
Software Reliability Theory

Michael Rung-Tsong Lyu, The Chinese University of Hong Kong

Encyclopedia of Software Engineering
Copyright © 2002 by John Wiley & Sons, Inc. All rights reserved.
DOI: 10.1002/0471028959.sof329
Article Online Posting Date: January 15, 2002

Keywords: history; theory; random point process; exponential order statistics;
modelingm markov software reliability models; comparisons; emerging techniques

Abstract

Software reliability modeling has, surprisingly to many, been around since the early
1970s with the pioneering works of Jelinski and Moranda, Shooman, and Coutinho. The
theory behind software reliability is presented, and some of the major models that have
appeared in the literature from both historical and applications perspectives are described.
Emerging techniques for software reliability research field are also included. The
following four key components in software reliability theory and modeling: historical
background, theory, modeling, and emerging techniques are addressed. These items are
discussed in a general way, rather than attempting to discuss a long list of details.

Software reliability modeling has, surprisingly to many, been around since the early
1970s with the pioneering works of Jelinski and Moranda (1972), Shooman (1972, 1973,
1976, 1977), and Coutinho (1973). We present the theory behind software reliability, and
describe some of the major models that have appeared in the literature from both
historical and applications perspectives. Emerging techniques for software reliability
research field are also included. We address the following four key components in
software reliability theory and modeling: historical background, theory, modeling, and
emerging techniques. We describe these items in a general way, rather than attempting to
discuss a long list of details. For a comprehensive treatment of this subject, see Lyu
(1996).

1. Historical Background

1.1. Basic Definitions
Software reliability is centered on a very important software attribute: reliability.
Software reliability is defined as the probability of failure-free software operation for a
specified period of time in a specified environment (ANSI, 1991). We notice the three

major ingredients in the definition of software reliability: failure, time, and operational
environment. We now define these terms and other related software reliability
terminology.

1.1.1. Failures
A failure occurs when the user perceives that a software program ceases to deliver the
expected service.

The user may choose to identify several severity levels of failures, such as catastrophic,
major, and minor, depending on their impacts to the system service and the
consequences that the loss of a particular service can cause, such as dollar cost, human
life, and property damage. The definitions of these severity levels vary from system to
system.

1.1.2. Faults
A fault is uncovered when either a failure of the program occurs, or an internal error
(e.g., an incorrect state) is detected within the program. The cause of the failure or the
internal error is said to be a fault. It is also referred as a “bug.”

In most cases the fault can be identified and removed; in other cases it remains a
hypothesis that cannot be adequately verified (e.g., timing faults in distributed systems).

In summary, a software failure is an incorrect result with to the specification or
unexpected software behavior perceived by the user at the boundary of the software
system, while a software fault is the identified or hypothesized cause of the software
failure.

1.1.3. Defects
When the distinction between fault and failure is not critical, “defect” can be used as a
generic term to refer to either a fault (cause) or a failure (effect). Chillarege and co-
workers (1992) provided a complete and practical classification of software defects
from various perspectives.

1.1.4. Errors
The term “error” has two different meanings:
1. A discrepancy between a computed, observed, or measured value or condition and the

true, specified, or theoretically correct value or condition. Errors occur when some
part of the computer software produces an undesired state. Examples include
exceptional conditions raised by the activation of existing software faults, and
incorrect computer status due to an unexpected external interference. This term is
especially useful in fault-tolerant computing to describe an intermediate stage in
between faults and failures.

2. A human action that results in software containing a fault. Examples include omission
or misinterpretation of user requirements in a software specification, and incorrect
translation or omission of a requirement in the design specification. However, this is
not a preferred usage, and the term “mistake” is used instead to avoid the confusion.

1.1.5. Time
Reliability quantities are defined with respect to time, although it is possible to define
them with respect to other bases such as program runs of number of transactions. We
discuss the notation of time in the next session.

1.1.6. Failure Functions
When a time basis is determined, failures can be expressed in several ways: the
cumulative failure function, the failure intensity function, the failure rate function, and
the mean-time-to-failure function. The cumulative failure function (also called the
mean-value function) denotes the expected cumulative failures associated with each
point of time. The failure intensity function represents the rate of change of the
cumulative failure function. The failure rate function (or called the rate of occurrence of
failures) is defined as the probability that a failure per unit time occurs in the interval [t ,
t + Dt], given that a failure has not occurred before t. The mean time to failure (MTTF)
function represents the expected time that the next failure will be observed. (MTTF is
also known as MTBF, mean time between failures.)

1.1.7. Mean Time to Repair and Availability
Another quantity related to time is mean time to repair (MTTR), which represents the
expected time until a system will be repaired after a failure is observed. When the
MTTF and MTTR for a system are measured, its availability can be obtained.
Availability is the probability that a system is available when needed. Typically, it is
measured by

1.1.8. Operational Profile
The operational profile of a system is defined as the set of operations that the software
can execute along with the probability with which they will occur. An operation is a
group of runs that typically involve similar processing.

SOFTWARE RELIABILITY ENGINEERING in this encyclopedia provides a detailed
description on the structure, development, illustration, and project application of the
operational profile. In general, the number of possible software operations is quite large.
When it is not practical to determine all the operations and their probabilities in
complete detail, operations based on grouping or partitioning of input states (or system
states) into domains are determined.

1.2. The Advantages of Using Execution Time
Three kinds of time are relevant to software reliability: execution time, calendar time,
and clock time. The execution time for a software system is the CPU time that is
actually spent by the computer in executing the software, the calendar time is the time

people normally experience in terms of years, months, weeks, days, etc.; and the clock
time is the elapsed time from start to end of computer execution in running the software.
In measuring clock time, the periods during which the computer is shut down are not
counted. If computer utilization, the fraction of time the processor is executing a
program, is constant, clock time will be proportional to execution time.

In 1972 Shooman published a study where the behavior of a key parameter in his model
was related to how the project personnel profile varied over time. Several different
mathematical forms were proposed for the project personnel profile, and the choice of
the best one depended on the particular project. Similarly, Schneidewind (1972)
approached software reliability modeling from an empirical viewpoint. He
recommended the investigation of different reliability functions and selection of the one
that best fit the particular project in question. He found that the best distribution varied
from project to project.

Up to 1975, the time domain used in software reliability modeling was exclusively
calendar time. The lack of modeling universality resulting from using calendar time
caused Musa (1975) to question the suitability of this time domain. He postulated that
execution time was the best practical measure for characterizing failure-inducing stress
being placed on a software program. Calendar time, used by Shooman and
Schneidewind, did not account for varying usage of a program in a straightforward way.
It turned out that the removal of this confounding factor greatly simplified modeling and
yielded better model prediction results.

There is substantial evidence showing the superiority of execution time over calendar
time for software reliability growth models (Trachtenberg, 1985; Musa and Okumoto,
1984a; Hecht, 1981). Nevertheless, many published models continue to use calendar
time or do not explicitly specify the type of time being used. Some models, originally
developed as calendar-time models or without regard to the type of time, are now being
interpreted as execution-time models. If execution time is not readily available,
approximations such as clock time, weighted clock time, staff working time, or units
that are natural to the application, such as transactions or test cases executed, may be
used. Musa et al., 1987 developed a modeling component that converts modeling results
between execution time and calendar time. Huang et al., (2001) proposed the
incorporation of testing effort into the modeling process, which can be measured by the
human power, the number of test cases, or the execution-time information.

1.3. Two Data Types in Time-Domain Modeling
Software reliability models generally fall into two categories depending on the domain
they operate in. By far the largest and most popular category of models is based on time.
Their central feature is that reliability measures, such as failure intensity, are derived as
a function of time. The second category of software reliability models provides a
contrasting approach by using operational inputs as their central feature. These models
measure reliability as the ratio of successful runs to total number of runs. However, this
approach has some problems, including the fact that many systems have runs of widely
varying lengths (so that the proportion may give inaccurate estimates) and that the
resulting measures are incompatible with the time-based measures used for hardware.

Because of this and the amount of research currently being devoted to time-based
models, the second model category will not be considered further here. (See Software
Reliability Engineering.)

The time-domain modeling approach employs either the observed number of failures
discovered per time period or the observed time between failures of the software. The
models therefore fall into two basic classes depending on the type of data the model
uses: (1) failures per time period or (2) time between failures.

These classes are, however, not mutually disjoint. There are models that can handle
either data type. In fact many of the models for one data type can still be applied even if
the user has data of the other type. For instance, if the user has only time between
failures data and wants to apply a particular model that uses only failures-per time
period, the user needs only to set a specified time length (e.g., a week) and then
superimpose the failure history over these time intervals and observe how many fell
within each interval. Conversely, if one had only failures-per-time period data, one
could randomly assign the fault occurrences within each period and then observe the
time-between-failures data created when the periods are linked. Either of these
procedures from “transforming” from one data type into another requires that the user
test the applied model to determine the adequacy of the resulting fit.

These classes can themselves be considered part of the larger “time domain” approach
to software reliability modeling in contrast to the “error seeding and tagging” approach
and the “data domain” approach. Space limitations do not allow us to address these
other important approaches as well as time-series models in this chapter. The reader is
referred to Farr (1983) and Xie (1991), among others, where these alternative
approaches are described.

For the failures-per-time-period data, the unit of time could represent a day, week, etc.,
over which the software is being tested or observed. For the class based upon time
between failures, we have recorded either the elapsed calendar time or execution time
between each software failure. Typical failures-per-time period data are shown in Table
1, and typical time-between-failures data are shown in Table 2.

Table 1. Failures-per-Time-Period Data

Time (hours) Failures per Time Period Cummulative Failures

 8 4 4
16 4 8
24 3 11

32 5 16
40 3 19
48 2 21
56 1 22
64 1 23
72 1 24

Table 2. Time-between-Failures Data

Failure Number Failure Interval (hours) Failure Times (hours)

 1 0.5 0.5
 2 1.2 1.7
 3 2.8 4.5
 4 2.7 7.2
 5 2.8 10.0
 6 3.0 13.0
 7 1.8 14.8
 8 0.9 15.7
 9 1.4 17.1
10 3.5 20.6
11 3.4 24.0
12 1.2 25.2
13 0.9 26.1
14 1.7 27.8
15 1.4 29.2
16 2.7 31.9
17 3.2 35.1
18 2.5 37.6
19 2.0 39.6
20 4.5 44.1
21 3.5 47.6
22 5.2 52.8

23 7.2 60.0
24 10.7 70.7

1.4. Software Reliability Modeling and Measurement
Software reliability measurement includes two types of activity, reliability estimation
and reliability prediction:

 Estimation. This activity determines current software reliability by applying statistical
inference techniques to failure data obtained during system test or during system
operation. This is a measure regarding the achieved reliability from the past until the
current point. Its main purpose is to assess the current reliability, and determine whether
a reliability model is a good fit in retrospect.
 Prediction. This activity determines future software reliability based on available
software metrics and measures. Depending on the software development stage,
prediction involves different techniques:

 When failure data are available (e.g., software is in system test or operation stage),
the estimation techniques can be used to parameterize and verify software reliability
models, which can perform future reliability prediction.

 When failure data are not available (e.g., software is in the design or coding stage),
the metrics obtained from the software development process and the characteristics of
the resulting product can be used to determine reliability of the software upon testing
or delivery.

The first definition is also referred to as “reliability prediction” and the second
definition, as “early prediction.” When there is no ambiguity in the text, only the word
“prediction” will be used.

Most current software reliability models fall in the estimation category to do reliability
prediction. A software reliability model specifies the general form of the dependence of
the failure process on the principal factors that affect it: fault introduction, fault removal,
and the operational environment. Figure 1 shows the basic ideas of software reliability
modeling.

Figure 1. Basic ideas on software reliability modeling. [Full View]

If the reliability improves over time, as faults are discovered and corrected, one would
expect that the number of failures detected per unit of time would be decreasing and the

time between failures would be increasing. It is this behavior that the software reliability
models attempt to capture. In Figure 1, the failure rate of a software system is generally
decreasing due to the discovery and removal of software faults. At any particular time
(say, the point marked “present time”), it is possible to observe a history of the failure
rate of the software. Software reliability modeling forecasts the curve of the failure rate
by statistical evidences. The purpose of this measure is twofold: (1) to predict the extra
time needed to test the software to achieve a specified objective and (2) to predict the
expected reliability of the software when the testing is finished. If an adequate fit to the
past data is achieved and the testing or operation of the software doesn't radically
change in the future, the fitted reliability curves can be used to make various reliability
predictions.

1.5. Relationship between Hardware and Software Reliability
Hardware reliability is a generally understood and accepted concept with a long history.
Early during the much shorter history of software reliability it became apparent to
researchers that a division (often perceived to be large) exists between hardware
reliability and software reliability. Software reliability is similar to hardware reliability in
that both are stochastic processes and can be described by probability distributions.
However, software reliability is different from hardware reliability in the sense that
software does not wear out, burn out, or deteriorate; i.e., its reliability does not decrease
with time. Moreover, software generally enjoys reliability growth during testing and
operation since software faults can be detected and removed when software failures occur.
On the other hand, software may experience reliability decrease because of abrupt
changes of its operational usage or incorrect modifications to the software. Software is
also continuously modified throughout its life cycle. The malleability of software makes
it inevitable for us to consider variable failure rates.

At first these differences raised the question of whether reliability theory can be applied
to software at all. It was discovered that the distinction between hardware and software is
somewhat artificial. Both may be defined in the same way, so that hardware and software
component reliabilities can be combined to get system reliability. Traditionally, hardware
reliability focused on physical phenomena because failures resulting from these factors
are much more likely to occur than design-related failures. It was possible to keep
hardware design failures low because hardware was generally less complex logically than
software. Besides, hardware design failures had to be kept low because of the large
expense involved in retrofitting of manufactured items in the field. However, when
hardware tests show that reliability is not within specified design limits because of
problems or faults in the original design, a sequence of engineering changes may be
necessary to improve reliability. Thus hardware reliability can and has been modeled like
software reliability when the failures are the result of design faults, such as the highly
visible Pentium floating-point division fault that resulted in massive callbacks in 1994
(Wolfe, 1994).

Perhaps the first hardware reliability model that can also be used as a model of reliability
for software was developed in 1956 by Northrop Aircraft (Weiss, 1956). This model
considers complex systems where engineering changes are made to improve system
reliability. It was used to determine the level of system reliability, how rapidly reliability

was improving, and the expected reliability at the end of the projected development
program. Two other early hardware reliability models along similar lines consider the
problem of estimating reliability of a system undergoing development testing and
changes to correct design deficiencies (Corcoran, et al., 1964; Barlow and Scheuer, 1966).

It is now also generally accepted that the software failure process is random. This
randomness is introduced in many ways. The location of design faults within the software
is random because the overall system design is extremely complex. The programmers
who introduce the design faults are human, and human failure behavior is so complex
that it can best be modeled using a random process. Also, the occurrence of failures is
dependent on the operational profile, which is defined by input states. It is usually not
known which input state will occur next, and sometimes an input state may occur
unexpectedly. These events make it impossible to predict where a fault is located or when
it will be evoked to cause a failure in a large software system.

In an attempt to unify hardware and software for an overall system reliability, software
reliability theory has generally been developed in a way that is compatible with hardware
reliability theory, so that system reliability figures may be computed using standard
hardware combinatorial techniques (Shooman, 1990; Lloyd and Lipow, 1984). However,
unlike hardware faults that are mostly physical faults, software faults are design faults
that are harder to visualize, classify, detect, and correct. As a result, software reliability is
a much more difficult measure to obtain and analyze than hardware reliability. Usually
hardware reliability theory relies on the analysis of stationary processes, because only
physical faults are considered. However, with the increase of systems complexity and the
introduction of design faults in software, reliability theory based on stationary process
becomes unsuitable to address nonstationary phenomena such as reliability growth or
reliability decrease experienced in software. This makes software reliability a challenging
problem that requires an employment of several methods to attack. We now describe the
theory behind software reliability.

2. Theory

2.1. Reliability Theory
Since the development of software reliability models was based on concepts adapted
from hardware reliability theory, we need to define some reliability functions and
concepts that show the relationships among these different functions.

Because the failure time of a software system is a random variable, which we'll denote
as T, this variable has an associated probability density function, fT(t), and cumulative
distribution function, FT(t), where

 (1)

The reliability function, RT(t), which is the probability the software has not failed by
time t, is then calculated as

 (2)

A third function that is important in reliability modeling is the hazard rate function, ZT(t).
It is the conditional probability that the software will fail in an interval (t , t + Dt), given
that it has not failed before time t. If T is the time at which the failure occurs, then

Dividing both sides by Dt, expressing the probability in its conditional form, and letting
Dt approach zero, we have

 (3)

 (4)

From Equation (3) we see that the hazard rate function is simply the conditional
probability density function for the failure of the system given no failures have occurred
up to time t. From Equation (4) and the fact that RT(t) = 1 – FT(t), we have the following:

or

or

thus

 (5)

The reliability function, in turn, can be related to the mean time to failure, (MTTF), of
the software;

 (6)

All of these relationships hold for the corresponding conditional functions as well. One
simply replaces the hazard, reliability, cumulative distribution, or probability density
function for a “single” fault, T, by the associated conditional functions. For example,
suppose the system has failed at time ti, then the conditional hazard rate function is
denoted as ZT(t|ti), where t ≥ ti and

The last important functions that we will consider are the failure intensity function and
the mean value function for the cumulative number of failures. We'll denote the failure
intensity function as l(t). This is the instantaneous rate of change of the expected
number of failures with respect to time. Suppose we let M(t) be the random process
denoting the cumulative number of failures by time t and we denote m(t) as its mean
value function:

 (7)

The failure intensity function is then obtained from m(t) as its derivative:

 (8)

In order to have reliability growth, we should have (d l(t)/dt) < 0 for all t ≥ t0 for some t0.
The failure rate function may also exhibit a zigzag type behavior but it must still be
decreasing to achieve reliability growth.

2.2. Random Point Processes
The reliability of software is influenced or determined mainly by three factors: fault
introduction, fault removal, and the operational profile. Fault introduction depends

primarily on the characteristics of the developed code (code written or modified for the
program) and the development process. The code characteristic with the greatest effect
is size. Development process characteristics include the software engineering
technologies and tools employed and the average level of experience of programmers.
Note that code is developed when adding features or removing faults. Fault removal is
affected by time, the operational profile, and the quality of the repair activity. Since
most of these factors are probabilistic in nature and operate over time, the behavior of
software failures with execution time is usually modeled using some kind of random
point process. The upper portion of Figure 2 shows an example of such a process where
each failure epoch is represented by an X. A counting process giving the number of
failures experienced by execution time t is associated with every point process. Figure 2
also shows a typical counting process, denoted by M(t), having a unit jump at each
failure epoch.

If we let M(t) be the random number of failures that are experienced by time t with
mean value function m(t), i.e., m(t) We remark that the failure counting process being
considered here is strictly nondecreasing. Furthermore, if limt → ∞ m(t) < ∞ i.e., is
finite, we have a finite failure model category; otherwise we have a model of the infinite
failures category.

We will now relate some important properties of the Poisson and binomial processes.
These processes play a key role in the unification and classification of many published
models, and there are some central theoretical results that come into consideration. We
will make use of these properties for specific classes of models in subsequent sections.

Figure 2. A random point process and its associated counting process. [Full
View]

First for the Poisson type models, we consider that we have a Poisson process over time.
By this we mean that if let t0 = 0 , t1 , ¼ , ti – 1 , ti , ¼ , tn = t be a partition of our time
interval 0 to t and let m(t) be as defined as above, then we have a Poisson process if
each the number of failures detected in the ith interval, ti – 1 to ti), are
independent Poisson random variables with means, . We make
the following assumptions:
1. The probability of failure (failure intensity) depends on time t and the number of past

failures M(t).
2. Failures do not occur simultaneously.
3. Failures do not occur at preassigned times.
4. There is no finite interval in [t , ∞] where failures occur with certainty.

5. There is no failure in the beginning of the process.
Then for each of the random variables t ′ i values , i = 1 , ¼ , n, the probability mass
function is:

[Note: If m(t) is a linear function of time, i.e., m(t) = at for some constant, a > 0, we say
that the Poisson process, M(t), is a homogeneous Poisson process (HPP). If, however, it
is nonlinear, we refer to the process as being a nonhomogeneous Poisson process
(NHPP).]

If we have a Poisson process model, we can show a relationship between the failure
intensity function and the reliability function (hence the hazard rate and the probability
density function using the relationships established in the previous section). Suppose
that we denote R(t + Dt|t) as the conditional reliability function that the software will
still operate after t + D given that it has not failed after time t. Then

The relationship between the failure intensity function and the hazard rate for a Poisson
process can also be derived. It can be shown that

 (9)

where ti – 1 is the time of the (i – 1)st failure and Dt is any point such that ti – 1ti + Dt < ti.
This shows that the conditional hazard rate and the failure intensity function are the
same if the failure intensity function is evaluated at the current time ti – 1 + Dt.

Another relationship that one can establish for the Poisson type of models is that

 (10)

where a is some constant and Fa(t) is the cumulative distribution function of the time to
failure of an individual failure a. From this, if we consider also distributions that belong
to the finite failure category, i.e., lim t → ∞ m(t) < ∞ we have that lim t → ∞ m(t) = a
since lim t → ∞Fa(t) = 1. Thus a represents the eventual number of failures detected in
the system if it could have been observed over an infinite amount of time. Using
Equation (10) and the relationship between the mean value function and the failure
intensity function, we have also for the Poisson type of model

 (11)

where fa(t) is the probability density function of the time to failure of the individual
failure a.

For the binomial type of model, we have the following assumptions:
1. There is a fixed number of faults (N) in the software at the beginning of the time in

which the software is observed.
2. When a fault is detected, it is removed immediately.
3. If Ta is the random variable denoting the time to failure of fault a, then the Ta values,

a = 1 , ¼ , n, are independently and identically distributed random variables as Fa(t)
for all remaining faults.

The cumulative distribution function, Fa(t), density function, fa(t), and hazard rate
function, Za(t), are the same for all faults for this class. Moreover, we notice for this
class that a failure and a fault are synonymous and no new faults are introduced into the
software in the fault detection/correction process. We can show for this class, the failure
intensity function is obtained from the probability density function for a single fault as

 (12)

The mean value function is, in turn, related to the cumulative distribution function, Fa(t),
as

 (13)

Notice the similarity between equations (12) and (13) and (10) and (11) for the Poisson
type. For the binomial we have a fixed number of faults (one-to-one correspondence to
failures) at start, N, while for the Poisson type, a, is the eventual number of failures that
could be discovered over an infinite amount of time.

Kremer (1983) unified many software reliability models using a nonhomogeneous
birth–death Markov process. He showed that many of the Poisson-type and binomial-

type models discussed extensively in the literature are special cases of a Markov birth
process with specific forms for l(t) and m(t).

It is well worth discussing the preceding conditions for a Markov process here because
this will help determine the plausibility of the entire modeling approach. Some of the
affects of altering the first condition were already investigated when the origin of the
Poisson-type models and binomial-type models was clarified. If this condition is relaxed
so that the failure intensity may depend on t, M(t), and the occurrence times for all
failures before t, a self-exciting random point process is obtained. In this type of process,
since M(t) is a random variable, the failure intensity itself is a random process. Other
types of point process can be obtained if an “outside” process affects the failure
intensity. These processes are beyond the scope of this discussion. A general self-
exciting point process can be conceived of as a modified nonhomogeneous Poisson
process in which the future evolution of failures not only is a function of time but also
can be influenced by all past occurrences of failures. Of course, when the evolution
depends only on time and the total number of past failures, a Markov birth process
results.

Note that the assumptions made for a Poisson process in modeling software failures are
generally well accepted by researchers in the field, but they can also be easily relaxed,
especially for a nonhomogeneous Poisson process. For example, the condition requiring
that the process start out with no failures can be easily changed to one that assumes that
the process starts out with a known or random number of failures simply by treating this
as a separate term in the model formulations. As another example, the condition that no
failures occur simultaneously can be relaxed, leading to what is called a compound
Poisson process (Sahinoglu, 1992). Many other powerful and useful generalizations are
possible and can be found in Snyder (1975).

Reliability estimates for nonhomogeneous Poisson process models come directly from
Equation (3) and by noting that the event M(T) > i is equivalent to the event Tint, where
T is a random variable for the ith failure time. In addition, unknown model parameters
are usually determined using the maximum likelihood principle, least squares, or
Bayesian techniques. Again, specific derivations are omitted; however, Table 3 provides
a summary of some important relationships for these models (Musa, et al., 1987). These
can be used for a particular model, that is, for a particular mean value function.

Table 3. Some Derived Relationships for a General Poisson Process

Quality Formulaa

Failures
experienced

 Expected Value = m(t)

 Variance = m(t)

Failure time

Reliability

Conditional
failure time
Failure
intensity
Unconditional
failure time
Maximum-
likelihood
equations

a Where

2.3. Exponential Order Statistics
The exponential order statistics approach to modeling software reliability, studied by
Downs (1985; 1986), Miller (1986), and Ross (1985a,1985b) is essentially equivalent to
the preceding approach except that it provides a more intuitive feeling for the actual
failure process. Figure 3 shows the modeling environment. A piece of software initially
containing an unknown number of faults is subjected to testing where input states A, B,

and C, are chosen at random according to some operational profile. Most input states
result in successful execution (correct program results). Some input states exercise a
collection of instructions containing a fault and cause a failure to occur. Still others
exercise a collection of instructions containing a fault but do not cause a failure to occur
because the data state or specific conditions are not right. For example, input state C in
Figure 3 does not encounter a fault and causes no failure, whereas input states A and B
both encounter fault a with only input state A causing a failure. Therefore, the only input
states of consequence as far as fault a causing a failure are the ones like input state A in
the example. The collection of these input states is called fault a's fail set.

Figure 3. Software reliability modeling environment. [Full View]

Two factors determine the failure-causing potential of a fault. They are the size or
number of input states in the fault's fail set and the frequency with which these states are
chosen for execution. Clearly, if the operational profile were to change, so also would
the importance or contribution of the input states in the fail set to the failure-causing
potential of the fault.

Let the failure intensity for fault a denoted by la; then the failure intensity for the
program depends on whether faults are being removed. Assume for the moment that
they are not being removed. This is typical of a program in production use. The program
failure intensity l is determined by summing the contributions of the individual faults:

 (14)

Equation (14) implicitly assumes that the failures from different faults are independent.
This assumption may raise several issues. The first issue that may come up is the matter
of input state dependencies; for example, a specific input state may always be executed
after a given input state. This can be incorporated into the model, but the increase in
accuracy, if any, is probably outweighed by the added complexity. The second issue is
that a fault may prevent access to code containing one or more faults. This issue is less
common during system testing or operational use than it is during unit testing and is
considered to be a secondary effect and is therefore ignored. Finally, another issue
concerns multiple failures resulting from an execution of a given input state. This is
usually considered to be secondary or not worth the effort to explicitly model. In most
cases, failures are independent because they are the result of two processes: the
introduction of faults and the activation of faults through the selection of input states.
Both of these processes are random, and hence the chance that one failure would affect

another is small. The independence conclusion is supported by a study of correlations on
failure data from 15 projects (Musa, 1979) that found no significant correlation.

Now suppose that faults are being repaired. The program is exercised for a period of
time t, and each time a failure occurs, the software is debugged and the fault responsible
for the failure is removed. Let Ia(t) be a function that takes on a value of 1 if fault a has
not caused a failure by t and 0 otherwise. As before, the program failure intensity at time
t, denoted by L(t) since this time it is a random variable, is determined by summing the
contributions of the individual faults still remaining in the program. Thus

 (15)

Note that In contributes to the sum only if fault a has not been removed yet. Implicit
assumptions being made here are that failures from different faults are independent and
that a fault causing an observed failure is immediately resolved. The latter assumption,
however, need not be the case. Subsequent occurrences of the same failure can be
ignored in the analysis if necessary.

An assumption concerning the failure process itself must be made. The usual
assumption is that faults cause failures to occur in accordance with independent
homogeneous Poisson processes with unknown failure intensities. A natural result of
this is that failure times for a fault are exponentially distributed. Miller (1986) defines
an exponential order statistic model based on a failure counting process and an
associated failure occurrence-time process, which is characterized by the parameter set
of failure intensities set of la , 1 ≤ a ≤ w0, with the only restrictions that la > 0 and

. Miller shows many possibilities exist for the form of la, values which can
be treated in several ways. One such way is deterministically; that is, following a known
pattern. Two examples include constant failure intensities (la = l0 for all a) and
geometric failure intensities (la = a ba , 0 < b < 1 for all a).The failure intensities can
also be treated as a finite collection of independent and identically distributed random
variables drawn from some distribution; for example, the gamma distribution. Finally,
the failure intensities can be treated as a realization of a random point process such as
the nonhomogeneous Poisson process. It is also mathematically possible to permit an
infinite value for w0 and treat finite w0 as a special subcase. Doing this, it is possible to
simultaneously deal with infinite failures and finite failures models and to unify a great
many models. Miller (1986) gives a complete discussion on the types of models
resulting from these and other patterns of failure intensities with some rather significant
results. One result is the inability to distinguish between the different types of models
for the la, values based on a single observation of the failure process. Another closely
linked idea is that the mean value function is the primary characteristic of a model and
the particular type of model is a secondary characteristic. For example, a model based
on deterministic In values and a model based on In values drawn from a probability
distribution are close to each other if their mean value functions are close. An example
of an application of this idea is in Musa and Okumoto (1984b) where the Littlewood and
Verrall (1973) model was analyzed using a nonhomogeneous Poisson process with

appropriate mean value function.

Given the preceding assumption about the failure process, the probability of fault a not
causing a failure by time t is e –l at. Therefore, the expected failure intensity for the
program, l(t), is given by

 (16)

This equation is sufficient to completely describe the overall failure process for the
program. The integral of this equation gives the mean value function m(t) or the
expected number of failures at time t:

 (17)

Equations (16) and (17) show how l(t) and m(t), respectively, depend on the failure
intensity of the individual faults.

Now we determine what Equation (17) reveals about the kinds of mean value functions
likely to be good candidates for models. Let represent the average per-fault failure
intensity of the inherent faults:

Also, let s2 be a measure of the variation in the inherent per-fault failure intensities:

Then, expanding Equation (17) in a Taylor series about l keeping t fixed yields

 (18)

where higher order terms are not explicitly shown. The significant point about Equation
(18) is the first term, which represents an exponential mean value function characteristic
of many popular and useful models (Musa, 1975; Goel and Okumoto, 1979). The

conclusion to be drawn is that the exponential mean value function is a first-order
approximation of all possible mean value functions based on a finite number of initial
faults. This explains, in part, why the exponential nonhomogeneous Poisson process
model enjoys such success in many applications (Zinnel, 1990; Ehrlich et al., 1991;
Iannino and Musa, 1991).

As can be seen, the exponential nonhomogeneous Poisson process model is exact if all
per-fault failure intensities are the same. Note that this does not imply a uniform
operational profile, as is sometimes claimed in the literature. It does imply that the joint
effect of the operational profile and of the fail set size, the fault exposure, is the same for
all faults. Thus a fault with a large fail set size and small individual operation usage
probabilities may be the same, in terms of failure intensity, as a fault with small fail set
size and large individual operation usage probabilities.

Relaxing the homogeneous Poisson process assumption underlying each fault's failure
process can further strengthen the case for the exponential mean value function. It turns
out that any per-fault failure process whose first time to failure is exponentially
distributed will lead to the same conclusions, provided subsequent occurrences of the
same failure are ignored. This is an important observation especially when dealing with
failures that tend to cluster as described in Ehrlich and co-workers (1991).

In summary, the nonhomogeneous Poisson process is emerging as the most practical and
useful choice for modeling software reliability. This is based on many empirical results.
The process is fully specified by its mean value function, and an emerging choice here,
both in theory and in practice, is the exponential mean value function. This function was
shown to play a central role in modeling and to be quite robust from departures in its
assumptions.

3. Modelling

3.1. Model Classification
A model classification scheme proposed in Musa and Okumoto (1983) allows
relationships to be established for models within the same classification groups and
shows where model development has occurred. It classified models in terms of five
different attributes:

 Time domain—calendar versus execution time.

 Category—the total number of failures that can be experienced in infinite time. This is
either finite or infinite, representing two subgroups.
 Type—The distribution of the number of the failures experienced by time t. Two
important types that we will consider are the Poisson and binomial.

 Class—(finite failure category only) functional form of the failure intensity expressed in
terms of time.
 Family—(infinite failure category only) Functional form of the failure intensity function
expressed in terms of the expected number of failures experienced.

In the “Random Point Processes” section we described the Markov processes that are
characterized by the distribution of the number of failures over time, and the two most
important distributions, the Poisson and binomial. Models based on the binomial
distribution are finite failure models, that is, they postulate that a finite number of
failures will be experienced in infinite time. Models based on the Poisson distribution
can be either finite failure or infinite failure models, depending on how they are
specified. Table 4 shows how some of the published models are classified using this
approach. The Bayesian model of Littlewood and Verrall (1973) and the geometric
deeutrophication model of Moranda (1975, 1979) are among the few published models
that are not Markovian.

Table 4. Markov Software Reliability Models

Poisson Type Binomial Type Other Types

Crow (1974) Jelinski and Moranda

(1972)
Shooman and Trivedi
(1975)

Musa (1975) Shooman (1972) Kim and co-workers
(1982)

Moranda (1975, 1979) Schick and
Wolverton (1973)

Kremer (1983)

Schneidewind (1975) Wagoner (1973) Laprie (1984)
Goel and Okumoto
(1979)

Goel (1988a) Shanthikumar and
Sumita (1986)

Brooks and Motley
(1980)

Schick and
Wolverton (1978)

Angus and co-workers
(1980)

Shanthikumar (1981)

Yamada and co-
workers (1983)

Littlewood (1981)

Yamada and Osaki
(1984)

Ohba (1984)
Yamada and co-
workers (1984)

These unifications highlight relationships among the models and suggest new models
where gaps occur in the classification scheme. Furthermore, they greatly reduce the task
of model comparison.

3.2. The Exponential Models
In the literature on software reliability, this class has the most articles written on it.
Using Musa and Okumoto's classification scheme, this group contains all finite failure
models with the functional form of the failure intensity function being exponential. The
binomial type in this class are all characterized by: a per-fault constant hazard rate, i.e.,
zT(t) = F the hazard rate function after the ith fault that has been detected is a function of
the remaining number of faults, i.e., N – (i – 1); and the failure intensity function is
exponential in form, l(t) = N fexp(–ft). The Poisson types in this class are all
characterized by a per-fault constant hazard rate, zT(t) = f, and an exponential time to
failure of an individual fault, fX(x) = N fexp(–fx). Since we have either a homogeneous
or nonhomogeneous Poisson process, the number of failures that occur over any fixed
period of time is a Poisson random variable. For the time between failures models, the
distribution is exponential.

The first software reliability model was independently developed by researchers in 1972
(Jelinski and Moranda, 1972; Shooman, 1972). In this model, the elapsed time between
failures is taken to follow an exponential distribution with a parameter that is
proportional to the number of remaining faults in the software; i.e., the mean time
between failures at time t is 1/ f(N – (i – 1)). Here t is any point in time between the
occurrence of the (i – 1)th and the ith fault occurrence. The quantity f, is the
proportionality constant and N is the total number of faults in the software from the
initial point in time at which the software is observed. Figure 4 shows the characteristic
step curve for the variation of program failure intensity with execution time for this
model. One can see as each fault is discovered the hazard rate is reduced by the
proportionality constant f. This indicates that the impact of each fault removal is the
same. In Musa and Okumoto's classification scheme, this is a binomial type model. This
model, henceforth referred to as the exponential model, makes the following basic
assumptions.
1. All faults in the program contribute the same amount to the overall failure intensity of

the program. Thus at given any time the program failure intensity is proportional to
the number of remaining faults.

2. The failure detection rate remains constant over the intervals between failure
occurrences.

3. A fault is corrected instantaneously without introducing new faults into the software.
4. The software is operated in a similar manner as that in which reliability predictions are

to be made.
5. Every fault has the same chance of being encountered and is of the same severity as

any other faults.

6. The failures, when the faults are detected, are independent.
The numbered assumptions 4–6 are fairly standard as we consider other models.
Assumption 4 is provided to ensure that the model estimates that are derived using data
collected in one particular environment are applicable to the environment in which the
reliability projections are to be made. The fifth assumption is provided to ensure that the
various failures all have the same distributional properties. One severity class might
have a failure rate different from that of the others requiring a separate reliability
analysis be done. The last assumption allows simplicity in deriving the maximum
likelihood estimates. Since assumptions 4–6 appear so often in the software reliability
models, we usually refer to them as the standard assumptions for reliability modeling.

Figure 4. Characteristic step curve and continuous approximation for program
failure intensity reduced by with execution time for the exponential model (with
proportionality constant f as per-fault failure rate, this becomes a Jelinski–
Moranda model). [Full View]

Several other models that are either identical to the exponential model except for
notational differences or are very close approximations were developed by Musa (1975),
Schneidewind (1975), and Goel and Okumoto (1979). The latter is a continuous
approximation to the original exponential model and is described in terms of a
nonhomogeneous Poisson process with a failure intensity function that is exponentially
decaying. Figure 4 also shows this curve and how closely it approximates the
exponential model curve. For all practical purposes the Goel–Okumoto and the other
models are indistinguishable from the exponential model.

The parameter estimation of the exponential model (and, therefore, the other closely
related or equivalent models) has been often criticized. Forman and Singpurwalla (1977,
1979), Littlewood and Verrall (1973), and Joe and Reid (1984), to name a few, have
shown that parameter estimation for the model suffers from two unfortunate tendencies.
Sometimes there is a tendency for estimates of the total failures expected to come out
nearly equal to the number of failures experienced. This leads to overly optimistic
conclusions. Sometimes there is a tendency for these same estimates to be nonfinite.
Meinhold and Singpurwalla (1983) suggested that when nonfinite parameter estimates
are obtained it is the method of inference that needs to be questioned not the model.

Nevertheless, the exponential model plays a key role in software reliability theory.
Shock models and renewal theoretic arguments were used by Stefanski (1982) and
Langberg and Singpurwalla (1985), respectively, to provide alternative motivations for
and alluded to the centrality of the exponential model. In the former reference, it was
also illustrated that many other well-known models, including that of Littlewood and
Verrall (1973), can be obtained by specifying specific distributions for the parameters of

the exponential model. The following sections on execution time modeling provide
further justification for the equivalent exponential nonhomogeneous Poisson process
model.

The exponential model can be further generalized (AIAA, 1993) to simplify the
modeling process by having a single set of equations to represent a number of important
models having the exponential hazard rate function. The overall idea is that the failure
occurrence rate is proportional to the number of faults remaining and the failure rate
remains constant between failures while it is reduced by the same amount when a fault
is removed. Besides the standard assumptions, the other assumptions of the model are
1. The failure rate is proportional to the current fault content of the software.
2. The faults that caused a failure are corrected instantaneously, and no additional faults

are introduced by the correction process.
3. The data required are the usual time between failures, xi values, or the time of the

failures, the ti values.
The model form is expressed as

where Z(.) is the software hazard rate function; t is a time or resource variable for
measuring the progress of the project; K is a constant of proportionality denoting the
failures per unit of t ; E0 is the initial number of faults in the software; and Ec is the
number of faults in the software that have been found and corrected after t units have
been expended. Table 5 reflects how this model is related to some of the models in the
literature.

Table 5. Generalized Exponential Model Relationships

Model
Original Hazard

Rate Function
Parameter

Equivalences

Generalized form k[E0 – Ec(t)]
Shooman model
(Shooman 1972)

K ′ [E0/IT –¶c(t)] ¶c = Ec/IT where IT is
the number of
instructions K ′ = KIT

Jelinski–Moranda,
model (Jelinski and
Moranda, 1972)

f(N – (i – 1)) f = K , N = E0 , (i – 1) =
Ec(t)

Basic execution model
(Musa, 1975)

b1 b0[1 –m(t)/
b0] where m(t) =
b0[1 – exp(–b1t)]

b0 = E0 , b1 = K , m(t) =
Ec(t)

Logarithmic Poisson
model (Musa and
Okumoto, 1984b)

b1 b0exp(–m(t)/
b0) , where m(t)
= b0 ln (b1t + 1)

b1 b0 = KE0 , E0 – Ec(t) =
E0exp(–m(t)/ b0)

3.3. The Bayesian Models
The Bayesian approach essentially challenges some of the deterministic assumptions
made in the classical Markovian and exponential approaches. For example, the
exponential model assumes that each fault contributes equally to the overall program
failure intensity. The Bayesian approach argues that each fault's contribution to the
overall failure intensity is unknown and can be modeled as originating from a given
random distribution (with unknown parameters) of values (Littlewood, 1981). The
analysis then proceeds along traditional Bayesian techniques.

This group of models views reliability growth and prediction in a Bayesian framework
rather than the “traditional” one considered in the previous sections. The previous
models only allow change in the reliability whenever an error occurs. Most of them also
look at the impact of each fault as being of the same magnitude. A Bayesian model
takes a subjective viewpoint in that if no failures occur while the software is observed,
then the reliability should increase, reflecting the growing confidence in the software by
the user. The reliability is therefore a reflection of both the number of faults that have
been detected and the amount of failure-free operation. This reflection is expressed in
terms of a prior distribution representing the view from past data and a posterior
distribution that incorporates the past and the current data.

The Bayesian models also reflect the belief that different faults have different impacts
on the reliability of the program. The number of faults is not as important as their
impacts. If we have a program that has a number of faults in seldom used code, is that
program less reliable than one that has only one in the part of the code that is used often?
The Bayesian would say “No!” The Bayesian modeler says that it is more important to
look at the behavior of the software than to estimate the number of faults in it. The mean
time to failure would therefore be a very important statistic in this framework.

The prior distribution reflecting the view of the model parameters from past data is an
essential part of this methodology. It reflects the viewpoint that one should incorporate
past information, say, projects of similar nature etc., in estimating reliability statistics
for the present and future. This distribution is simultaneously one of the Bayesian's
framework strengths and weaknesses. One should incorporate the past, but how is the
question.

The basic idea of the mathematics behind this theory is as follows. Suppose that we
have a distribution for our reliability data that depends on some unknown parameters, x
i.e., fT(t| x), and a prior g(x ; f) that reflects our views on those parameters, x from

historical data. Once additional data have been gathered through the vector t [note that
boldfacing of a component denote a possible vector of subcomponents to allow for
multidimensionality i.e., x = (x1 , x2 , ¼ xK)], our view of the parameter x changes.
That change is reflected in the posterior distribution, which is calculated as

 (19)

Using the posterior distribution, editor estimates of x can then be obtained, leading to
reliability estimates involving x. A common Bayesian procedure is to define a loss
function, x(t) is an estimate of x, and then choose the estimate of x that minimizes the
expected loss using the posterior distribution. For a squared-error function or quadratic
loss function, l(x′(t) , x) where x′(t) is an estimate of x, and then choose the estimate of
x that minimizes the expected loss using the posterior distribution. For a squared-error
function or quadratic loss function, l(x′(t) , x) = (x′(t) –x)2, the estimate is the mean of
the posterior distribution, E{ x|t}. The reader is referred to any mathematical statistics
book for further details (e.g., Mood et al., 1974).

The Littlewood–Verrall model (1973, 1974) is probably the best example of this class of
model. The model tries to account for fault generation in the fault correction process by
allowing for the probability that the software program could become “less reliable” than
before. With each fault correction, a sequence of software programs is generated. Each
is obtained from its predecessor by attempting to fix the fault. Because of the
uncertainty, new version could be “better” or “worse” than its predecessor. Thus another
source of variation is introduced. This is reflected in the fact that the parameters that
define the failure time distributions are taken to be random. The distribution of failure
times is, as in the earlier models, assumed to be exponential with a certain failure rate,
but it is that rate that is assumed to be random rather than constant as before. The
distribution of this rate, i.e., the prior, is assumed to be a gamma distribution with shape
a and scale parameter y(i) . y(i) function is further considered as either a linear form or a
quadratic form with parameters b0 and b1.

A paper by Mazzuchi and Soyer (1988) considers a variation of this model by assuming
all of the parameters a , b0 and b1 are random variables with appropriate priors.
Employing some approximations because of computational difficulties, they then obtain
some corresponding results. Musa (1984) considered the use of a rational function for
y(i). He felt that this parameter should be inversely related to the number of failures
remaining. The form of this function was expressed as

Here N is the expected number of faults within the software as time becomes infinite, l0
is the initial failure intensity function, and a is the parameter of the gamma distribution

considered earlier. The index i is the failure index. One can see as the number of
remaining failures decreases the scale parameter, y(i), increases. Another variation of
this model is the one considered by Keiller and co-workers (1983). Again successive
failures follow an exponential distribution with an associated gamma prior. However for
this case, the reliability growth is induced by the shape parameter a rather than the scale
parameter y(i).

Any of the classical models can be made Bayesian by specifying appropriate
distributions for one or more of their parameters. Interestingly, most of the Bayesian
models use the exponential model as a starting point (e.g., Littlewood and Verrall, 1974;
Goel, 1977; Littlewood, 1980; Jewell, 1985; Langberg and Singpurwalla, 1985;
Littlewood and Sofer, 1987; Becker and Camarinopoulos, 1990; Csenki, 1990) or are
completely new models (Littlewood and Verrall, 1973; Thompson and Chelson, 1980;
Kyparisi and Singpurwalla 1984; Liu 1987). It seems, however, that the Bayesian
approach suffers from its complexity and from the difficulty in choosing appropriate
distributions for the parameters. Added to this is the fact that most software engineers
do not have the required statistical background to completely understand and appreciate
Bayesian models. The latter is perhaps the main reason why these models have not
enjoyed the same attention as the classical models (there are almost 5 times as many
classical models as Bayesian models, and they are used in a great majority of the
practical applications). Note that Bayesian models lead to the intuitive notion that earlier
failure corrections have a greater effect than do later ones on the program failure
intensity. However, many classical Markovian and exponential models also share this
property.

3.4. Comparison of Different Software Reliability Models
Various models proposed in literature tend to give quite different predictions for the
same set of failure data. It should be noted that this kind of behavior is not unique to
software reliability modeling but is typical of models that are used to project values in
time and not merely represent current values. Furthermore, a particular model may give
reasonable predictions on one set of failure data and unreasonable predictions on
another. Consequently, potential users may be confused and adrift with little guidance as
to which models may be best for their applications.

The search for the best software reliability model(s) started in the late 1970s and early
1980s. Initial efforts at comparison by Schick and Wolverton (1978) and Sukert (1979)
suffered from a lack of good failure data and a lack of agreement on the criteria to be
used in making the comparisons. The former deficiency was remedied to some degree
when 50 reasonably good-quality sets of failure data were published (Lyu, 1996). The
data sets were collected under careful supervision and control and represent a wide
variety of applications including real-time command and control, commercial, military,
and space systems.

The latter deficiency was remedied when Iannino and co-workers (1984) worked out a
consensus from many experts in the field on the comparison criteria to be employed.
The proposed criteria include the following.

1. The capability of a model to predict future failure behavior from known or assumed
characteristics of the software; for example, estimated lines of code, language planned
to be used, and present and past failure behavior (i.e., failure data). This is significant
principally when the failure behavior is changing, as occurs during system testing.

2. The ability of a model to estimate with satisfactory accuracy the quantities needed for
planning and managing software development projects or for running operational
software systems. These quantities include the present failure intensity, the expected
date of reaching the failure intensity objective, and resource and cost requirements
related to achieving the failure intensity objective.

3. The quality of modeling assumptions (e.g., support by data, plausibility, clarity, and
explicitness).

4. The degree of model applicability across software products that vary in size, structure,
and function, different development environments, different operational environments,
and different life-cycle phases. Common situations encountered in practice that must
be dealt with include programs being integrated in phases, system testing driven by a
strategy to test one system feature at a time, the use of varying performance
computers, and the need to handle different failure severity classes.

5. The degree of model simplicity (e.g., simple and inexpensive data collection,
concepts, and computer implementation).

3.5. Model Selection Approach
Although model comparison criteria can be set as above, it is still very difficult to
identify a priori those characteristics of a program that will ensure that a particular
model can be trusted to produce accurate reliability predictions. In fact, this is not
surprising, since the models involve rather crude assumptions about what may be a quite
complex underlying failure process. There are many things that might impact on the
properties of the failure process that are simply ignored by the models. Examples
include the nature of the operational environment, the internal fault-handling procedure
(e.g., whether the software is fault-tolerant), etc. Such factors represent a source of
uncontrolled variability in the properties of the failure process that is not treated by any
of the models. In the absence of specific ways of taking account of such factors, we can
expect the models to vary in their performance as the factors vary from one data source
to another.

Consequently, some researchers advocated the approach in selecting the best model by
using a set of models at the same time on a given set of failure data and then picking the
one that is working best (Brocklehurst et al., 1990; Lyu and Nikora, 1991). They
suggested comparing a prediction with the actual observation (when this is later made),
and recursively build up a sequence of such prediction/observation comparisons. From
this sequence we should be able to gain information about the accuracy of past
predictions, and so make decisions about the current prediction (i.e., which model to
trust, if any). This approach, originally seen as impractical, becomes attractive with the
help of software reliability modeling tools such as CASRE, SMERFS, and SRMP (Lyu,
1996).

The basic idea in analyzing model predictive accuracy is to perform recursive
comparison of predictions with eventual outcomes. Dawid (1984) proposed a statistical
measure that can be engaged: the prequential likelihood ratio (PLR), which can be
extended to obtain a u plot and y plot.

First we define the PLR. Let us assume that we have observed the successive times
between failures t1 , t2 , ¼ , tj – 1, and we want to predict the next time to failure Tj. We
shall do this by using one of the models to obtain an estimate, of the true (but
unknown) distribution function Fj(t) ≡ P(Tj < t), the probability that time to the jth (the
next) failure is less than t. True predictive pdf is noted as fj(t), with estimates of this

PDF, and, , coming from two different models, A and B. After making
these two predictions, which are based only on the data we have seen prior to stage j, we
wait and eventually see the next failure occur after a time tj. Since this is a realization of
a random variable whose distribution is the true one, we would expect tj to lie in the
main body of this true distribution; that is, it is more likely to occur where fj(tj) is larger.
If we evaluate the two predictive PDFs at this value of t, there will be a tendency for

to be larger than if the predictions from model A are more accurate than

those from model B; i.e., will tend to be larger than 1. This is because
the A PDF tends to have more large values close to the large values of the true
distribution than does the B PDF. In fact, this is what we mean when we say informally
that “the A predictions are closer to the truth than the B predictions”—that the value of
the A PDF tends to be everywhere closer to that of the true PDF than is the value of the
B PDF. The PLR then is merely a running product of such terms over many successive
predictions:

 (20)

and this should tend to increase with i if the A predictions are better than the B
predictions. Conversely, superiority of B over A will be indicated if this product shows a
decreasing trend. Namely, given that no a priori preference is given to two models, A
and B, then indicates the likelihood that model A will provide more accurate
predictions than model B, or vice versa.

The purpose of the u plot is to determine whether the predictions, , are on average
close to the true distributions, . It can be shown that, if the random variable Tj truly
had the distribution —in other words, if the prediction and the truth were
identical—then the random variable would be uniformly distributed on (0,1).
This is called the probability integral transform in statistics. If we were to observe the
realization tj of Tj, and calculated, , the number uj will be a realization of a
uniform random variable. When we do this for a sequence of predictions, we get a

sequence {uj}, which should look like a random sample from a uniform distribution.
Any departure from such uniformity will indicate some kind of deviation between the
sequence of prediction, , and the truth {Fj(t)}.

One way of looking for departure from uniformity is by plotting the sample distribution
function of the { mj} sequence. This is a step function constructed as follows. For a
sequence of predictions on the interval (0,1), place the points us , us +

1 , ¼ , ui (each of these is a number between 0 and 1); then from left to right plot an
increasing step function. With each step of height 1/(i – s + 2) at each m on the abscissa,
as shown in Figure 5. The range of the resulting monotonically increasing function is
(0,1). And we call it the u plot. A common way of testing whether the departure is
significant is via the Kolmogorov–Smirnov distance, which is the maximum vertical
deviation between the plot and the line of unit slope.

Figure 5. How to draw the u plot for predictions of Ts , ¼ , Ti. Here, {u(s) , u(s +

1) , ¼ , u(i)} are the original set of values {us , us + 1 , ¼ , ui} reordered in
ascending order of magnitude. [Full View]

Note that the number uj is the estimate we would have made, before the event, of the
probability that the next failure will occur before tj, the time when it actually does
eventually occur. In the case of consistently over optimistic predictions, this number
would therefore tend to be smaller than it would be if the predictions were accurate.
That means that the uj values will tend to bunch too far to the left in the (0,1) interval,
and the resulting u plot will tend to be above the line of unit slope. A similar argument
shows that, if a u plot is entirely below the line of unit slope, it indicates that the
predictions are too pessimistic.

Remember that the uj sequence should look like a sequence of independent, identically
distributed uniform random variables on (0,1). Since the range, (0,1), remains constant,
any trend will be difficult to detect in the uj sequence, which will look very regular. If,
however, we make the transformation xj = – ln(1 –mj), we produce a sequence of
numbers that should look like realizations of independent, identically distributed unit
exponential random variables. That is, the sequence should look like the realization of
the successive interevent times of a homogeneous Poisson process; any trend in the ui
values will show itself as a nonconstant rate for this process. There are many tests for
trend in a Poisson process. We begin by normalizing the whole transformed sequence
onto (0,1). That is, for a sequence of predictions from stage s through stage i, we define

 (21)

A step function with steps of size 1/(i – s + 1) at the points ys , ys + 1 , ¼ yi – 1 is drawn
from the left on the interval (0,1), exactly as in the case of the u plot. We refer this
sequence as a y plot. The y plot that can be used to detect whether there is trend in model
bias represented by the u plot.

In summary, PLR will only tell us about relative performance among competing models,
but it will do this in the most general way possible, with the underlying theory (Dawid,
1984), providing an assurance that all deficiencies have been taken into account. The u
plot and y plot, on the other hand, give us some absolute information, but only about
certain specific ways in which predictions can differ from the truth.

4. Emerging Techniques

4.1. Recalibration Approach
One promising development for improving model predictions is adaptive prediction
(Abdel-Ghaly et al., 1986). Adaptive prediction is a statistical procedure that allows a
model to “learn” from its past mistakes and produce improved predictions by removing
prediction bias experienced with models. One way of expressing the notion of
prediction biasmore formally is to say that at stage i there is some function G, which
relates the predicted to the true distribution of the time-to-next-failure random variable

. Such a function, if we knew it, would tell us everything there is to
know about the bias in the predictions being made at a particular stage. In particular, if
we knew G, we could recover the true distribution, Fi(t), from the inaccurate prediction,

. If there is only a single G function for the whole sequence of predictions, we
might try to estimate it and thus provide a means of recalibrating future inaccurate
predictions to produce better ones. When this occurs, we have the opportunity of
estimating this bias function from the earlier predictions we have made by comparing
these with the observed outcomes. In fact, it can be shown that the u plot based on these
earlier predictions is a suitable estimator of G.

Recalibration techniques for assessing the quality of adapted predictions relative to the
raw predictions were thus developed (Brocklehurst et al., 1990). The steps of the
recalibration procedure are as follows:
1. Obtain the u plot, say, based on the raw predictions, , that have

been made before stage i. This can be thought of as an estimate of the function G that
is assumed to represent the (approximately) constant relationship between prediction
and truth.

2. Obtain , the raw prediction at stage i.
3. Calculate the recalibrated prediction, .
4. Repeat this at each stage i. In this way a sequence of recalibrated predictions will

result.

The most important point to note about this procedure is that it is truly predictive,
inasmuch as only the past is used to predict the future. The recalibration techniques have
shown great improvement in the software reliability modeling results.

4.2. Linear Combination Models
Lyu and Nikora (1991, 1992) observed that linear combinations of model results, even
in its simplest format, appear to provide more accurate predictions than the individual
models themselves. They proposed the following strategy in forming combination
models:
1. Identify a basic set of models (the component models). If the testing environment for

the development effort can be characterized, select models whose assumptions are
closest to the actual testing practices.

2. Select models whose predictive biases tend to cancel each other. We have seen that
models can have optimistic or pessimistic biases.

3. Separately apply each component model to the data.
4. Apply certain selected criteria to weight the selected component models (e.g., changes

in the prequential likelihood) and form the combination model for the final
predictions. Weights can be either static or dynamically determined.

In general, this approach is expressed as a mixed distribution

 (22)

where n represents the number of models and is the predictive probability density
function of the jth component model, given that i – 1 observations of failure data have
been made. Note that

The linear combination model tends to preserve the features inherited from its
component models. Also, because each component model performs reliability
calculations independently, the combination model remains fairly simple. The
component models are plugged into the combination model only at the last stage for
final predictions.

4.3. Phase-Based Model for Early Prediction
Gaffney and Davis (1988a, 1988b) developed the phase-based model. It makes use of
error statistics obtained during the technical review of requirements, design, and the

implementation to predict the reliability during test and operation.

The assumptions for this model are
1. The development effort's current staffing level is directly related to the number of

faults discovered during the development phase, which is assumed to follow a
Rayleigh curve.

2. The fault discovery curve is monomodal.
3. Code size estimates are available during the early phases of a development effort. The

model expects that fault densities will be expressed in terms of the number of faults
per thousand lines of source code (KSLOC), which means that faults found during the
requirements analysis and software design will have to be normalized by the code size
estimates.

Their model is then expressed as

where E = total lifetime fault rate expressed in faults per thousand source lines of code
(KSLOC)

t=fault discover index with (t=1—requirements analysis; t =2—software design;

t=3—implementation; t=4—unit test, t=5—software integration;

t=6—system test, t =7—acceptance test; note that t is not treated in the traditional sense
of time)

, where tp is the fault discovery phase constant, the peak of a continuous curve fit
to the failure data (the point at which 39% of the faults have been discovered). The
cumulative form of the model is Vt = E[1 – exp(– Bt2)], where Vt is the number of faults
per KSLOC that have been discovered through phase t. As data become available, B and
E can be estimated. This quantity can also be used to estimate the number of remaining
faults at stage t by multiplying Eexp(– Bt2) by the number of source line statements at
that point.

4.4. Rome Laboratories Work
One of the earliest and most well known efforts to predict software reliability in the
earlier phases of the lifecycle was the work initiated by the RADC (1987). For their
model, they developed predictions of fault density, which could then be transformed
into other reliability measures such as failure rates. To do this, the researchers selected a

number of factors that they felt could be related to error density at the earlier phases.
Included in the list were
A— application type (e.g., real-time control systems, scientific, information

management)
D— development environment (characterized by development methodology and

available tools)
The types of development environments considered are organic, semidetached, and
embedded modes.

Additional codes are as follows:

 Requirements and design representation metrics
SA— anomaly management
ST— traceability
SQ— incorporation of Quality Review results into the software

 Software implementation metrics
SL— language type (e.g., assembly, high order.)
SS— program size

SM— modularity
SU— extent of reuse
SX— complexity
SR— incorporation of standards review results into the software

The initial fault density prediction is then

 (24)

Once the initial fault density has been found, a prediction of the initial failure rate is
made as follows:

 (25)

The number of inherent faults = W0 = (d0 * number of lines of source code); F is the
linear execution frequency of the program, and K is the fault expose ratio, (1.4 × 10 – 7 ≤
K ≤ 10.6 × 10 – 7). By letting F = R/I, where R is the average instruction rate, i is the
number of object instructions in the program and then further rewriting I as Is *
QX where Is is the number of source instructions and QX is the code expansion ratio
[the ratio of machine instructions to source instructions (RADC indicates an average
value of 4)], the initial failure rate can be expressed as

 (26)

4.5. Other Approaches
The reliability theory established in this article is considered as a black-box approach; i.e.,
only the failure data from the software systems under measurement are included in the
modeling process, while the system structures are ignored. As component-based software
development (Kozaczynski and Booch, 1998) became popular more recently, white-box
approaches to software reliability have gained considerable attention. Smidts and Sova
(1999) considered an architecture-oriented modeling approach for software reliability
estimation based on decomposition of requirements into software functions and attributes.
Kuball and co-workers (1999) introduced a hierarchical model to estimate the probability
of failure on demand of a component-based software system, under a Bayesian
framework. Lyu and co-workers (2002) formulated a testing resource allocation
requirement for component-based software development as a combinatorial optimization
problem with known cost, reliability, effort, and other attributes of the components.

Generally speaking, the white-box approach to software reliability extends the black-box
approach by including structural parameters into the reliability engineering process.
Parameterization of software reliability models can also be based on alternate sources of
information such as the metrics explored in the early prediction models. Other metrics
include test coverage and system workload. Piwowarski and co-workers (1993) proposed
a simple coverage-based reliability growth model. Malaiya and co-workers (1994)
presented a logarithmic model that relates testing effort to test coverage, which can be
directly linked to defect coverage and growth of reliability. Chen and co-workers (2001)
included testing coverage into time-basis adjustment for more accurate software
reliability measurement from the growth modeling. Gokhale and Trivedi (1999) worked
out a software reliability modeling approach to include system structure as well as
workload considerations.

Another class of approaches is to model various quality metrics (the dependent variables)
on the basis of their relationships with other independent variables (size, number of data
items, complexity, operators, operands, etc.) to establish reliability and quality
predictions. Agresti and Evanco (1992) attempted to develop a model for predicting
defect density the basis of based on product and process characteristics for Ada
development efforts. They employed a multivariate linear regression model based on a
log–log relationship. The modeling relationship, on the other hand, was assumed as linear
models in Munson and Khoshgoftaar (1990), and Khoshgoftaar and co-workers (1992a),
where various estimation techniques were evaluated for the creation of those linear
models using regression techniques. Khoshgoftaar and Munson (1990) specifically
considered an approach that used only complexity metrics to help predict indicators of
quality. Gokhale and Lyu (1997) applied a regression tree analysis technique to establish
the modeling relation between the dependent (predicted) variables and the independent
(known) variables. Schneidewind (2000) developed the Boolean discriminant function

and relative critical value deviation to discriminate between fault-prone and non-fault-
prone modules for software quality control and maintenance purposes. Neural network
models were also proposed to classify quality attributes such as reliability or code that
appears to have problems. Khoshgoftaar and co-workers (1992b; 1993) and Karunanithi
and co-workers (1991) investigated the problem by a supervised learning model, while
Guo and Lyu (2000) approached the problem by an unsupervised learning model.

Simulation techniques for software reliability predication also attracted research
investigations. Von Mayrhauser and co-workers (1993) performed experiments to
investigate the nature of relationships between software failures and program structures,
and established artifact-based simulation techniques for reliability prediction purpose.
Tausworthe and Lyu (1996) demonstrated most of the traditional software reliability can
be easily simulated by simple Monte Carlo method, and they established a rate-based
simulation technique to simulate a complete software development life cycle, including
the life cycle of faults and failures. Gokhale and co-workers (1998) further extended this
simulation technique to analyze reliability of component-based systems under various
software architectures and configurations.

In the area of time series modeling, we refer the reader to a paper by Singpurwalla and
Soyer (1985) as a starting point, where the time between failures was formulated as an
autoregressive process with random coefficients to reflect uncertainty in the specification
of the power law as the autoregressive model.

5. Acknowledgment

The work described in this article by M. R. Lyu was fully supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region (Project No.
CUHK4432/99E).

Bibliography
 A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood, Evaluation of Competing Software
Reliability Predictions, IEEE Transactions on Software Engineering SE-12(9), 95–967
(September 1986).

 W. W. Agresti and W. M. Evanco, Projecting Software Defects From Analyzing Ada
Designs, IEEE Transactions on Software Engineering SE-18(11), 98–997 (November
1992).

 AIAA (American Institute of Aeronautic and Astronautics), Recommended Practice for
Software Reliability, ANSI/AIAA R-013–1992, AIAA, Washington, DC, 1993.

 J. E. Angus, R. E. Schafer, and A. Sukert, Software Reliability Model Validation,
Proceedings of the 1980 Annual Reliability and Maintenance Symposium, 1980.

 ANSI/IEEE, Standard Glossary of Software Engineering Terminology, STD-729–1991,
ANSI/IEEE, Washington, DC, 1991.

 R. E. Barlow and E. M. Scheuer, Reliability Growth During a Development Testing
Program, Technometrics 8(1) (1966).

 G. Becker and L. Camarinopoulos, A Bayesian Estimation Method for the Failure Rate
of a Possibly Correct Program, IEEE Transactions on Software Engineering SE-16(11),
130–1310 (November 1990).

 S. Brocklehurst, P. Y. Chan, B. Littlewood, and J. Snell, Recalibrating Software
Reliability Models, IEEE Transactions on Software Engineering SE-16(4) (1990).

 W. D. Brooks and R. W. Motley, Analysis of Discrete Software Reliability Models,
RADC-TR-80–84, Rome Air Development Center, Rome, NY, 1980.

 M. H. Chen, M. R. Lyu, and E. Wong, Effect of Code Coverage on Software Reliability
Measurement, IEEE Transactions on Reliability (2001).

 R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and
M.-Y. Wong, Orthogonal Defect Classification—A Concept for In-Process
Measurements, IEEE Transactions on Software Engineering SE-18(11), 94–956
(November 1992).

 W. J. Corcoran, H. Weingarten, and P. W. Zehna, Reliability After Corrective Action,
Management Science 10 (1964).

 J. de. S. Coutinho, Software Reliability Growth, IEEE Symposium on Computer
Software Reliability, 1973.

 L. H. Crow, Reliability Analysis for Complex Repairable Systems, in F. Proshan and R.
J. Serfling, eds., Reliability and Biometry, SIAM, Philadelphia, PA, 1974.

 A. Csenki, Bayes Predictive Analysis of a Fundamental Software Reliability Model,
IEEE Transactions on Reliability R-39, 177–183 (1990).

 A. P. Dawid, Statistical Theory: The Prequential Approach, Journal of the Royal
Statistical Society, series A, 147, 278–292 (1984).

 T. Downs, An Approach to the Modeling of Software Testing with Some Applications,
IEEE Transactions on Software Engineering SE-11(4) (1985).

 T. Downs, Extensions to an Approach to the Modeling of Software Testing with Some
Performance Comparisons, IEEE Transactions on Software Engineering SE–12(9)
(1986).

 W. K. Ehrlich, A. Iannino, B. S. Prasanna, J. P. Stampfel, and J. R. Wu, How Faults
Cause Software Failures: Implications for Software Reliability Engineering,
International Symposium on Software Reliability Engineering, Astin, TX., 1991.

 W. H. Farr, A Survey of Software Reliability Modeling and Estimation, NSWC TR–171,
Naval Surface Warfare Center, Dahlgreen, VA September 1983.

 E. H. Forman and N. D. Singpurwalla, An Empirical Stopping Rule for Debugging and
Testing Computer Software, Journal of the American Statistical Association 72 (1977).

 E. H. Forman and N. D. Singpurwalla, Optimal Time Intervals for Testing Hypotheses
on Computer Software Errors, IEEE Transactions on Reliability 28 (1979).

 J. E. Gaffney Jr., and C. F. Davis, An Approach to Estimating Software Errors and
Availability, SPC-TR-88–007, version 1.0, March 1988a. Proceedings of the 11th
Minnowbrook Workshop on Software Reliability, July 1988b.

 A. L. Goel, Summary of Technical Progress on Bayesian Software Prediction Models,
RADC-TR-77–112, Rome Air Development Center, Rome, NY, 1977.

 A. L. Goel and K. Okumoto, Time-Dependent Error-Detection Rate Model for
Software Reliability and Other Performance Measures, IEEE Transactions on
Reliability R-28(3) (1979).

 S. S. Gokhale and M. R. Lyu, Regression Tree Modeling for the Prediction of Software
Quality, Proceedings of the 3rd ISSAT International Conference on Reliability and
Quality in Design, Anaheim, CA, March 1997, pp. 31–36.

 S. S. Gokhale and K. S. Trivedi, A Time/Structure Based Software Reliability Model,
Annals of Software Engineering 8 (1999).

 S. S. Gokhale, M. R. Lyu, and K. S. Trivedi, Reliability Simulation of Component-
Based Software Systems, Proceedings of the 9th International Symposium on Software
Reliability Engineering (ISSRE'98), Paderborn, Germany, November 1998, pp. 192–
201.

 P. Guo and M. R. Lyu, Software Quality Prediction Using Mixture Models with EM
Algorithm, Proceedings of the 1st Asia-Pacific Conference in Quality Software
(APAQS2000), Hong Kong, October 2000, pp. 69–78.

 H. Hecht, Allocation of Resources for Software Reliability, Proceedings of COMPCON
Fall 1981 Washington, DC, 1981.

 C. -Y. Huang, S. -Y. Kuo, and M. R. Lyu, A Framework for Modeling Software
Reliability Considering Various Testing Efforts and Fault Detection Rates, IEEE
Transactions on Reliability (2001).

 G. R. Hudson, Program Errors as a Birth and Death Process, Report SP–3011, System
Development Corporation, Santa Monica, CA, 1967.

 A. Iannino and J. D. Musa, Software Reliability Engineering at AT&T, Proceedings of
PSAM Beverly Hills, CA, 1991.

 A. Iannino, J. D. Musa, K. Okumoto, and B. Littlewood, Criteria for Software
Reliability Model Comparisons, IEEE Transactions on Software Engineering SE–10(6)
(1984).

 Z. Jelinski and P. B. Moranda, Software Reliability Research, in W. Freiberger, ed.,
Statistical Computer Performance Evaluation, Academic Press, New York, 1972.

 W. S. Jewell, Bayesian Extensions to a Basic Model of Software Reliability, IEEE
Transactions on Software Engineering SE-11(12) (1985).

 H. Joe and N. Reid, Estimating the Number of Faults in a System, Journal of the
American Statistical Association (1984).

 N. Karunanithi, Y. K. Malaiya, and D. Whitley, Prediction of Software Reliability
Using Neural Networks, Proceedings of the 2nd International Symposium on Software
Reliability Engineering May 1991, pp. 124–130.

 P. A. Keiller, B. Littlewood, D. R. Miller, and A. Sofer, On the Quality of Software
Reliability Prediction, NATO ASI Series F3, 441–460 (1983).

 T. M. Khoshgoftaar and J. C. Munson, Predicting Software Development Errors Using
Software Complexity Metrics, IEEE Journal on Selected Areas in Communications
8(2), 25–264 (Febuary 1990).

 T. M. Khoshgoftaar, J. Munson, B. B. Bhattacharya, and G. Richardon, Predictive
Modeling Techniques of Software Quality from Software Measures, IEEE Transactions

on Software Engineering SE-18(11), 97–987 (November 1992a).
 T. M. Khoshgoftaar, A. S. Pandya, and H. B. More, A Neural Network Approach for
Predicting Software Development Faults, Proceedings of the 3rd International
Symposium on Software Reliability Engineering, October 1992b, pp.83–89.

 T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya, A Neural Network Modeling
Methodology for the Detection of High-Risk Programs, Proceedings of the 4th
International Symposium on Software Reliability Engineering, November 1993,
pp.302–309.

 J. H. Kim, Y. H. Kim, and C. J. Park, A Modified Markov Model for the Estimation of
Computer Software Performance, Operations Research Letters, p. 1 (1982).

 W. Kozaczynski and G. Booch, Component-Based Software Engineering, IEEE
Software 155, 34–36 (1998).

 W. Kremer, Birth-Death and Bug Counting, IEEE Transactions on Reliability R–32(1)
(1983).

 S. Kuball, J. May, and G. Hughes, Building a System Failure Rate Estimator by
Identifying Component Failure Rates, Proceedings of the 10th International
Symposium on Software Reliability Engineering, November 1999, pp. 32–41.

 J. Kyparisis and N. D. Singpurwalla, Bayesian Inference for the Weibull Process with
Applications to Assessing Software Reliability Growth and Predicting Software
Failure, Computer Science and Statistics: The Interface Elsevier North-Holland,
Amsterdam, March 1984, pp. 57–64.

 N. Langberg and N. D. Singpurwalla, Unification of Some Software Reliability Models
Via the Bayesian Approach, SIAM Journal of Scientific and Statistical Computation
6(3), 781–790 (1985).

 J.-C. Laprie, Dependability Evaluation of Software Systems in Operation, IEEE
Transactions on Software Engineering SE–10(6) (1984).

 B. Littlewood, A Bayesian Differential Debugging Model for Software Reliability,
Proceedings of the IEEE Computer Society, International Computer Software
Applications Conference, 1980 pp. 511–519.

 B. Littlewood, Stochastic Reliability-Growth: A Model for Fault Removal in Computer
Programs and Hardware-Design, IEEE Transactions on Reliability R–30(4) (1981).

 B. Littlewood and A. Sofer, A Bayesian Modification to the Jelinski-Moranda Software
Reliability Growth Model, Journal of Software Engineering 2, 30–41 (1987).

 B. Littlewood and J. L. Verrall, A Bayesian Reliability Growth Model for Computer
Software, Journal of the Royal Statistical Society, Series C, 22(3), 332–346 (1973).

 B. Littlewood and J. L. Verrall, A Bayesian Reliability Model with a Stochastically
Monotone Failure Rate, IEEE Transactions on Reliability R–22(2) (1974).

 B. Littlewood and J. L. Verrall, Likelihood Function of a Debugging Model for
Computer Software Reliability, IEEE Transactions on Reliability R–30 (1981).

 G. Liu, A Bayesian Assessing Method of Software Reliability Growth, in S. Osaki and
J. Cao, eds., Reliability Theory and Applications, World Scientific, Singapore, 1987,
pp. 237–244 (1987).

 D. K. Lloyd and M. Lipow, Reliability: Management, Methods, and Mathematics, 2nd

ed., ASQC, Milwaukee, WI, 1984.
 M. R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill IEEE
Computer Society Press, New York, 1996.

 M. R. Lyu and A. Nikora, A Heuristic Approach for Software Reliability Prediction:
The Equally-Weighted Linear Combination Model, Proceedings of the 2nd
International Symposium on Software Reliability Engineering, May 1991, pp.172–181.

 M. R. Lyu and A. Nikora, Using Software Reliability Models More Effectively, IEEE
Software, pp. 4–52 (July 1992).

 M. R. Lyu, S. Rangarajan, and A. P. A. Van Moorsel, Optimal Allocation of Testing
Resources for Software Reliability Growth Modeling in Component-Based Software
Development, IEEE Transactions on Reliability (2002).

 Y. K. Malaiya, N. Li, R. Karcich and B. Skbbe, The Relationship between test
Coverage and Reliability Proceedings of the 5th International Symposium on Software
Reliability Engineering, November 1984.

 T. A. Mazzuchi and T. Soyer, A Bayes Empirical-Bayes Model for Software
Reliability, IEEE Transactions on Reliability R-37, 248–254 (1988).

 R. J. Meinhold and N. D. Singpurwalla, Bayesian Analysis of a Commonly Used
Model for Describing Software Failures, American Statistician 32 (1983).

 D. R. Miller, Exponential Order Statistic Models of Software Reliability Growth, IEEE
Transactions on Software Engineering SE–12(1) (1986).

 A. Mood, F. Graybill, and D. Boes, Introduction to the Theory of Statistics, 3rd ed.,
McGraw-Hill, New York, 1974.

 P. B. Moranda, Predictions of Software Reliability During Debugging, Proceedings of
the Annual Reliability and Maintenance Symposium, Washington, DC, 1975.

 P. B. Moranda, Event-Altered Rate Models for General Reliability Analysis, IEEE
Transactions on Reliability R-28(5), 376–381 (1979).

 J. Munson and T. Khoshgoftaar, Regression Modeling of Software Quality: Empirical
Investigation, Information of Software Technologies 32, 10–114 (March 1990).

 J. D. Musa, A Theory of Software Reliability and Its Application, IEEE Transactions
on Software Engineering SE-1(3), 312–327 (1975).

 J. D. Musa, Software Reliability Data report available from Data and Analysis Center
for Software, Rome Air Development Center, Rome, NY, 1979.

 J. D. Musa, Software Reliability, in C. R. Vick and C. V. Ramamoorthy, eds.,
Handbook of Software Engineering 1984, pp. 392–412.

 J. D. Musa and K. Okumoto, Software Reliability Models: Concepts, Classification,
Comparisons, and Practice, NATO ASI Series F3, 395–424 (1983).

 J. D. Musa and K. Okumoto, Comparison of Time Domains for Software Reliability
Models, Journal of Systems and Software 4(4) (1984a).

 J. D. Musa and K. Okumoto, A Logarithmic Poisson Execution Time Model for
Software Reliability Measurement, Proceedings of the 7th International Conference on
Software Engineering, Washington, DC, 1984b, pp. 230–238.

 J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability: Measurement,

Prediction, Application, McGraw-Hill, New York, 1987.
 M. Ohba, Software Reliability Analysis Models, IBM Journal of Research and
Development 28(4) (1984).

 P. Piwowarski, M. Ohba, and J. Caruso, Coverage Measurement Experience During
Function Test, Proceedings of the 15th International Conference on Software
Engineering May 1993, pp. 287–301.

 RADC (Rome Air Development Center), Methodology for Software Reliability
Prediction and Assessment, Technical Report RADC-TR-87–171, Vol. 1 and 2, RADC,
Rome, NY, 1987 (revised in Technical Report RL-TR-92–52, 1992).

 S. M. Ross, Statistical Estimation of Software Reliability, IEEE Transactions on
Software Engineering SE–11(5) (1985a).

 S. M. Ross, Software Reliability: The Stopping Rule Problem, IEEE Transactions on
Software Engineering SE-11(12) (1985b).

 M. Sahinoglu, Compound-Poisson Software Reliability Model, IEEE Transactions on
Software Engineering SE-18(7), 624–630 (1992).

 G. J. Schick and R. W. Wolverton, Assessment of Software Reliability, Proceeding of
Operation Research hysica-Verlag, Wurzburg-Wein, 1973.

 G. J. Schick and R. W. Wolverton, An Analysis of Competing Software Reliability
Models, IEEE Transactions on Software Enginering SE–4(2) (1978).

 N. F. Schneidewind, An Approach to Software Reliability Prediction and Quality
Control, 1972 Fall Joint Computer Conference Vol. 41, AFIP Press, Montvale, NJ,
1972.

 N. F. Schneidewind, Analysis of Error Processes in Computer Software, Proceedings of
the 1975 International Conference on Reliable Software, Los Angeles, CA, 1975, Vol.
10, No. 6, pp.337–346.

 N. F. Schneidewind, Software Quality Control and Prediction Model for Maintenance,
Annals of Software Engineering 9 (2000).

 J. G. Shanthikumar, A State- and Time-Dependent Error Occurrence-Rate Software
Reliability Model with Imperfect Debugging, Proceedings of the National Computer
Conference 1981.

 J. G. Shanthikumar and U. Sumita, A Software Reliability Model with Multiple-Error
Introduction and Removal, IEEE Transactions on Reliability R–36(4) (1986).

 M. L. Shooman, Probabilistic Models for Software Reliability Prediction, in W.
Freidberger, ed., Statistical Computer Performance Evaluation cademic Press, New
York, 1972.

 M. L. Shooman, Operational Testing and Software Reliability Estimation During
Program Developments, Record of 1973 IEEE Symposium on Computer Software
Reliability, IEEE Computer Society, New York, 1973.

 M. L. Shooman, Structural Models for Software Reliability Prediction, Proceedings of
the 2nd International Conference on Software Engineering October 1976.

 M. L. Shooman, Spectra of Software Reliability and Its Exorcism, Proceedings of the
Joint Automatic Control Conference, 1977, pp. 225–231.

 M. L. Shooman, Probabilistic Reliability: An Engineering Approach, 2nd ed., Krieger,
New York, 1990.

 M. L. Shooman and A. K. Trivedi, A Many-State Markov Model for the Estimation and
Prediction of Computer Software Performance Parameters, Proceedings of the 1975
International Conference on Reliable Software, 1975.

 N. D. Singpurwalla and R. Soyer, Assessing (Software) Reliability Growth Using a
Random Coefficient Autoregressive Process and Its Ramifications, IEEE Transactions
on Software Engineering SE–11(12), 145–1464 (December 1985).

 C. Smidts and D. Sova, An Architectural Model for Software Reliability
Quantification: Sources of Data, Reliability Engineering and System Safety 64, 279–
290 (1999). Links

 D. L. Snyder, Random Point Processes, Wiley, New York, 1975.
 L. A. Stefanski, An Application of Renewal Theory to Software Reliability,
Proceedings of the 27th Conference on the Design of Experiments in Army Research
Development Testing, 1982, ARO Report 82–2.

 A. N. Sukert, Empirical Validation of Three Software Error Prediction Models, IEEE
Transactions on Reliability R-28(3) (1979).

 R. C. Tausworthe and M. R. Lyu, A Generalized Technique for Simulating Software
Reliability, IEEE Software, pp. 77–88 (March 1996).

 W. E. Thompson and P. O. Chelson, On the Specification and Testing of Software
Reliability, 1980 Proceedings of the Annual Reliability and Maintainability
Symposium, 1980, pp.379–383.

 M. Trachtenberg, The Linear Software Reliability Model and Uniform Testing, IEEE
Transactions on Reliability R–34(1) (1985).

 A. von Mayrhauser, Y. K. Malaiya, J. Keables, and P. K. Srimani, On the Need for
Simulation for Better Characterization of Software Reliability, Proceedings of the 4th
International Symposium on Software Reliability Engineering, Denver, CO, 1993.

 W. L. Wagoner, The Final on a Software Reliability Measurement Study, Report TOR-
0074 (4112)-1, Aerospace Corporation, 1973.

 H. K. Weiss, Estimation of Reliability Growth in a Complex System with a Poisson-
type Failure, Operations Research 4 (1956).

 A. Wolfe, Intel Fixes a Pentium FPU Glitch, EE Times 822, 1 (November 1994).
 M. Xie, Software Reliability Modeling, World Scientific, NJ, 1991.
 S. Yamada and S. Osaki, Non-homogeneous Error Detection Rate for Software
Reliability Growth, in Stochastic Models in Reliability Theory, ringer-Verlag, New
York, 1984.

 S. Yamada, M. Ohba, and S. Osaki, S-Shaped Reliability Growth Modeling for
Software Error Detection, IEEE Transactions on Reliability R-32(5), 47–484
(December 1983).

 S. Yamada, M. Ohba, and S. Osaki, S-Shaped Software Reliability Growth Models and
Their Applications, IEEE Transactions on Reliability R-33(4), (1984).

 K. C. Zinnel, Using Software Reliability Growth Models to Guide Release Decisions,

Proceedings of the 1st International Symposium on Software Reliability Engineering
Washington, DC, 1990.

