ∞Fa(t) = 1. Thus a represents the eventual number of failures detected in 
the system if it could have been observed over an infinite amount of time. Using 
Equation (10) and the relationship between the mean value function and the failure 
intensity function, we have also for the Poisson type of model  
   

  (11)   
 
where fa(t) is the probability density function of the time to failure of the individual 
failure a. 
 
For the binomial type of model, we have the following assumptions:  
1. There is a fixed number of faults (N) in the software at the beginning of the time in 

which the software is observed. 
2. When a fault is detected, it is removed immediately. 
3. If Ta is the random variable denoting the time to failure of fault a, then the Ta values, 

a = 1 ,   ¼  , n, are independently and identically distributed random variables as Fa(t) 
for all remaining faults. 

The cumulative distribution function, Fa(t), density function, fa(t), and hazard rate 
function, Za(t), are the same for all faults for this class. Moreover, we notice for this 
class that a failure and a fault are synonymous and no new faults are introduced into the 
software in the fault detection/correction process. We can show for this class, the failure 
intensity function is obtained from the probability density function for a single fault as  
   

  (12)   
 
The mean value function is, in turn, related to the cumulative distribution function, Fa(t), 
as  
   

  (13)   
 
Notice the similarity between equations (12) and (13) and (10) and (11) for the Poisson 
type. For the binomial we have a fixed number of faults (one-to-one correspondence to 
failures) at start, N, while for the Poisson type, a, is the eventual number of failures that 
could be discovered over an infinite amount of time. 
 
Kremer (1983) unified many software reliability models using a nonhomogeneous 
birth–death Markov process. He showed that many of the Poisson-type and binomial-



type models discussed extensively in the literature are special cases of a Markov birth 
process with specific forms for l(t) and m(t). 
 
It is well worth discussing the preceding conditions for a Markov process here because 
this will help determine the plausibility of the entire modeling approach. Some of the 
affects of altering the first condition were already investigated when the origin of the 
Poisson-type models and binomial-type models was clarified. If this condition is relaxed 
so that the failure intensity may depend on t, M(t), and the occurrence times for all 
failures before t, a self-exciting random point process is obtained. In this type of process, 
since M(t) is a random variable, the failure intensity itself is a random process. Other 
types of point process can be obtained if an “outside” process affects the failure 
intensity. These processes are beyond the scope of this discussion. A general self-
exciting point process can be conceived of as a modified nonhomogeneous Poisson 
process in which the future evolution of failures not only is a function of time but also 
can be influenced by all past occurrences of failures. Of course, when the evolution 
depends only on time and the total number of past failures, a Markov birth process 
results. 
 
Note that the assumptions made for a Poisson process in modeling software failures are 
generally well accepted by researchers in the field, but they can also be easily relaxed, 
especially for a nonhomogeneous Poisson process. For example, the condition requiring 
that the process start out with no failures can be easily changed to one that assumes that 
the process starts out with a known or random number of failures simply by treating this 
as a separate term in the model formulations. As another example, the condition that no 
failures occur simultaneously can be relaxed, leading to what is called a compound 
Poisson process (Sahinoglu, 1992). Many other powerful and useful generalizations are 
possible and can be found in Snyder (1975). 
 
Reliability estimates for nonhomogeneous Poisson process models come directly from 
Equation (3) and by noting that the event M(T) > i is equivalent to the event Tint, where 
T is a random variable for the ith failure time. In addition, unknown model parameters 
are usually determined using the maximum likelihood principle, least squares, or 
Bayesian techniques. Again, specific derivations are omitted; however, Table 3 provides 
a summary of some important relationships for these models (Musa, et al., 1987). These 
can be used for a particular model, that is, for a particular mean value function.  

  

Table 3. Some Derived Relationships for a General Poisson Process  

 
Quality Formulaa 

 
Failures 
experienced  



 Expected Value = m(t) 

 Variance = m(t) 

Failure time 
 

Reliability 
 

Conditional 
failure time  
Failure 
intensity  
Unconditional 
failure time  
Maximum-
likelihood 
equations 

 

   

 
a Where 

 
 
 

2.3. Exponential Order Statistics  
The exponential order statistics approach to modeling software reliability, studied by 
Downs (1985; 1986), Miller (1986), and Ross (1985a,1985b) is essentially equivalent to 
the preceding approach except that it provides a more intuitive feeling for the actual 
failure process. Figure 3 shows the modeling environment. A piece of software initially 
containing an unknown number of faults is subjected to testing where input states A, B, 



and C, are chosen at random according to some operational profile. Most input states 
result in successful execution (correct program results). Some input states exercise a 
collection of instructions containing a fault and cause a failure to occur. Still others 
exercise a collection of instructions containing a fault but do not cause a failure to occur 
because the data state or specific conditions are not right. For example, input state C in 
Figure 3 does not encounter a fault and causes no failure, whereas input states A and B 
both encounter fault a with only input state A causing a failure. Therefore, the only input 
states of consequence as far as fault a causing a failure are the ones like input state A in 
the example. The collection of these input states is called fault a's fail set.  

 

 

Figure 3. Software reliability modeling environment. [Full View] 

 
 
Two factors determine the failure-causing potential of a fault. They are the size or 
number of input states in the fault's fail set and the frequency with which these states are 
chosen for execution. Clearly, if the operational profile were to change, so also would 
the importance or contribution of the input states in the fail set to the failure-causing 
potential of the fault. 
 
Let the failure intensity for fault a denoted by la; then the failure intensity for the 
program depends on whether faults are being removed. Assume for the moment that 
they are not being removed. This is typical of a program in production use. The program 
failure intensity l is determined by summing the contributions of the individual faults:  
   

 
 (14)   

 
 
 
Equation (14) implicitly assumes that the failures from different faults are independent. 
This assumption may raise several issues. The first issue that may come up is the matter 
of input state dependencies; for example, a specific input state may always be executed 
after a given input state. This can be incorporated into the model, but the increase in 
accuracy, if any, is probably outweighed by the added complexity. The second issue is 
that a fault may prevent access to code containing one or more faults. This issue is less 
common during system testing or operational use than it is during unit testing and is 
considered to be a secondary effect and is therefore ignored. Finally, another issue 
concerns multiple failures resulting from an execution of a given input state. This is 
usually considered to be secondary or not worth the effort to explicitly model. In most 
cases, failures are independent because they are the result of two processes: the 
introduction of faults and the activation of faults through the selection of input states. 
Both of these processes are random, and hence the chance that one failure would affect 



another is small. The independence conclusion is supported by a study of correlations on 
failure data from 15 projects (Musa, 1979) that found no significant correlation. 
 
Now suppose that faults are being repaired. The program is exercised for a period of 
time t, and each time a failure occurs, the software is debugged and the fault responsible 
for the failure is removed. Let Ia(t) be a function that takes on a value of 1 if fault a has 
not caused a failure by t and 0 otherwise. As before, the program failure intensity at time 
t, denoted by L(t) since this time it is a random variable, is determined by summing the 
contributions of the individual faults still remaining in the program. Thus  
   

 
 (15)   

 
Note that In contributes to the sum only if fault a has not been removed yet. Implicit 
assumptions being made here are that failures from different faults are independent and 
that a fault causing an observed failure is immediately resolved. The latter assumption, 
however, need not be the case. Subsequent occurrences of the same failure can be 
ignored in the analysis if necessary. 
 
An assumption concerning the failure process itself must be made. The usual 
assumption is that faults cause failures to occur in accordance with independent 
homogeneous Poisson processes with unknown failure intensities. A natural result of 
this is that failure times for a fault are exponentially distributed. Miller (1986) defines 
an exponential order statistic model based on a failure counting process and an 
associated failure occurrence-time process, which is characterized by the parameter set 
of failure intensities set of la , 1 ≤ a ≤ w0, with the only restrictions that la > 0 and 

. Miller shows many possibilities exist for the form of la, values which can 
be treated in several ways. One such way is deterministically; that is, following a known 
pattern. Two examples include constant failure intensities (la = l0   for all   a) and 
geometric failure intensities (la = a ba , 0 < b < 1   for all   a).The failure intensities can 
also be treated as a finite collection of independent and identically distributed random 
variables drawn from some distribution; for example, the gamma distribution. Finally, 
the failure intensities can be treated as a realization of a random point process such as 
the nonhomogeneous Poisson process. It is also mathematically possible to permit an 
infinite value for w0 and treat finite w0 as a special subcase. Doing this, it is possible to 
simultaneously deal with infinite failures and finite failures models and to unify a great 
many models. Miller (1986) gives a complete discussion on the types of models 
resulting from these and other patterns of failure intensities with some rather significant 
results. One result is the inability to distinguish between the different types of models 
for the la, values based on a single observation of the failure process. Another closely 
linked idea is that the mean value function is the primary characteristic of a model and 
the particular type of model is a secondary characteristic. For example, a model based 
on deterministic In values and a model based on In values drawn from a probability 
distribution are close to each other if their mean value functions are close. An example 
of an application of this idea is in Musa and Okumoto (1984b) where the Littlewood and 
Verrall (1973) model was analyzed using a nonhomogeneous Poisson process with 



appropriate mean value function. 
 
Given the preceding assumption about the failure process, the probability of fault a not 
causing a failure by time t is e –l   at. Therefore, the expected failure intensity for the 
program, l(t), is given by  
   

 
 (16)   

 
This equation is sufficient to completely describe the overall failure process for the 
program. The integral of this equation gives the mean value function m(t) or the 
expected number of failures at time t:  
   

 
 (17)   

 
Equations (16) and (17) show how l(t) and m(t), respectively, depend on the failure 
intensity of the individual faults. 
 
Now we determine what Equation (17) reveals about the kinds of mean value functions 
likely to be good candidates for models. Let represent the average per-fault failure 
intensity of the inherent faults:  
   

 
 
Also, let s2 be a measure of the variation in the inherent per-fault failure intensities:  
   

 
 
Then, expanding Equation (17) in a Taylor series about l keeping t fixed yields  
   

 

 (18)   

 
where higher order terms are not explicitly shown. The significant point about Equation 
(18) is the first term, which represents an exponential mean value function characteristic 
of many popular and useful models (Musa, 1975; Goel and Okumoto, 1979). The 



conclusion to be drawn is that the exponential mean value function is a first-order 
approximation of all possible mean value functions based on a finite number of initial 
faults. This explains, in part, why the exponential nonhomogeneous Poisson process 
model enjoys such success in many applications (Zinnel, 1990; Ehrlich et al., 1991; 
Iannino and Musa, 1991). 
 
As can be seen, the exponential nonhomogeneous Poisson process model is exact if all 
per-fault failure intensities are the same. Note that this does not imply a uniform 
operational profile, as is sometimes claimed in the literature. It does imply that the joint 
effect of the operational profile and of the fail set size, the fault exposure, is the same for 
all faults. Thus a fault with a large fail set size and small individual operation usage 
probabilities may be the same, in terms of failure intensity, as a fault with small fail set 
size and large individual operation usage probabilities. 
 
Relaxing the homogeneous Poisson process assumption underlying each fault's failure 
process can further strengthen the case for the exponential mean value function. It turns 
out that any per-fault failure process whose first time to failure is exponentially 
distributed will lead to the same conclusions, provided subsequent occurrences of the 
same failure are ignored. This is an important observation especially when dealing with 
failures that tend to cluster as described in Ehrlich and co-workers (1991). 
 
In summary, the nonhomogeneous Poisson process is emerging as the most practical and 
useful choice for modeling software reliability. This is based on many empirical results. 
The process is fully specified by its mean value function, and an emerging choice here, 
both in theory and in practice, is the exponential mean value function. This function was 
shown to play a central role in modeling and to be quite robust from departures in its 
assumptions. 
 
3.  Modelling 

3.1. Model Classification  
A model classification scheme proposed in Musa and Okumoto (1983) allows 
relationships to be established for models within the same classification groups and 
shows where model development has occurred. It classified models in terms of five 
different attributes:  

 Time domain—calendar versus execution time. 

 Category—the total number of failures that can be experienced in infinite time. This is 
either finite or infinite, representing two subgroups. 
 Type—The distribution of the number of the failures experienced by time t. Two 
important types that we will consider are the Poisson and binomial. 

 Class—(finite failure category only) functional form of the failure intensity expressed in 
terms of time. 
 Family—(infinite failure category only) Functional form of the failure intensity function 
expressed in terms of the expected number of failures experienced. 



 
 
In the “Random Point Processes” section we described the Markov processes that are 
characterized by the distribution of the number of failures over time, and the two most 
important distributions, the Poisson and binomial. Models based on the binomial 
distribution are finite failure models, that is, they postulate that a finite number of 
failures will be experienced in infinite time. Models based on the Poisson distribution 
can be either finite failure or infinite failure models, depending on how they are 
specified. Table 4 shows how some of the published models are classified using this 
approach. The Bayesian model of Littlewood and Verrall (1973) and the geometric 
deeutrophication model of Moranda (1975, 1979) are among the few published models 
that are not Markovian.  

  

Table 4. Markov Software Reliability Models  

 
Poisson Type Binomial Type Other Types 

 
Crow (1974) Jelinski and Moranda 

(1972) 
Shooman and Trivedi 
(1975) 

Musa (1975) Shooman (1972) Kim and co-workers 
(1982) 

Moranda (1975, 1979) Schick and 
Wolverton (1973) 

Kremer (1983) 

Schneidewind (1975) Wagoner (1973) Laprie (1984) 
Goel and Okumoto 
(1979) 

Goel (1988a) Shanthikumar and 
Sumita (1986) 

Brooks and Motley 
(1980) 

Schick and 
Wolverton (1978) 

 

Angus and co-workers 
(1980) 

Shanthikumar (1981)  

Yamada and co-
workers (1983) 

Littlewood (1981)  

Yamada and Osaki 
(1984) 

  

Ohba (1984)   
Yamada and co-
workers (1984) 

  
 

 



 
 
 
These unifications highlight relationships among the models and suggest new models 
where gaps occur in the classification scheme. Furthermore, they greatly reduce the task 
of model comparison. 

3.2. The Exponential Models  
In the literature on software reliability, this class has the most articles written on it. 
Using Musa and Okumoto's classification scheme, this group contains all finite failure 
models with the functional form of the failure intensity function being exponential. The 
binomial type in this class are all characterized by: a per-fault constant hazard rate, i.e., 
zT(t) = F the hazard rate function after the ith fault that has been detected is a function of 
the remaining number of faults, i.e., N – (i – 1); and the failure intensity function is 
exponential in form, l(t) = N fexp( –ft). The Poisson types in this class are all 
characterized by a per-fault constant hazard rate, zT(t) = f, and an exponential time to 
failure of an individual fault, fX(x) = N fexp( –fx). Since we have either a homogeneous 
or nonhomogeneous Poisson process, the number of failures that occur over any fixed 
period of time is a Poisson random variable. For the time between failures models, the 
distribution is exponential. 
 
The first software reliability model was independently developed by researchers in 1972 
(Jelinski and Moranda, 1972; Shooman, 1972). In this model, the elapsed time between 
failures is taken to follow an exponential distribution with a parameter that is 
proportional to the number of remaining faults in the software; i.e., the mean time 
between failures at time t is 1/ f(N – (i – 1)). Here t is any point in time between the 
occurrence of the (i – 1)th and the ith fault occurrence. The quantity f, is the 
proportionality constant and N is the total number of faults in the software from the 
initial point in time at which the software is observed. Figure 4 shows the characteristic 
step curve for the variation of program failure intensity with execution time for this 
model. One can see as each fault is discovered the hazard rate is reduced by the 
proportionality constant f. This indicates that the impact of each fault removal is the 
same. In Musa and Okumoto's classification scheme, this is a binomial type model. This 
model, henceforth referred to as the exponential model, makes the following basic 
assumptions.  
1. All faults in the program contribute the same amount to the overall failure intensity of 

the program. Thus at given any time the program failure intensity is proportional to 
the number of remaining faults. 

2. The failure detection rate remains constant over the intervals between failure 
occurrences. 

3. A fault is corrected instantaneously without introducing new faults into the software. 
4. The software is operated in a similar manner as that in which reliability predictions are 

to be made. 
5. Every fault has the same chance of being encountered and is of the same severity as 

any other faults. 



6. The failures, when the faults are detected, are independent. 
The numbered assumptions 4–6 are fairly standard as we consider other models. 
Assumption 4 is provided to ensure that the model estimates that are derived using data 
collected in one particular environment are applicable to the environment in which the 
reliability projections are to be made. The fifth assumption is provided to ensure that the 
various failures all have the same distributional properties. One severity class might 
have a failure rate different from that of the others requiring a separate reliability 
analysis be done. The last assumption allows simplicity in deriving the maximum 
likelihood estimates. Since assumptions 4–6 appear so often in the software reliability 
models, we usually refer to them as the standard assumptions for reliability modeling.  

 

 

Figure 4. Characteristic step curve and continuous approximation for program 
failure intensity reduced by with execution time for the exponential model (with 
proportionality constant f as per-fault failure rate, this becomes a Jelinski–
Moranda model). [Full View] 

 
 
Several other models that are either identical to the exponential model except for 
notational differences or are very close approximations were developed by Musa (1975), 
Schneidewind (1975), and Goel and Okumoto (1979). The latter is a continuous 
approximation to the original exponential model and is described in terms of a 
nonhomogeneous Poisson process with a failure intensity function that is exponentially 
decaying. Figure 4 also shows this curve and how closely it approximates the 
exponential model curve. For all practical purposes the Goel–Okumoto and the other 
models are indistinguishable from the exponential model. 
 
The parameter estimation of the exponential model (and, therefore, the other closely 
related or equivalent models) has been often criticized. Forman and Singpurwalla (1977, 
1979), Littlewood and Verrall (1973), and Joe and Reid (1984), to name a few, have 
shown that parameter estimation for the model suffers from two unfortunate tendencies. 
Sometimes there is a tendency for estimates of the total failures expected to come out 
nearly equal to the number of failures experienced. This leads to overly optimistic 
conclusions. Sometimes there is a tendency for these same estimates to be nonfinite. 
Meinhold and Singpurwalla (1983) suggested that when nonfinite parameter estimates 
are obtained it is the method of inference that needs to be questioned not the model. 
 
Nevertheless, the exponential model plays a key role in software reliability theory. 
Shock models and renewal theoretic arguments were used by Stefanski (1982) and 
Langberg and Singpurwalla (1985), respectively, to provide alternative motivations for 
and alluded to the centrality of the exponential model. In the former reference, it was 
also illustrated that many other well-known models, including that of Littlewood and 
Verrall (1973), can be obtained by specifying specific distributions for the parameters of 



the exponential model. The following sections on execution time modeling provide 
further justification for the equivalent exponential nonhomogeneous Poisson process 
model. 
 
The exponential model can be further generalized (AIAA, 1993) to simplify the 
modeling process by having a single set of equations to represent a number of important 
models having the exponential hazard rate function. The overall idea is that the failure 
occurrence rate is proportional to the number of faults remaining and the failure rate 
remains constant between failures while it is reduced by the same amount when a fault 
is removed. Besides the standard assumptions, the other assumptions of the model are  
1. The failure rate is proportional to the current fault content of the software. 
2. The faults that caused a failure are corrected instantaneously, and no additional faults 

are introduced by the correction process. 
3. The data required are the usual time between failures, xi values, or the time of the 

failures, the ti values. 
The model form is expressed as  
   

 
 
where Z( . ) is the software hazard rate function; t is a time or resource variable for 
measuring the progress of the project; K is a constant of proportionality denoting the 
failures per unit of t ; E0 is the initial number of faults in the software; and Ec is the 
number of faults in the software that have been found and corrected after t units have 
been expended. Table 5 reflects how this model is related to some of the models in the 
literature.  
  

Table 5. Generalized Exponential Model Relationships  

 

Model 
Original Hazard 

Rate Function 
Parameter 

Equivalences 

 
Generalized form k[E0 – Ec(t)]  
Shooman model 
(Shooman 1972) 

K ′ [E0/IT –¶c(t)] ¶c = Ec/IT   where   IT   is 
the number of 
instructions   K ′  = KIT 

Jelinski–Moranda, 
model (Jelinski and 
Moranda, 1972) 

f(N – (i – 1)) f = K , N = E0 , (i – 1) = 
Ec(t) 

Basic execution model 
(Musa, 1975) 

b1 b0[1 –m(t)/ 
b0]   where   m(t) = 
b0[1 – exp( –b1t)] 

b0 = E0 , b1 = K , m(t) = 
Ec(t) 



Logarithmic Poisson 
model (Musa and 
Okumoto, 1984b) 

b1 b0exp( –m(t)/ 
b0) ,    where   m(t) 
= b0 ln (b1t + 1) 

b1 b0 = KE0 , E0 – Ec(t) = 
E0exp( –m(t)/ b0) 

 

 
 
 

3.3. The Bayesian Models  
The Bayesian approach essentially challenges some of the deterministic assumptions 
made in the classical Markovian and exponential approaches. For example, the 
exponential model assumes that each fault contributes equally to the overall program 
failure intensity. The Bayesian approach argues that each fault's contribution to the 
overall failure intensity is unknown and can be modeled as originating from a given 
random distribution (with unknown parameters) of values (Littlewood, 1981). The 
analysis then proceeds along traditional Bayesian techniques. 
 
This group of models views reliability growth and prediction in a Bayesian framework 
rather than the “traditional” one considered in the previous sections. The previous 
models only allow change in the reliability whenever an error occurs. Most of them also 
look at the impact of each fault as being of the same magnitude. A Bayesian model 
takes a subjective viewpoint in that if no failures occur while the software is observed, 
then the reliability should increase, reflecting the growing confidence in the software by 
the user. The reliability is therefore a reflection of both the number of faults that have 
been detected and the amount of failure-free operation. This reflection is expressed in 
terms of a prior distribution representing the view from past data and a posterior 
distribution that incorporates the past and the current data. 
 
The Bayesian models also reflect the belief that different faults have different impacts 
on the reliability of the program. The number of faults is not as important as their 
impacts. If we have a program that has a number of faults in seldom used code, is that 
program less reliable than one that has only one in the part of the code that is used often? 
The Bayesian would say “No!” The Bayesian modeler says that it is more important to 
look at the behavior of the software than to estimate the number of faults in it. The mean 
time to failure would therefore be a very important statistic in this framework. 
 
The prior distribution reflecting the view of the model parameters from past data is an 
essential part of this methodology. It reflects the viewpoint that one should incorporate 
past information, say, projects of similar nature etc., in estimating reliability statistics 
for the present and future. This distribution is simultaneously one of the Bayesian's 
framework strengths and weaknesses. One should incorporate the past, but how is the 
question. 
 
The basic idea of the mathematics behind this theory is as follows. Suppose that we 
have a distribution for our reliability data that depends on some unknown parameters, x 
i.e., fT(t| x), and a prior g(x ; f) that reflects our views on those parameters, x from 



historical data. Once additional data have been gathered through the vector t [note that 
boldfacing of a component denote a possible vector of subcomponents to allow for 
multidimensionality i.e., x = (x1 , x2 ,   ¼ xK)], our view of the parameter x changes. 
That change is reflected in the posterior distribution, which is calculated as  
   

 
 (19)   

 
Using the posterior distribution, editor estimates of x can then be obtained, leading to 
reliability estimates involving x. A common Bayesian procedure is to define a loss 
function, x(t) is an estimate of x, and then choose the estimate of x that minimizes the 
expected loss using the posterior distribution. For a squared-error function or quadratic 
loss function, l(x′(t) , x) where x′(t) is an estimate of x, and then choose the estimate of 
x that minimizes the expected loss using the posterior distribution. For a squared-error 
function or quadratic loss function, l(x′(t) , x) = (x′(t) –x)2, the estimate is the mean of 
the posterior distribution, E{ x|t}. The reader is referred to any mathematical statistics 
book for further details (e.g., Mood et al., 1974). 
 
The Littlewood–Verrall model (1973, 1974) is probably the best example of this class of 
model. The model tries to account for fault generation in the fault correction process by 
allowing for the probability that the software program could become “less reliable” than 
before. With each fault correction, a sequence of software programs is generated. Each 
is obtained from its predecessor by attempting to fix the fault. Because of the 
uncertainty, new version could be “better” or “worse” than its predecessor. Thus another 
source of variation is introduced. This is reflected in the fact that the parameters that 
define the failure time distributions are taken to be random. The distribution of failure 
times is, as in the earlier models, assumed to be exponential with a certain failure rate, 
but it is that rate that is assumed to be random rather than constant as before. The 
distribution of this rate, i.e., the prior, is assumed to be a gamma distribution with shape 
a and scale parameter y(i) . y(i) function is further considered as either a linear form or a 
quadratic form with parameters b0 and b1. 
 
A paper by Mazzuchi and Soyer (1988) considers a variation of this model by assuming 
all of the parameters a , b0 and b1 are random variables with appropriate priors. 
Employing some approximations because of computational difficulties, they then obtain 
some corresponding results. Musa (1984) considered the use of a rational function for 
y(i). He felt that this parameter should be inversely related to the number of failures 
remaining. The form of this function was expressed as  
   

 
 
Here N is the expected number of faults within the software as time becomes infinite, l0 
is the initial failure intensity function, and a is the parameter of the gamma distribution 



considered earlier. The index i is the failure index. One can see as the number of 
remaining failures decreases the scale parameter, y(i), increases. Another variation of 
this model is the one considered by Keiller and co-workers (1983). Again successive 
failures follow an exponential distribution with an associated gamma prior. However for 
this case, the reliability growth is induced by the shape parameter a rather than the scale 
parameter y(i). 
 
Any of the classical models can be made Bayesian by specifying appropriate 
distributions for one or more of their parameters. Interestingly, most of the Bayesian 
models use the exponential model as a starting point (e.g., Littlewood and Verrall, 1974; 
Goel, 1977; Littlewood, 1980; Jewell, 1985; Langberg and Singpurwalla, 1985; 
Littlewood and Sofer, 1987; Becker and Camarinopoulos, 1990; Csenki, 1990) or are 
completely new models (Littlewood and Verrall, 1973; Thompson and Chelson, 1980; 
Kyparisi and Singpurwalla 1984; Liu 1987). It seems, however, that the Bayesian 
approach suffers from its complexity and from the difficulty in choosing appropriate 
distributions for the parameters. Added to this is the fact that most software engineers 
do not have the required statistical background to completely understand and appreciate 
Bayesian models. The latter is perhaps the main reason why these models have not 
enjoyed the same attention as the classical models (there are almost 5 times as many 
classical models as Bayesian models, and they are used in a great majority of the 
practical applications). Note that Bayesian models lead to the intuitive notion that earlier 
failure corrections have a greater effect than do later ones on the program failure 
intensity. However, many classical Markovian and exponential models also share this 
property. 

3.4. Comparison of Different Software Reliability Models  
Various models proposed in literature tend to give quite different predictions for the 
same set of failure data. It should be noted that this kind of behavior is not unique to 
software reliability modeling but is typical of models that are used to project values in 
time and not merely represent current values. Furthermore, a particular model may give 
reasonable predictions on one set of failure data and unreasonable predictions on 
another. Consequently, potential users may be confused and adrift with little guidance as 
to which models may be best for their applications. 
 
The search for the best software reliability model(s) started in the late 1970s and early 
1980s. Initial efforts at comparison by Schick and Wolverton (1978) and Sukert (1979) 
suffered from a lack of good failure data and a lack of agreement on the criteria to be 
used in making the comparisons. The former deficiency was remedied to some degree 
when 50 reasonably good-quality sets of failure data were published (Lyu, 1996). The 
data sets were collected under careful supervision and control and represent a wide 
variety of applications including real-time command and control, commercial, military, 
and space systems. 
 
The latter deficiency was remedied when Iannino and co-workers (1984) worked out a 
consensus from many experts in the field on the comparison criteria to be employed. 
The proposed criteria include the following.  



1. The capability of a model to predict future failure behavior from known or assumed 
characteristics of the software; for example, estimated lines of code, language planned 
to be used, and present and past failure behavior (i.e., failure data). This is significant 
principally when the failure behavior is changing, as occurs during system testing. 

2. The ability of a model to estimate with satisfactory accuracy the quantities needed for 
planning and managing software development projects or for running operational 
software systems. These quantities include the present failure intensity, the expected 
date of reaching the failure intensity objective, and resource and cost requirements 
related to achieving the failure intensity objective. 

3. The quality of modeling assumptions (e.g., support by data, plausibility, clarity, and 
explicitness). 

4. The degree of model applicability across software products that vary in size, structure, 
and function, different development environments, different operational environments, 
and different life-cycle phases. Common situations encountered in practice that must 
be dealt with include programs being integrated in phases, system testing driven by a 
strategy to test one system feature at a time, the use of varying performance 
computers, and the need to handle different failure severity classes. 

5. The degree of model simplicity (e.g., simple and inexpensive data collection, 
concepts, and computer implementation). 

 

3.5. Model Selection Approach  
Although model comparison criteria can be set as above, it is still very difficult to 
identify a priori those characteristics of a program that will ensure that a particular 
model can be trusted to produce accurate reliability predictions. In fact, this is not 
surprising, since the models involve rather crude assumptions about what may be a quite 
complex underlying failure process. There are many things that might impact on the 
properties of the failure process that are simply ignored by the models. Examples 
include the nature of the operational environment, the internal fault-handling procedure 
(e.g., whether the software is fault-tolerant), etc. Such factors represent a source of 
uncontrolled variability in the properties of the failure process that is not treated by any 
of the models. In the absence of specific ways of taking account of such factors, we can 
expect the models to vary in their performance as the factors vary from one data source 
to another. 
 
Consequently, some researchers advocated the approach in selecting the best model by 
using a set of models at the same time on a given set of failure data and then picking the 
one that is working best (Brocklehurst et al., 1990; Lyu and Nikora, 1991). They 
suggested comparing a prediction with the actual observation (when this is later made), 
and recursively build up a sequence of such prediction/observation comparisons. From 
this sequence we should be able to gain information about the accuracy of past 
predictions, and so make decisions about the current prediction (i.e., which model to 
trust, if any). This approach, originally seen as impractical, becomes attractive with the 
help of software reliability modeling tools such as CASRE, SMERFS, and SRMP (Lyu, 
1996). 



 
The basic idea in analyzing model predictive accuracy is to perform recursive 
comparison of predictions with eventual outcomes. Dawid (1984) proposed a statistical 
measure that can be engaged: the prequential likelihood ratio (PLR), which can be 
extended to obtain a u plot and y plot. 
 
First we define the PLR. Let us assume that we have observed the successive times 
between failures t1 , t2 ,   ¼  , tj – 1, and we want to predict the next time to failure Tj. We 
shall do this by using one of the models to obtain an estimate, of the true (but 
unknown) distribution function Fj(t) ≡ P(Tj < t), the probability that time to the jth (the 
next) failure is less than t. True predictive pdf is noted as fj(t), with estimates of this 

PDF, and, , coming from two different models, A and B. After making 
these two predictions, which are based only on the data we have seen prior to stage j, we 
wait and eventually see the next failure occur after a time tj. Since this is a realization of 
a random variable whose distribution is the true one, we would expect tj to lie in the 
main body of this true distribution; that is, it is more likely to occur where fj(tj) is larger. 
If we evaluate the two predictive PDFs at this value of t, there will be a tendency for 

to be larger than if the predictions from model A are more accurate than 

those from model B; i.e., will tend to be larger than 1. This is because 
the A PDF tends to have more large values close to the large values of the true 
distribution than does the B PDF. In fact, this is what we mean when we say informally 
that “the A predictions are closer to the truth than the B predictions”—that the value of 
the A PDF tends to be everywhere closer to that of the true PDF than is the value of the 
B PDF. The PLR then is merely a running product of such terms over many successive 
predictions:  
   

 
 (20)   

 
and this should tend to increase with i if the A predictions are better than the B 
predictions. Conversely, superiority of B over A will be indicated if this product shows a 
decreasing trend. Namely, given that no a priori preference is given to two models, A 
and B, then indicates the likelihood that model A will provide more accurate 
predictions than model B, or vice versa. 
 
The purpose of the u plot is to determine whether the predictions, , are on average 
close to the true distributions, . It can be shown that, if the random variable Tj truly 
had the distribution —in other words, if the prediction and the truth were 
identical—then the random variable would be uniformly distributed on (0,1). 
This is called the probability integral transform in statistics. If we were to observe the 
realization tj of Tj, and calculated, , the number uj will be a realization of a 
uniform random variable. When we do this for a sequence of predictions, we get a 



sequence {uj}, which should look like a random sample from a uniform distribution. 
Any departure from such uniformity will indicate some kind of deviation between the 
sequence of prediction, , and the truth {Fj(t)}. 
 
One way of looking for departure from uniformity is by plotting the sample distribution 
function of the { mj} sequence. This is a step function constructed as follows. For a 
sequence of predictions on the interval (0,1), place the points us , us + 

1 ,   ¼  , ui (each of these is a number between 0 and 1); then from left to right plot an 
increasing step function. With each step of height 1/(i – s + 2) at each m on the abscissa, 
as shown in Figure 5. The range of the resulting monotonically increasing function is 
(0,1). And we call it the u plot. A common way of testing whether the departure is 
significant is via the Kolmogorov–Smirnov distance, which is the maximum vertical 
deviation between the plot and the line of unit slope.  

 

 

Figure 5. How to draw the u plot for predictions of Ts ,   ¼  , Ti. Here, {u(s) , u(s + 

1) ,   ¼  , u(i)} are the original set of values {us , us + 1 ,   ¼  , ui} reordered in 
ascending order of magnitude. [Full View] 

 
 
Note that the number uj is the estimate we would have made, before the event, of the 
probability that the next failure will occur before tj, the time when it actually does 
eventually occur. In the case of consistently over optimistic predictions, this number 
would therefore tend to be smaller than it would be if the predictions were accurate. 
That means that the uj values will tend to bunch too far to the left in the (0,1) interval, 
and the resulting u plot will tend to be above the line of unit slope. A similar argument 
shows that, if a u plot is entirely below the line of unit slope, it indicates that the 
predictions are too pessimistic. 
 
Remember that the uj sequence should look like a sequence of independent, identically 
distributed uniform random variables on (0,1). Since the range, (0,1), remains constant, 
any trend will be difficult to detect in the uj sequence, which will look very regular. If, 
however, we make the transformation xj =  – ln(1 –mj), we produce a sequence of 
numbers that should look like realizations of independent, identically distributed unit 
exponential random variables. That is, the sequence should look like the realization of 
the successive interevent times of a homogeneous Poisson process; any trend in the ui 
values will show itself as a nonconstant rate for this process. There are many tests for 
trend in a Poisson process. We begin by normalizing the whole transformed sequence 
onto (0,1). That is, for a sequence of predictions from stage s through stage i, we define  
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A step function with steps of size 1/(i – s + 1) at the points ys , ys + 1 ,   ¼ yi – 1 is drawn 
from the left on the interval (0,1), exactly as in the case of the u plot. We refer this 
sequence as a y plot. The y plot that can be used to detect whether there is trend in model 
bias represented by the u plot. 
 
In summary, PLR will only tell us about relative performance among competing models, 
but it will do this in the most general way possible, with the underlying theory (Dawid, 
1984), providing an assurance that all deficiencies have been taken into account. The u 
plot and y plot, on the other hand, give us some absolute information, but only about 
certain specific ways in which predictions can differ from the truth. 
 
4.  Emerging Techniques 

4.1. Recalibration Approach  
One promising development for improving model predictions is adaptive prediction 
(Abdel-Ghaly et al., 1986). Adaptive prediction is a statistical procedure that allows a 
model to “learn” from its past mistakes and produce improved predictions by removing 
prediction bias experienced with models. One way of expressing the notion of 
prediction biasmore formally is to say that at stage i there is some function G, which 
relates the predicted to the true distribution of the time-to-next-failure random variable 

. Such a function, if we knew it, would tell us everything there is to 
know about the bias in the predictions being made at a particular stage. In particular, if 
we knew G, we could recover the true distribution, Fi(t), from the inaccurate prediction, 

. If there is only a single G function for the whole sequence of predictions, we 
might try to estimate it and thus provide a means of recalibrating future inaccurate 
predictions to produce better ones. When this occurs, we have the opportunity of 
estimating this bias function from the earlier predictions we have made by comparing 
these with the observed outcomes. In fact, it can be shown that the u plot based on these 
earlier predictions is a suitable estimator of G. 
 
Recalibration techniques for assessing the quality of adapted predictions relative to the 
raw predictions were thus developed (Brocklehurst et al., 1990). The steps of the 
recalibration procedure are as follows:  
1. Obtain the u plot, say, based on the raw predictions, , that have 

been made before stage i. This can be thought of as an estimate of the function G that 
is assumed to represent the (approximately) constant relationship between prediction 
and truth. 

2. Obtain , the raw prediction at stage i. 
3. Calculate the recalibrated prediction, . 
4. Repeat this at each stage i. In this way a sequence of recalibrated predictions will 



result. 
 
 
The most important point to note about this procedure is that it is truly predictive, 
inasmuch as only the past is used to predict the future. The recalibration techniques have 
shown great improvement in the software reliability modeling results. 

4.2. Linear Combination Models  
Lyu and Nikora (1991, 1992) observed that linear combinations of model results, even 
in its simplest format, appear to provide more accurate predictions than the individual 
models themselves. They proposed the following strategy in forming combination 
models:  
1. Identify a basic set of models (the component models). If the testing environment for 

the development effort can be characterized, select models whose assumptions are 
closest to the actual testing practices. 

2. Select models whose predictive biases tend to cancel each other. We have seen that 
models can have optimistic or pessimistic biases. 

3. Separately apply each component model to the data. 
4. Apply certain selected criteria to weight the selected component models (e.g., changes 

in the prequential likelihood) and form the combination model for the final 
predictions. Weights can be either static or dynamically determined. 

In general, this approach is expressed as a mixed distribution  
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where n represents the number of models and is the predictive probability density 
function of the jth component model, given that i – 1 observations of failure data have 
been made. Note that  
   

 
 
 
 
The linear combination model tends to preserve the features inherited from its 
component models. Also, because each component model performs reliability 
calculations independently, the combination model remains fairly simple. The 
component models are plugged into the combination model only at the last stage for 
final predictions. 

4.3. Phase-Based Model for Early Prediction  
Gaffney and Davis (1988a, 1988b) developed the phase-based model. It makes use of 
error statistics obtained during the technical review of requirements, design, and the 



implementation to predict the reliability during test and operation. 
 
The assumptions for this model are  
1. The development effort's current staffing level is directly related to the number of 

faults discovered during the development phase, which is assumed to follow a 
Rayleigh curve. 

2. The fault discovery curve is monomodal. 
3. Code size estimates are available during the early phases of a development effort. The 

model expects that fault densities will be expressed in terms of the number of faults 
per thousand lines of source code (KSLOC), which means that faults found during the 
requirements analysis and software design will have to be normalized by the code size 
estimates. 

 
 
Their model is then expressed as  
   

 
where E = total lifetime fault rate expressed in faults per thousand source lines of code 
(KSLOC) 
 
t=fault discover index with (t=1—requirements analysis; t =2—software design; 
 
t=3—implementation; t=4—unit test, t=5—software integration; 
 
t=6—system test, t =7—acceptance test; note that t is not treated in the traditional sense 
of time) 
 

, where tp is the fault discovery phase constant, the peak of a continuous curve fit 
to the failure data (the point at which 39% of the faults have been discovered). The 
cumulative form of the model is Vt = E[1 – exp( – Bt2)], where Vt is the number of faults 
per KSLOC that have been discovered through phase t. As data become available, B and 
E can be estimated. This quantity can also be used to estimate the number of remaining 
faults at stage t by multiplying Eexp( – Bt2) by the number of source line statements at 
that point. 

4.4. Rome Laboratories Work  
One of the earliest and most well known efforts to predict software reliability in the 
earlier phases of the lifecycle was the work initiated by the RADC (1987). For their 
model, they developed predictions of fault density, which could then be transformed 
into other reliability measures such as failure rates. To do this, the researchers selected a 



number of factors that they felt could be related to error density at the earlier phases. 
Included in the list were  
A—  application type (e.g., real-time control systems, scientific, information 

management) 
D—  development environment (characterized by development methodology and 

available tools) 
The types of development environments considered are organic, semidetached, and 
embedded modes. 
 
Additional codes are as follows:  

 Requirements and design representation metrics 
SA—  anomaly management 
ST—  traceability 
SQ—  incorporation of Quality Review results into the software  

 Software implementation metrics 
SL—  language type (e.g., assembly, high order.) 
SS—  program size 

SM—  modularity 
SU—  extent of reuse 
SX—  complexity 
SR—  incorporation of standards review results into the software  

The initial fault density prediction is then  
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Once the initial fault density has been found, a prediction of the initial failure rate is 
made as follows:  
   

 
 (25)  

 
 
 
The number of inherent faults  = W0 = (d0 * number of lines of source code); F is the 
linear execution frequency of the program, and K is the fault expose ratio, (1.4 × 10 – 7 ≤ 
K ≤ 10.6 × 10 – 7). By letting F = R/I, where R is the average instruction rate, i is the 
number of object instructions in the program and then further rewriting I as Is * 
QX   where   Is is the number of source instructions and QX is the code expansion ratio 
[the ratio of machine instructions to source instructions (RADC indicates an average 
value of 4)], the initial failure rate can be expressed as  
   



 
 (26)   

 
 

4.5. Other Approaches  
The reliability theory established in this article is considered as a black-box approach; i.e., 
only the failure data from the software systems under measurement are included in the 
modeling process, while the system structures are ignored. As component-based software 
development (Kozaczynski and Booch, 1998) became popular more recently, white-box 
approaches to software reliability have gained considerable attention. Smidts and Sova 
(1999) considered an architecture-oriented modeling approach for software reliability 
estimation based on decomposition of requirements into software functions and attributes. 
Kuball and co-workers (1999) introduced a hierarchical model to estimate the probability 
of failure on demand of a component-based software system, under a Bayesian 
framework. Lyu and co-workers (2002) formulated a testing resource allocation 
requirement for component-based software development as a combinatorial optimization 
problem with known cost, reliability, effort, and other attributes of the components. 
 
Generally speaking, the white-box approach to software reliability extends the black-box 
approach by including structural parameters into the reliability engineering process. 
Parameterization of software reliability models can also be based on alternate sources of 
information such as the metrics explored in the early prediction models. Other metrics 
include test coverage and system workload. Piwowarski and co-workers (1993) proposed 
a simple coverage-based reliability growth model. Malaiya and co-workers (1994) 
presented a logarithmic model that relates testing effort to test coverage, which can be 
directly linked to defect coverage and growth of reliability. Chen and co-workers (2001) 
included testing coverage into time-basis adjustment for more accurate software 
reliability measurement from the growth modeling. Gokhale and Trivedi (1999) worked 
out a software reliability modeling approach to include system structure as well as 
workload considerations. 
 
Another class of approaches is to model various quality metrics (the dependent variables) 
on the basis of their relationships with other independent variables (size, number of data 
items, complexity, operators, operands, etc.) to establish reliability and quality 
predictions. Agresti and Evanco (1992) attempted to develop a model for predicting 
defect density the basis of based on product and process characteristics for Ada 
development efforts. They employed a multivariate linear regression model based on a 
log–log relationship. The modeling relationship, on the other hand, was assumed as linear 
models in Munson and Khoshgoftaar (1990), and Khoshgoftaar and co-workers (1992a), 
where various estimation techniques were evaluated for the creation of those linear 
models using regression techniques. Khoshgoftaar and Munson (1990) specifically 
considered an approach that used only complexity metrics to help predict indicators of 
quality. Gokhale and Lyu (1997) applied a regression tree analysis technique to establish 
the modeling relation between the dependent (predicted) variables and the independent 
(known) variables. Schneidewind (2000) developed the Boolean discriminant function 



and relative critical value deviation to discriminate between fault-prone and non-fault-
prone modules for software quality control and maintenance purposes. Neural network 
models were also proposed to classify quality attributes such as reliability or code that 
appears to have problems. Khoshgoftaar and co-workers (1992b; 1993) and Karunanithi 
and co-workers (1991) investigated the problem by a supervised learning model, while 
Guo and Lyu (2000) approached the problem by an unsupervised learning model. 
 
Simulation techniques for software reliability predication also attracted research 
investigations. Von Mayrhauser and co-workers (1993) performed experiments to 
investigate the nature of relationships between software failures and program structures, 
and established artifact-based simulation techniques for reliability prediction purpose. 
Tausworthe and Lyu (1996) demonstrated most of the traditional software reliability can 
be easily simulated by simple Monte Carlo method, and they established a rate-based 
simulation technique to simulate a complete software development life cycle, including 
the life cycle of faults and failures. Gokhale and co-workers (1998) further extended this 
simulation technique to analyze reliability of component-based systems under various 
software architectures and configurations. 
 
In the area of time series modeling, we refer the reader to a paper by Singpurwalla and 
Soyer (1985) as a starting point, where the time between failures was formulated as an 
autoregressive process with random coefficients to reflect uncertainty in the specification 
of the power law as the autoregressive model. 
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