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ABSTRACT

The N -Version Programming (NVP) approach
achieves fault-tolerant software units, called N -
Version Software (NVS) units, through the develop-
ment and use of software diversity. To maximize the
effectiveness of the NVP approach, the probability of
similar errors that coincide at the NVS decision points
should be reduced to the lowest possible value.
Design diversity is potentially an effective method to
get this result. It has been the major concern of this
paper to formulate a set of rigorous guidelines, or a
design paradigm, for the investigation and implemen-
tation of design diversity in building NVS units for
practical applications. This effort includes the
description of a most recent formulation of the NVP
design paradigm, which integrates the knowledge and
experience obtained from fault-tolerant system design
with software engineering techniques, and the appli-
cation of this design paradigm to a real-world project
for an extensive evaluation. Some limitations of the
approach are also presented.

1. Introduction

The N -Version Programming (NVP) approach to
fault-tolerant software systems involves the genera-
tion of functionally equivalent, yet independently
developed and maintained software components,
called N -Version Software (NVS)[1]. These com-
ponents are executed concurrently under a super-
visory system, called N -Version eXecutive (NVX),
that uses a decision algorithm based on consensus to
determine final output values. Whenever probability
of similar errors is minimized, distinct, erroneous
results tend to be masked by a consensus decision
during NVS execution[2].

NVS systems are gaining acceptance in critical appli-
cation areas such as aerospace industry, nuclear
power industry, and ground transportation industry.
The construction of such systems is still, however,
done mostly in an ad hoc manner. In order to obtain a

paradigmatic approach in applying the NVS tech-
niques for fault-tolerant software systems, a joint pro-
ject [3] (to be called "the Six-Language Project"
throughout the text) was initiated at the UCLA
Dependable Computing & Fault-Tolerant Systems
(DC & FTS) Laboratory and at the Honeywell Com-
mercial Flight Systems Division. This paper will
describe an NVP design paradigm which was applied
to conduct the Six-Language Project, and discuss evi-
dences and lessons learned from the project to testify
and revise the proposed paradigm.

2. A Design Paradigm for N -Version Programming

NVP has been defined from the beginning as "the
independent generation of N ≥ 2 functionally
equivalent programs from the same initial
specification[1]." "Independent generation" meant
that the programming efforts were to be carried out by
individuals or groups that did not interact with respect
to the programming process. The NVP approach was
motivated by the "fundamental conjecture that the
independence of programming efforts will greatly
reduce the probability of identical software faults
occurring in two or more versions of the program[1]."

The research effort at UCLA has been addressed to
the formation of a set of guidelines for systematic
design approach to implement NVS systems, in order
to achieve efficient tolerance of design faults in com-
puter systems. The gradual evolution of these
rigorous guidelines was revealed in several previous
research activities[4], [5], [6], which have investi-
gated a total of 81 programs in four different applica-
tions. This evolving methodology was most recently
formulated in[7] as an NVS design paradigm by
integrating the knowledge and experience obtained
from both software engineering techniques and fault
tolerance investigations. The word "paradigm," used
in the dictionary sense, means "pattern, example,
model," which refers to a set of guidelines and rules
with illustrations.



The objectives of the design paradigm are:
1. to reduce the possibility of oversights, mistakes,
and inconsistencies in the process of software
development and testing;

2. to eliminate most perceivable causes of related
design faults in the independently generated ver-
sions of a program, and to identify causes of those
which slip through the design process;

3. to minimize the probability that two or more ver-
sions will produce similar erroneous results that
coincide in time for a decision (consensus) action
of NVX.

The application of a proven software development
method, or of diverse methods for individual versions,
remains the core of the NVP process. This process is
supplemented by procedures that aim: (1) to attain
suitable isolation and independence (with respect to
software faults) of the N concurrent version develop-
ment efforts, (2) to encourage potential diversity
among the N versions of an NVS unit, and (3) to ela-
borate efficient error detection and recovery mechan-
isms. The first two procedures serve to reduce the
chances of related software faults being introduced
into two or more versions via potential "fault leak"
links, such as casual conversations or mail exchanges,
common flaws in training or in manuals, use of the
same faulty compiler, etc. The last procedure serves
to increase the possibilities of discovering manifested
errors before they are converted to coincident failures.
Figure 1 describes the current NVP paradigm for the
development of NVS.

In Figure 1, the NVP paradigm is composed of two
categories of activities. The first category,
represented by boxes and single-line arrows at the
left-hand side, contains typical software development
procedures. The second category, represented by
ovals and double-line arrows at the right-hand side,
describes the concurrent enforcement of various
fault-tolerant techniques under the N -version pro-
gramming environment. Detailed descriptions of the
incorporated activities and guidelines are presented in
the following sections.

2.1 Determine Method of NVS Supervision and
Execution Environment in System Requirement
Phase

The NVS execution environment has to be deter-
mined early in the system requirement phase to evalu-
ate the overall system impact and to obtain required
support facilities.
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Figure 1: A Design Paradigm for N-Version Programming

(1) Decide NVS execution methods and required
resources

The overall system architecture might be well defined
during system requirement phase, at which time the
software configuration items could be properly
identified. This means the number of software ver-
sions and their interaction could be investigated and
determined. Due to the cost of software development
for multiple versions, the number of versions is not
expected to be large at present. However, from
dependability (including reliability and safety)
viewpoints, at least two versions are required for
single-failure-detection operations, and at least three
versions are required for single-failure-
correction/double-failure-detection operations. The
current limitation is the lack of quantitative methods
for an accurate decision.

(2) Develop support mechanisms and tools

Generally speaking, a generic class of NVX forming
the NVS execution support environment is favorable.
The NVX may be implemented in software, in
hardware, or in a combination of both. The basic
functions that the NVX must provide for NVS execu-



tion are: (a) the decision algorithm, or set of algo-
rithms; (b) assurance of input consistency for all ver-
sions; (c) interversion communication; (d) version
synchronization and enforcement of timing con-
straints; (e) local supervision for each version; (f) the
global executive and decision function for version
error recovery; and (g) a user interface for observa-
tion, debugging, injection of stimuli, and data collec-
tion during N -version execution of application pro-
grams. The nature of these functions was extensively
illustrated in the descriptions of the DEDIX testbed
system[2].

(3) Comply with hardware architecture

Special dedicated hardware processors might have to
be implemented or procured in advance for the execu-
tion of NVS systems, especially when the NVS sup-
porting environments need to operate under certain
stringent requirements (e.g., accurate supervision,
efficient CPUs, etc.). The options of combining with
hardware fault-tolerance for a hybrid configuration
could also be considered[8], [9], [10].

In order to create enough sampling space under the
budget constraint, it was decided that six versions
would be generated in the Six-Language Project.
Representatives from Honeywell extracted the infor-
mation needed for the Six-Language Project from
their original system specification and provided it in a
System Description Document (SDD). Moreover, for
the purpose of industrial-standard validation and
verification, a Model Definition Document (MDD)
was also supplied. This document described a
mathematical Aircraft Model and a Square Wave
Model. The former provided functions within the
landing control loop but external to the application
program to form closed-loop flight simulations, while
the latter applied open-loop testing strategy with vari-
ous stringent conditions to saturate the executions of
the control laws in the application program.

2.2 Investigate Software Design Diversity Dimen-
sions in Software Requirement Phase

The major reason for choosing design diversity is to
eliminate the commonalities between the separate
programming efforts, as they have the potential to
cause related faults among the multiple versions.

(1) Compare random diversity vs. enforced diversity

Different dimensions of diversity can be applied to
the building of NVS systems. Design diversity could
be achieved either by randomness or by enforcement.

The random diversity, such as that provided by
independent personnel, leaves the dissimilarity to be
generated according to individual’s training back-
ground and thinking process. The diversity is
achieved somewhat in an uncontrolled manner by this
way. The enforced diversity, on the other hand,
investigates different aspects in several dimensions,
and deliberately requires them to be implemented into
different program versions. The purpose of such
required diversity is to minimize the opportunities for
common causes of software faults in two or more ver-
sions (e.g., compiler bugs, ambiguous algorithm state-
ments, etc.), and to increase the probabilities of
significantly diverse approaches to version implemen-
tation.

(2) Derive qualitative design diversity metrics

There are four phases in which design diversity could
be applied: the specification phase, the design phase,
the coding phase, and the testing phase. Applicable
dimensions of diversity include different implemen-
tors, different languages [11], different tools[12], dif-
ferent algorithms[13], and different software develop-
ment methodologies (including phase-by-phase
software engineering, prototyping, computer-aided
software engineering, or even the "clean room"
approach[14]).

A qualitative design diversity metric is proposed in
Table 1. This assessment of diversity is an initial
effort based on the experiences gained from previous
experiments at UCLA[4], [5], [15], and published
work from other sites[12], [13], [16], [17].

imple- lan- algo- method-
mentors guages tools rithms ologies

spec. higher higher lower− higher+ lower
design higher+ lower lower higher+ higher
coding higher+ higher+ lower higher higher
testing lower lower− higher lower higher+

Table 1: A Qualitative Design Diversity Metric

This table suggests that in the specification phase,
using different implementors, languages or algorithms
might achieve higher diversity than applying other
dimensions. In the design phase, using different
implementors, different algorithms, or different
methodologies tends to be more helpful. All dimen-
sions except tools are considered effective in the cod-
ing phase. Finally, investigation of different tools or
methodologies might be more favorable in the testing
phase. Moreover, to compare rows and columns in



Table 1, extra granularity is provided by using "+"
(indicating "further" for "higher") and "−" (indicating
"further" for "lower") signs. For example, diversity
by using different implementors in testing (marked
"lower") is considered lower than using them in the
previous three phases, but that could still be higher
than using different languages in testing phase, which
is marked "lower−".

(3) Evaluate cost-effectiveness along each dimension

Since adding more diversity implies adding more
resources, it is important to evaluate cost-
effectiveness of the added diversity along each
dimension. This evaluation will enable trade-off stu-
dies between cost and efficiency. Such evaluation
might be application-dependent, and thus may need to
be elaborated, possibly by several iterations of inves-
tigations. It is hypothesized that the main cost of
NVP is dominated by the employment of extra imple-
mentors. Cost of adding other diversity dimensions
should not be significant, especially when the
resources in these dimensions are abundant (e.g.,
languages, tools). No concrete data is available to
support or dispute this hypothesis, though.

(4) Obtain the final choice under particular con-
straints

After the above investigation, the final combination of
diversity could be determined under particular project
constraints. Typical project constraints include: cost,
schedule, and required dependability performance.
At the current stage, however, this decision might
have to involve substantial subjective judgements, due
to the lack of quantitative measures for design diver-
sity and the resulting cost impacts. As more experi-
ences and evidences are gained by researchers in this
field, schemes for achieving an optimal solution prior
to a project start might be available in the future.

In the Six-Language Project, it was decided that dif-
ferent algorithms were inappropriate for investigation
due to tight accuracy requirements for numerical
computations. Based on the availability of computer
resources and language-knowledgeable programmers,
applying different programming languages was con-
sidered as a cost-effective investigation in enforcing
design diversity. Six programming languages of vari-
ous programming style were chosen, consisting two
widely used conventional procedural languages (C
and Pascal), two object-oriented programming
languages (Ada and Modula-2), one logic program-
ming language (Prolog), and one functional program-
ming language (T, a variant of Lisp). It was postu-

lated that different programming languages would
force people to think differently about the application
problem and the program design, and to use different
tools in their programming and testing activities,
which could lead to significant diversity in the
software development efforts.

2.3 Install Error Detection and Recovery Algo-
rithms in Software Specification Phase

The specification of the member versions, to be called
"V-spec," needs to state the functional requirements
completely and unambiguously, while leaving the
widest possible choice of implementations to the N
programming efforts. Sufficient error detection and
recovery algorithms have to be carefully designed and
specified in order to detect related errors that could
potentially lead to coincident failures.

(1) Prescribe the matching features needed by NVX

Each V-spec must prescribe the matching features
that are needed by the NVX to execute the member
versions as an NVS unit in a fault-tolerant manner[4].
The V-spec defines: (a) the functions to be imple-
mented, the time constraints, the inputs, and the initial
state of a member version; (b) requirements for inter-
nal error detection and exception handling (if any)
within the version; (c) the diversity requirements; (d)
the cross-check points ("cc-points") at which the
NVX decision algorithm will be applied to specified
outputs of all versions; (e) the recovery points ("r-
points") at which the NVX can execute community
error recovery[18] for a failed version; (f) the choice
of the NVX decision algorithm and its parameters to
be used at each cc-point and r-point; (g) the response
to each possible outcome of an NVX decision, includ-
ing absence of consensus; and (h) the prevention to
the Consistent Comparison Problem[19].

(2) Avoid diversity-limiting factors

The specifications for simplex software tend to con-
tain guidance not only "what" needs to be done, but
also "how" the solution ought to be approached. Such
specific suggestions of "how" reduce the chances for
diversity among the versions and should be eliminated
from the V-spec. Another potential diversity-limiting
factor is the over-specification of cc-points and r-
points. The installation of cc-points and r-points
enhances error detection and recovery capability, but
it imposes extra common constraints to the programs
and might tend to limit design diversity. The choice
of number of these points and their placements
depend on the size of the software, the control flow of



the application, the number of variables to be checked
and recovered, and the time overhead allowed to per-
form these operations.

(3) Require the enforced diversity

The V-spec may explicitly require the versions to
differ in the "how" of implementation. Diversity may
be specified in the following elements of the NVP
process: (a) training, experience, and location of pro-
grammers; (b) application algorithms and data struc-
tures; (c) software development methods; (d) pro-
gramming languages; (e) programming tools and
environments; (f) testing methods and tools.

(4) Protect the specification

The use of two or more distinct V-specs, derived from
the same set of user requirements, can put extensive
protection against specification errors. Two cases
have been practically explored: a set of three V-specs
(formal algebraic OBJ, semi-formal PDL, and
English) that were derived together[5], [15], and a set
of two V-specs that were derived by two independent
efforts[20]. These approaches provide additional
means for the verification of the V-specs, and offer
diverse starting points for version implementors.

In the Six-Language Project, only absolutely neces-
sary information was supplied to the programmers in
the software specification. The diagrams describing
the major system functions were taken directly from
the original SDD, while the explanatory text was
shortened and made more concise. A further
enhancement to the specification was the introduction
of seven cross-check points, placed right after each
main computation unit, and one recovery point at the
end of the last computation unit. In total, the instru-
mented application required 14 external variables (for
input functions), 68 intermediate and final variables
(for cross-check functions), and 42 state variables (for
recovery function). The resulting specification given
to the programmers was a 64-page English document.

Another characteristics of the Six-Language Project is
that the "(in)consistent comparison problem"[19] did
not exist in the application. This was due to two main
reasons: (1) We did not vote final results on Boolean
or integer values; the final, critical results that
required consensus were always real numbers upon
which cross-checking could be properly applied for
error detection and recovery; (2) Multiple correct
values were allowed for intermediate results during
computation without limiting the potential for diver-
sity in various implementation; however, as imposed

by the specified algorithm, they would converge to the
final results with tight numerical precision for an
accurate comparison. Although there might be appli-
cations appearing unsuitable for NVS investigations,
this automatic landing problem, a typical example in
aeronautic industry, turned out to be appropriate.

2.4 Conduct NVS Development Protocol in Design
and Coding Phase

In this phase, multiple programming teams (P-teams)
start to develop the NVS concurrently according to a
given software specification. The main concern
herein is to maximize the isolation and independence
of each version, and to smooth the overall software
development efforts.

(1) Derive a set of mandatory rules of isolation

The purpose of imposing rules on the P-teams is to
assure the independent generation of programs, which
means that programming efforts are carried out by
individuals or groups that do not interact with respect
to the programming process. The rules of isolation
are intended to identify and eliminate potential "fault
leak" links between the P-teams. The development of
the rules is an on-going process, and the rules are
enhanced when a previously unknown "fault leak" is
discovered and its cause pinpointed. Current isolation
rules include: strict prohibition of any discussion of
technical work between P-teams, widely separated
working areas (offices, computer terminals, etc.) for
each P-team, usage of different host machines for the
software development, protection of all on-line com-
puter files, and safe deposit of technical documents.

(2) Define a rigorous communication and documenta-
tion (C&D) protocol

The C&D protocol imposes rigorous control on the
manner in which all necessary information flow and
documentation efforts are conducted. The main goal
of the C&D protocol is to avoid opportunities for one
P-team to influence another P-team in an uncontroll-
able, and unnoticed manner. In addition, the C&D
protocol documents communications in sufficient
detail to allow a search for "fault leaks" if potentially
related faults are discovered in two or more versions
at some later time.

(3) Form a coordinating team (C-team)

The C-team is the keystone of the C&D protocol. The
major functions of this team are: (a) to prepare the
final texts of the V-specs and of the test data sets; (b)
to set up the implementation of the C&D protocol; (c)



to acquaint all P-teams with the NVP process, espe-
cially rules of isolation and the C&D protocol; (d) to
distribute the V-specs, test data sets, and all other
information needed by the P-teams; (e) to collect all
P-team inquiries regarding the V-specs, the test data,
and all matters of procedure; (f) to evaluate the
inquiries (with help from expert consultants) and to
respond promptly either to the inquiring P-team only,
or to all P-teams via a broadcast; (g) to conduct for-
mal reviews, to provide feedback when needed, and
to maintain synchronization between P-teams; (h) to
gather and evaluate all required documentation, and to
conduct acceptance tests for every version.

In the Six-Language Project, all communications
between the C-team and the P-teams were allowed
only in standard written format for possible post mor-
tems about "fault leaks." Electronic mail between the
C-team and the P-teams has proven to be the most
effective medium for this purpose. Moreover, to
reduce the unnecessary information exchange,
answers to a particular question from a P-team were
only sent to the corresponding P-team. A message
was broadcast to all P-teams only when strictly neces-
sary (e.g., a specification update). This protocol has
avoided a possible bothersome overload of the mes-
sage flood, as was observed in[6]. Ratio of P-team
members to C-team members was 4:1 in the Six-
Language Project, in which the C-team has performed
a satisfactory job.

2.5 Exploit Presence of NVS in Testing Phase

An appealing and promising application of NVS is its
reenforcement for current software verification and
validation procedure during the testing phase, which
is one of the hardest cores of any software system.

(1) Explore comprehensive verification procedures

For software verification, the NVS provides a
thorough coverage for error detection since every
discrepancy among versions needs to be resolved.
Moreover, it is observed that consensus decision of
the existing NVS may be more reliable than that of a
"gold" model or version (usually provided by an
application expert)[21].

(2) Enforce extensive validation efforts

NVP provides protective redundancy around require-
ment misinterpretations and specification ambiguities.
Any single-version approach gets a single interpreta-
tion of the requirement, no matter how carefully a
development procedure has been followed. Espe-

cially when the software development group is small,
everyone can share a misunderstanding. The NVP
approach forces the system requirements and the
software specifications to be assessed from indepen-
dent observations and viewpoints, making the valida-
tion effort more effective and more extensive.

(3) Provide opportunities for "back-to-back" testing

There is a possibility that two or three versions can be
executed "back-to-back" in a testing environment,
completing verification and validation concurrently
with productive execution. However, there is a risk
here. If codes are brought together prematurely, the
independent programming efforts would be violated,
and "fault leaks" might be created among the program
versions. In any case, should this scheme be applied
in a project, it must be done by a testing team
independent of the P-teams (e.g., the C-team), and the
testing results should never be revealed to a P-team, if
they contain information from other versions that
would influence this P-team.

Some experiences in NVS testing were obtained from
the Six-Language Project: (a) a golden reference
model, derived by a Honeywell expert, was less reli-
able than the consensus of multiple program versions
in defining correctness of a computation[3]; (b) multi-
ple teams around testing explored erroneous test cases
effectively; (c) the pace in testing phase was accu-
rately tracked and controlled by monitoring and com-
paring the progress of the multiple teams.

2.6 Demonstrate Acceptance of NVS in Evaluation
Phase

Evaluation of the software fault-tolerance attributes of
an NVS system is performed by means of analytic
modeling, simulation, experiments, or combinations
of those techniques. Many open issues are yet to be
investigated.

(1) Define NVS acceptance criteria

The acceptance criteria of the NVS system depend on
the validity of the conjecture that residual software
faults in separate versions will cause very few, if any,
similar errors at the same cc-points. These criteria
might depend on various applications and their
developing procedures, thus need to be carefully ela-
borated case by case.

(2) Provide evidence of diversity

Diversity requirements support the objective of reduc-
ing common programming errors, since they provide



more natural isolation against "fault leaks" between
the teams of programmers. Furthermore, it is conjec-
tured that the probability of a random, independent
occurrence of faults that produce the same erroneous
results in two or more versions is less when the ver-
sions are more diverse.

(3) Demonstrate effectiveness of diversity

Another conjecture is that even if related faults are
introduced, the diversity of member versions may
cause the erroneous results not to be similar at the
NVX decision. Therefore, evidence and effectiveness
of diversity should be carefully identified and
assessed[22].

(4) Make NVS dependability prediction

For dependability prediction of NVS, there are two
essential aspects: the choice of suitable software
dependability models, and the definition of quantita-
tive measures[23], [24], [25], [26]. These aspects
should also characterize the level of fault-tolerance
present in the NVS system[27], [28]. Usually, the
dependability prediction of the NVS system is com-
pared to that of the single-version baseline system.

In the Six-Language Project, nine flight simulations
engaging various flight modes were imposed on the
six program versions before they were finally
accepted. This represented a total of 18440 program
executions. Parallel to this testing, a structural
analysis for the multiple programs was conducted in
the evaluation phase. The efforts of finding more
faults and the search for evidence of structural diver-
sity among these programs were the major concerns.
An additional benefit of this analysis was that it
necessitated a thorough C-team inspection by code
comparisons, in which seven additional faults that
were not caught by any tests or any P-team inspec-
tions were detected[3].

2.7 Choose and Implement an Appropriate NVS
Maintenance Policy in Operational Phase

The key point to remember regarding NVS mainte-
nance policy in this phase is to follow a philosophy
consistent to the overall design paradigm.

(1) Assure and monitor NVX basic functionality

The basic functionality of NVX should be properly
assured and monitored during the operational phase.
Critical parts of the NVS supervisory system could
themselves be protected by the NVP technique.
Operational status of the NVX running NVS should

be carefully monitored to assure basic functionality.
Any anomalies should be recorded for further investi-
gation in order to improve this NVP paradigm, which
is an on-going effort aiming at achieving ultra-
reliability (e.g., 10-9 failures per hour) for safety-
critical software systems. Such stringent require-
ments could not be achieved without a progressive
evolution of the underlining design process[29].

(2) Keep the achieved diversity work in the mainte-
nance phase

It is postulated that patching the software, as has been
widely used in industry, might more easily reveal the
existence of faults by exhibiting dissimilarities among
the independently generated software versions. This
would be a valuable feature of NVS units since such a
patching technique could create the potential of high
risks in an originally well (and possibly elegantly)
designed single version software. An observation
from the Six-Language Project was that it appeared
extremely difficult to inject similar faults which were
hard-to-detect in the six programs[30]. This was due
to the achieved diversity among the programs.

(3) Follow the same paradigm for modification and
maintenance

As for the modification and maintenance of the NVS
unit, the same design paradigm should be followed,
i.e., a common "specification" of the maintenance
action should be "implemented" by independent
maintenance teams. The potential cost for such a pol-
icy is by no means cheap, but it is hypothesized that
the induced extra cost in maintenance phase, compar-
ing with that for single software, is a factor relatively
lower than the extra cost factor in development phase.
This is due to two reasons: (a) the achieved NVS reli-
ability is supposedly higher than that of a single ver-
sion, leaving fewer costly operational failures to be
experienced; (b) when adding new features to the
operating software, the existence of multiple program
versions should make the testing and certification
tasks easier and more cost-effective. These tasks usu-
ally share a larger portion in maintenance phase than
in development phase.

The configuration of the operational flight simulation
system in the Six-Language Project consisted of sin-
gle or multiple lanes of the control law computation,
obtained from the six accepted program versions, and
the pre-programmed Airplane Model. The Airplane
Model computed the response of an airplane to each
elevator command, with a landing geometry model
describing the deviation relative to a glide slope



beam. Outputs of this model was fed back to each
lane for a subsequent round of execution. In order to
provide a set of inputs to the Airplane Model that
create larger variation magnitudes, and thereby force
off-nominal software operating conditions, random
turbulence in the form of vertical wind gusts was
introduced. Moreover, these testing facilities could
replaced by the Square Wave Model to form an
open-loop testing configuration without feedback, for
the purpose of boundary value analyses.

During the operational testing phase, 1000 flight
simulations, or over five million program executions,
were conducted. Table 2 shows the errors encoun-
tered in each single version, while Table 3 shows dif-
ferent error categories under all combinations of 3-
version and 5-version configurations. Note that the
discrepancies encountered in the operational testing
were called "errors" rather than "failures" due to their
non-criticality in the landing procedure, i.e., a proper
touchdown was still achieved at their presence.

size total number of error
version (l.o.c.) executions errors probability
ada 2256 5127400 0 .0000000
c 1531 5127400 568 .0001108
modula-2 1562 5127400 0 .0000000
pascal 2331 5127400 0 .0000000
prolog 2228 5127400 680 .0001326
t 1568 5127400 680 .0001326
average 1913 5127400 321 .00006267

Table 2: Errors in Individual Versions

3-version configuration 5-version configurationcate-

gory # of cases probability # of cases probability
1. 102531685 .9998409 30757655 .9997807
2. 13385 .0001305 5890 .0001915
3. 210 .000002048 70 .000002275
4. 2720 .00002652 680 .00002210
5. - - 105 .000003413
Total 102548000 1.0000000 30764400 1.0000000

classifications of the category:
1 - no errors
2 - single errors in one version
3 - two distince errors in multiple versions
4 - two coincident errors in multiple versions
5 - three errors in multiple versions

Table 3: Errors in 3-Version and 5-Version
Execution Configurations

From Table 2 we can see that the average error proba-
bility for single version is .00006267. Table 3 shows

that for all the 3-version combinations, the error pro-
bability concerning reliability is .00002857
(categories 3 and 4), and that for safety is .00002652
(category 4). This is a reduction of roughly 2.3. In
all the combinations of 5-version configuration, the
error probability for reliability is .000003413
(category 5; Two of the three errors are coincident,
resulting in no-decision), a reduction by a factor of
18. This probability becomes zero in the safety meas-
urement.

It is cautioned against interpreting these numbers as
the expected dependability improvement of NVS over
single-version software. The coincident errors pro-
duced by the Prolog and T programs were all caused
by one identical fault in both versions, which was due
to the ignorance of a slight specification update that
was made very late in the programming process. This
fault manifested itself right after these program ver-
sions were put together for the flight simulation. To
eliminate causes for this type of faults in the future,
the corresponding amendment to the NVP design
paradigm is to deliberately request confirmation and
validation for late specification changes in the C&D
protocol, and to cautiously conduct multiple-version
verification testing as part of the acceptance criteria.
Had this fault been eliminated in the operational test-
ing, categories 3, 4 and 5 for both 3-version and 5-
version configurations in Table 3 would have been all
zero, resulting in perfect dependability figures.

2.8 Refine by Iterations

Notice that some of the described stages occur at pro-
gressively later times, but backtracking from a given
stage to its previous one may occur at any time.
Alteration of requirements arising from use, revision
of specification, change in environment, and errone-
ous implementation may interrupt the flow of the nor-
mal design paradigm or spawn sub-processes having
their own life cycles. This flexibility might allow the
proposed paradigm to be tailored for other software
engineering development models (e.g., the spiral
model[31]).

3. Conclusions

Although at first considered as an impractical com-
petitor of high-quality single-version programs, N -
version software has gained some significant accep-
tance in academia and industry in the past few years.
Since more and more critical systems are software-
intensive or software-embedded, the trustworthiness
of software is the principal prerequisite for the build-



ing of a trustworthy system. At present, N -version
software might be an attractive alternative that can be
expected to provide a higher level of trustworthiness
and security for critical software units than test or
proof techniques without fault tolerance. The ability
to guarantee that any software fault, as long as it only
affects minority members of an N -version unit, will
be tolerated without service disruption may by itself
be a convincing reason to adapt N -version software as
a safety assurance technique for life-critical applica-
tions. The main focus of the proposed NVP design
paradigm attempts to promote this ability.

In summary, this research has made the following
contributions:
1. An NVP design paradigm has been formulated,
applied, and evaluated. The proposed design para-
digm, which integrates software engineering tech-
niques and NVP design diversity guidelines and
rules, could provide a fundamental model for the
practical development of NVS.

2. The design paradigm has been used during the
entire life cycle of the UCLA/Honeywell Six-
Language Project. This project served as an exper-
imental means to executing and evaluating the pro-
posed paradigm. In reviewing the objectives of the
design paradigm, we believe that all of them were
properly addressed, if not completely accom-
plished, by the experiment. All perceivable causes
of related design faults were eliminated, and causes
of the only two pairs of identical faults were
identifiable and readily removable. The resulting
amendment to the paradigm, as the lessons learned
from this project, is to add extra guidelines in Sec-
tion 2.3 for the production of graphical
specification, in Section 2.4(2) for the confirmation
of every specification update in the C&D protocol,
and in Section 2.6(1) for the inclusion of multiple
version verification testing as part of the NVS
acceptance criteria.

3. The design paradigm tries to explore and support
the idea of design diversity, and intends to prevent
commonalities that could produce related software
faults. The effectiveness of this design paradigm
was shown by the experimental result that identical
faults in two versions have occurred only twice in
the Six-Language Project, comparing with a total of
93 faults found in the six software versions during
the whole project life cycle. Identical faults involv-
ing more than two versions have never been
observed. Moreover, in a mutation testing study
which investigated all the 93 known faults[7],
errors caused by every non-identical fault among
program versions were all distinguishable and

properly detected by the provided fault-tolerant
mechanisms.

As the final concluding remark, it is obvious that
coincident failures are indeed the Achilles’ heel of
NVS, and the main goal of the proposed design para-
digm is to avoid them by two levels of treatment: (a)
investigate design diversity to prevent possible identi-
cal faults, and (b) install error detection and recovery
algorithms to handle potential similar errors. The
advancement of the NVP technique could happen
only when these two aspects are properly addressed
and documented, and we hope that the proposed para-
digm can serve as an evolving basis subject to public
revision and amendment in order to achieve such an
advancement.
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