Contents

5 Dependability Modeling for Fault-Tolerant Software and Systems 109
 5.1 INTRODUCTION ... 109
 5.2 SYSTEM DESCRIPTIONS 110
 5.3 MODELING ASSUMPTIONS AND PARAMETER DEFINITIONS 112
 5.4 SYSTEM LEVEL MODELING 114
 5.5 EXPERIMENTAL DATA ANALYSIS 119
 5.6 A CASE STUDY IN PARAMETER ESTIMATION 124
 5.7 QUANTITATIVE SYSTEM-LEVEL ANALYSIS 128
 5.8 SENSITIVITY ANALYSIS 132
 5.9 DECIDER FAILURE PROBABILITY 134
 5.10 CONCLUSIONS 136
5

Dependability Modeling for Fault-Tolerant Software and Systems

JOANNE BECHTA DUGAN
University of Virginia

MICHAEL R. LYU
Bell Communications Research

ABSTRACT

Three major fault-tolerant software system architectures, distributed recovery blocks, \(N \)-version programming, and \(N \) self-checking programming, are modeled by a combination of fault tree techniques and Markov processes. In these three architectures, transient and permanent hardware faults as well as unrelated and related software faults are modeled in the system-level domain. The model parameter values are determined from the analysis of data collected from a fault-tolerant avionic application. Quantitative analyses for reliability and safety factors achieved in these three fault-tolerant system architectures are presented.

5.1 INTRODUCTION

The complexity and size of current and future software systems, usually embedded in a sophisticated hardware architecture, are growing dramatically. As our requirements for and dependencies on computers and their operating software increase, the crises of computer...
hardware and failure failures also increase. The impact of computer failures to human life ranges from inconvenience (e.g., malfunctions of home appliances), economic loss (e.g., interceptions of banking systems) to life-threatening (e.g., failures of flight systems or nuclear reactors). As the faults in computer systems are unavoidable as the system complexity grows, computer systems used for critical applications are designed to tolerate both software and hardware faults by the configuration of multiple software versions on redundant hardware systems. Many such applications exist in the aerospace industry \cite{Car84, You84, Hil85, Tra88}, nuclear power industry \cite{Ram81, Bis86, Vog88}, and ground transportation industry \cite{Gun88}.

The system architectures incorporating both hardware and software fault tolerance are explored in three typical approaches. The distributed recovery blocks (DRB) scheme \cite{Kim89} combines both distributed processing and recovery block (RB) \cite{Ran75} concepts to provide a unified approach to tolerating both hardware and software faults. Architectural considerations for the support of N-version programming (NVP) \cite{Avi85} were addressed in \cite{Lal88}, in which the FTP-AP system is described. The FTP-AP system achieves hardware and software design diversity by attaching application processors (AP) to the byzantine resilient hard core Fault Tolerant Processor (FTP). N self-checking programming (NSCP) \cite{Lap90} uses diverse hardware and software in self-checking groups to detect hardware and software induced errors and forms the basis of the flight control system used on the Airbus A310 and A320 aircraft \cite{Bri93}.

Sophisticated techniques exist for the separate analysis of fault tolerant hardware \cite{Gei90, Joh88} and software \cite{Grn80, Shi84, Sco87, Cia92}, but only some authors have considered their combined analysis \cite{Lap84, Sta87, Lap92}. This chapter uses a combination of fault tree and Markov modeling as a framework for the analysis of hardware and software fault tolerant systems. The overall system model is a Markov model in which the states of the Markov chain represent the evolution of the hardware configuration as permanent faults occur and are handled. A fault tree model captures the effects of software faults and transient hardware faults on the computation process. This hierarchical approach simplifies the development, solution and understanding of the modeling process. We parameterize the values of each model by a recent fault-tolerant software project \cite{Lyu93} to perform reliability and safety analysis of each architecture.

The chapter is organized as follows. In Section 5.2 we give a description of the three system architectures studied in this chapter. Section 5.3 provides the overall modeling assumptions and parameter definitions. In Section 5.4 we present the system level models, including reliability and safety models, of the three architectures. Experimental data analysis is presented in Section 5.5, and a case study from a fault-tolerant software project to determine the model parameter values is presented in Section 5.6. Section 5.7 describes a quantitative system-level reliability and safety analysis of the three architectures. Sensitivity analysis of model parameters is shown in Section 5.8, while the impact of decider failure probability is given in Section 5.9. Finally Section 5.10 contains some concluding remarks.

5.2 SYSTEM DESCRIPTIONS

Figure 5.1 shows the hardware and error confinement areas \cite{Lap90} associated with the three architectures (DRB, NVP, and NSCP) being considered in this chapter. The systems are defined by the number of software variants, the number of hardware replications, and the decision algorithm. The hardware error confinement area (HECA) is the lightly shaded region,
while the software error confinement area (SECA) is the darkly shaded region. The HECA or SECA covers the region of the system affected by faults in that component. For example, the HECA covers the software component since the software component will fail if that hardware experiences a fault. The SECA covers only the software, as no other components will be affected by a software fault.

5.2.1 DRB: Distributed Recovery Block

The recovery block approach to software fault tolerance [Ran75] is the software analogy of “standby-sparing,” and utilizes two or more alternate software modules and an acceptance test. The acceptability of a computation performed by the primary alternate is determined by an acceptance test. If the results are deemed unacceptable, the state of the system is rolled back and the computation is attempted by the secondary alternate. The alternate software modules are designed produce the same or similar results as the primary but are deliberately designed to be as uncorrelated (orthogonal) as possible [Hec86].

There are at least two different ways to combine hardware redundancy with recovery blocks. In [Lap90], the RB/1/1 architecture duplicates the recovery block on two hardware components. In this architecture, both hardware components execute the same variant, and hardware faults are detected by a comparison of the acceptance test and computation results. The DRB (Figure 5.1a) [Kim89] executes different alternates on the different hardware components in order to improve performance when an error is detected. In the DRB system, one processor executes the primary alternate while the other executes the secondary. If an error is detected in the primary results, the results from the secondary are immediately available. The dependability analysis of both systems is identical.

5.2.2 NVP: N-Version Programming

In the NVP method [Avi85, Lyu93], N independently developed software versions are used to perform the same tasks. They are executed concurrently using identical inputs. Their outputs are collected and evaluated by a decider. If the outputs do not all match, the output produced by the majority of the versions is taken to be correct. NVP/1/1 (Figure 5.1b) [Lap90] consists of three identical hardware components, each running a distinct software version. It is a direct mapping of the NVP method onto hardware. Throughout this chapter we consider a 3-version implementation of an NVP system.
5.2.3 NSCP: N Self-Checking Programming

The NSCP architecture considered in this chapter (Figure 5.1c) is comprised of four software versions and four hardware components, each grouped in two pairs, essentially dividing the system into two halves. The hardware pairs operate in hot standby redundancy with each hardware component supporting one software version. The version pairs form self-checking software components. A self-checking software component consists of either two versions and a comparison algorithm or a version and an acceptance test. In this case, error detection is done by comparison. The four software versions are executed and the results of V1 and V2 are compared against each other, as are the results of V3 and V4. If either pair of results do not match, they are discarded and only the remaining two are used. If the results do match, the results of the two pairs are then compared. A hardware fault causes the software version running on it to produce incorrect results, as would a fault in the software version itself. This results in a discrepancy in the output of the two versions, causing that pair to be ignored.

5.3 MODELING ASSUMPTIONS AND PARAMETER DEFINITIONS

5.3.1 Assumptions

Task computation. The computation being performed is a task (or set of tasks) which is repeated periodically. A set of sensor inputs is gathered and analyzed and a set of actuations are produced. Each repetition of a task is independent. The goal of the analysis is the probability that a task will succeed in producing an acceptable output, despite the possibility of hardware or software faults. More interesting task computation processes could be considered using techniques described in [Lap92] and [Wei91]. We do not address timing or performance issues in this model. See [Tai93] for a performability analysis of fault tolerant software techniques.

Software failure probability. Software faults exist in the code, despite rigorous testing. A fault may be activated by some random input, thus producing an erroneous result. Each instantiation of a task receives a different set of inputs which are independent. Thus, a software task has a fixed probability of failure when executed, and each iteration is assumed to be statistically independent. Since we do not assign a failure rate to the software, we do not consider reliability-growth models.

Coincident software failures in different versions. If two different software versions fail on the same input, they will produce either similar or different results. In this work, we use the Arlat/Kanoun/Laprie [Arl90] model for software failures and assume that similar erroneous results are caused by related software faults and different erroneous results which are simultaneously activated are caused by unrelated (called independent in their terminology) software faults. There is one difference between our model and that of Arlat/Kanoun/Laprie in that our model assumes that related and unrelated software faults are statistically independent while their’s assumes that related and unrelated faults are mutually exclusive. Further, this treatment of unrelated and related faults differs considerably from models for correlated failures [Eck85, Lit89, Nic90], in which unrelated and related software failures are not differentiated. Rather, software faults are considered to be statistically correlated and models for correlation are considered and proposed. A more detailed comparison of the two approaches is given in [Dug94].
Permanent hardware faults. The arrival (activation) rate of permanent physical faults is constant and will be denoted by λ.

Transient hardware faults. Transient hardware faults are modeled separately from permanent hardware faults. A transient hardware fault is assumed to upset the software running on the processor and produce an erroneous result which is indistinguishable from an input-activated software error. We assume that the lifetime of transient hardware faults is short when compared to the length of a task computation, and thus assign a fixed probability to the occurrence of a transient hardware fault during a single computation.

Nonmaintained systems. For the comparisons drawn from this study, we assume that the systems are unmaintained. Repairability and maintainability could certainly be included in the Markov model; we have chosen not to include them to make the comparisons clearer.

5.3.2 Parameter Definitions

The parameters used in the models are listed below.

- λ: the arrival rate for a permanent hardware fault to a single processing element.
- c: the coverage factor; the probability that the system can automatically recover from a permanent hardware fault. The system fails if it is unable to automatically recover from a fault.
- P_{HT}: the probability that a transient hardware fault occurs during a single task computation.
- P_{RV}: for each version, the probability that an unrelated software fault is activated during a task computation.
- P_{RV}: for each pair of versions, the probability that a related fault between the two versions is activated during a task computation.
- P_{RAIL}: the probability that a related fault common to all versions is activated during a single task computation.
- P_D: the probability that the decider fails, either by accepting an incorrect result or by rejecting a correct result.

5.3.3 Terminology

Some of the terminology used in the system descriptions and comparisons is summarized below and defined more explicitly when first used.

- **DRB:** distributed recovery block system
- **NVP:** N-version programming system
- **NSCP:** N self-checking programming system
- **related fault:** a single fault which affects two or more software versions, causing them to produce similar incorrect results
- **unrelated fault:** a fault which affects only a single software version, causing it to produce an incorrect result
- **coincident fault:** the simultaneous activation of two or more different hardware and/or software faults.
- **by-case data:** Software error detection is performed at the end of each test case, where a test case consists of approximately 5280 50 ms. time frames.
- **by-frame data:** Software error detection is performed at the end of each time frame, where a time frame consists of approximately 50 ms. of execution.
5.4 SYSTEM LEVEL MODELING

5.4.1 Modeling Methodology

A dependability model of an integrated fault tolerant system must include at least three different factors: computation errors, system structure and coverage modeling. In this chapter we concentrate on the first two, and use coverage modeling techniques that have been developed elsewhere [Dug89].

The computation process is assumed to consist of a single software task that is executed repeatedly, such as would be found in a process control system. The software component performing the task is designed to be fault tolerant. A single task iteration consists of a task execution on a particular set of input values read from sensors. The output is the desired actuation to control the external system. During a single task iteration, several types of events can interfere with the computation. The particular set of inputs could activate a software fault in one or more of the software versions and/or the decider. Also, a hardware transient fault could upset the computation but not cause permanent hardware damage. The combinations of software faults and hardware transients that can cause an erroneous output for a single computation is modeled with a fault tree. The solution of the fault tree yields the probability that a single task iteration produces an erroneous output. We note that in the more general case where more than one task is performed, the analyses of each task can be combined accordingly.

The longer-term system behavior is affected by permanent faults and component repair which require system reconfiguration to a different mode of operation. The system structure is modeled by a Markov chain, where the Markov states and transitions model the long term behavior of the system as hardware and software components are reconfigured in and out of the system. Each state in the Markov chain represents a particular configuration of hardware and software components and thus a different level of redundancy. The fault and error recovery process is captured in the coverage parameter used in the Markov chain [Dug89].

The short-term behavior of the computation process and the long-term behavior of the system structure are combined as follows. For each state in the Markov chain, there is a different combination of hardware transients and software faults that can cause a computation error, and thus a different probability that an unacceptable result is produced.

The fault tree model solution produces, for each state i in the Markov model, the probability q_i that an output error occurs during a single task computation while the state is in state i. The Markov model solution produces $P_i(t)$, the probability that the system is in state i at time t. The overall model combines these two measures to produce $Q(t)$, the probability that an unacceptable result is produced at time t.

$$Q(t) = \sum_{i=1}^{n} q_i P_i(t)$$

We assume that the system is unable to produce an acceptable result while in the failure state, thus $q_{fail} = 1$.

The models of the three systems being analyzed (DRB, NVP and NSCP; see Figure 5.1) consist of two fault trees and one Markov model. Since each of the systems can tolerate one permanent hardware fault, there are two operational states in the Markov chain. The initial state in each of the Markov chains represents the full operational structure, and an intermediate state represents the system structure after successful automatic reconfiguration to handle a
single permanent hardware fault. The reconfiguration state provides a degraded level of fault
tolerance, as some failed hardware component has been discarded. There is a single failure
state which is reached when the second hard physical fault is activated or when a coverage
failure occurs. The full analytical solution of the models appears in [Dug95].

5.4.2 Reliability Models
The three-part reliability model of DRB is shown in Figure 5.2. The Markov model details
the system structure. In the initial state the recovery block structure is executed on redundant
hardware. In the reconfigured state, after the the activation of a permanent hardware fault,
a single copy of the RB is executed. The first fault tree details the causes of unacceptable
results while in the initial configuration. A single task computation will produce unacceptable
results if the software module fails (both primary and secondary fail on the same input) or if
both hardware components experience transient faults, or if the decider fails. The second fault
tree details the combination of events which cause an unacceptable result in the reconfigured
state, where a single recovery block module executes on the remaining processor. The key
difference between the two fault trees is the reduction in hardware redundancy.

Figure 5.3 shows the reliability model of NVP. With three software versions running on
three separate processors, several different failure scenarios must be considered, including
coincident unrelated faults as well as related software faults, coincident hardware transients
and combinations of hardware and software faults. For the Markov model, we assume that
the system is reconfigured to simplex mode after the first permanent hardware fault. In this
reconfigured state, an unreliable result is caused by either a hardware transient or a software
fault activation, as shown in the second fault tree of Figure 5.3.

The reliability model of the NSCP system is shown in Figure 5.4. The Markov model shows
that the system discards both a failed processor and its mate after the first permanent hardware
fault occurs. When in the initial state, a two unrelated errors (one in each half of the system) are
necessary to cause a mismatch. However, a single related software fault in two versions results
in an unacceptable result. If a related error crosses the SECA boundary, then both halves will
fail the comparison test. If an unrelated error affects both versions in the same half, then each
half will pass the comparison test, but the higher level comparison (between the results from
the two halves) will cause a mismatch.

5.4.3 Safety Models
The safety models for the three systems are similar to the reliability models, in that they consist
of a Markov model and two associated fault trees. The major difference between a reliability
and safety analysis is in the definition of failure. In the reliability models, any unacceptable
result (whether or not it is detected) is considered a failure. In a safety model, a detected error
is assumed to be handled by the system in a fail-safe manner, so an unsafe result only occurs
if an unacceptable result is not detected.

In the Markov part of the safety models, two failure states are defined. The fail-safe state is
reached when the second covered permanent hardware fault is activated. The fail-unsafe state
is reached when any uncovered hardware fault occurs. The system is considered safe when
in the absorbing fail-safe state. This illustrates a key difference between a reliability analysis
and a safety analysis. A system which is shut-down safely (and thus is not operational) is
inherently safe, although it is certainly not reliable.
Markov model of system structure

Computation error model for initial state

Computation error model for intermediate state after successful reconfiguration

Figure 5.2 Reliability model of DRB
Figure 5.3 Reliability model of NVP
Figure 5.4 Reliability model of NSCP
The safety model of DRB, shown in Figure 5.5, shows that an acceptance test failure is the only software cause of an unsafe result. As long as the acceptance test does not accept an incorrect result, then a safe output is assumed to be produced. The hardware redundancy does not increase the safety of the system, as the system is vulnerable to the acceptance test in both states. An interesting result of a safety analysis is that the hardware redundancy can actually decrease the safety of the system, since the system is perfectly safe when in the fail-safe state, and the hardware redundancy delays absorption into this state [Vai93].

The NVP safety model (Figure 5.6) shows that the safety of the NVP system is vulnerable to related faults as well as decider faults. In the Markov model, we assume that the reconfigured state uses two versions (rather than one, as was assumed for the reliability model) so as to increase the opportunity for comparisons between alternatives and thus increase error detectability.

The NSCP safety model (Figure 5.7) shows the same vulnerability of the NSCP system to related faults. When the system is fully operational, all 2-way related faults will be detected by the self-checking arrangements, leaving the system vulnerable only to a decider faults, and a fault affecting all versions similarly. After reconfiguration, a related fault affecting both remaining versions could also produce an undetected error.

5.5 EXPERIMENTAL DATA ANALYSIS

A quantitative comparison of the three fault tolerant systems described in the previous section requires an estimation of reasonable values for the model parameters. The estimation of failure probabilities for hardware components has been considered for a number of years, and reasonable estimates exist for generic components (such as a processor). However, the
estimation of software version failure probability is less accessible, and the estimation of the probability of related faults is more difficult still. In this section we will describe a methodology for estimating model parameter values from experimental data followed by a case study using a set of experimental data.

Several experiments in multi-version programming have been performed in the past decade. Among other measures, most experiments provide some estimate of the number of times different versions fail coincidentally. For example, the NASA-LaRC study involving 20 programs from 4 universities [Eck91] provides a table listing how many instances of coincident failures were detected. The Knight-Leveson study of 28 versions [Kni86] provides an estimated probability of coincident failures. The Lyu-He study [Lyu93] considered three and five version configurations formed from 12 different versions. These sets of experimental data can be used to estimated the probabilities for the basic events in a model of a fault tolerant software system.
Coincident failures in different versions can arise from two distinct causes. First, two (or more) versions may both experience unrelated faults that are activated by the same input. If two programs fail independently, there is always a finite probability that they will fail coincidentally, else the programs would not be independent. A coincident failure does not necessarily imply that a related fault has been activated. Second, the input may activate a fault that is related between the two versions. In order to estimate the probabilities of unrelated and related faults, we will determine the (theoretical) probability of failure by unrelated faults. To the extent that the observed frequency of coincident faults exceeds this value, we will attribute the excess to related faults.

The experimental data is necessarily coarse. As it is infeasible to exhaustively test a single version, it is more difficult to exhaustively observe every possible instance of coincident failures in multiple versions. The experimental data provides an estimate of the probabilities of coincident failures, rather than the exact value. Considering the coarseness of the experimental data, we will limit ourselves to the estimation of three parameter values: P_V, the probability of an unrelated fault in a version; P_{RV}, the probability of a related fault between two versions; and P_{RALL}, the probability of a related fault in all versions. To attempt to estimate more, for example the probability of a related fault that affects exactly three versions or exactly four
versions, seems unreasonable. Notice that we will assume that the versions are all statistically identical, and do not try to attempt to estimate different probabilities of failure for each individual version, or each individual case of two simultaneous versions.

The first parameter that we estimate is P_V, the probability that a single version fails. The estimate for P_V comes from considering F_0 (the observed frequency of no failures) and F_1 (the observed frequency of exactly one failure). When considering N different versions processing the same input, the probability that there are no failures is set equal to the observed frequency of no failures.

$$F_0 = (1 - P_V)^N (1 - P_{RV})^\binom{N}{2} (1 - P_{RALL})$$ \hspace{1cm} (5.1)

Then, considering the case where only a single failure occurs, we observe that a single failure can occur in any of the N programs, and implies that a related fault does not occur (else more than one version would be affected). This is then set equal to the observed frequency of a single failure of the N versions.

$$F_1 = N(1 - P_V)^{N-1} P_V (1 - P_{RV})^\binom{N}{2} (1 - P_{RALL})$$ \hspace{1cm} (5.2)

Dividing equation 5.1 by equation 5.2 yields an estimate for P_V.

$$P_V = \frac{F_1}{N F_0 + F_1}$$ \hspace{1cm} (5.3)

Estimating the probability of a related fault between two versions, P_{RV}, is more involved, but follows the same basic procedure. First, consider the case where exactly two versions are observed to fail coincidentally. This event can be caused by one of three events:

- the simultaneous activation of two unrelated faults, or
- the activation of a related fault between two versions or
- both (the activation of two unrelated and a related fault between the two versions).

The probabilities of each of these events will be determined separately. The probability that unrelated faults are simultaneously activated in two versions (and no related faults are activated) is

$$\binom{N}{2} P_V^2 (1 - P_V)^{N-2} (1 - P_{RV})^\binom{N}{2} (1 - P_{RALL})$$ \hspace{1cm} (5.4)

The probability that a single related fault (and no unrelated fault) is activated is given by

$$\binom{N}{2} (1 - P_V)^N P_{RV} (1 - P_{RV})^\binom{N}{2} (1 - P_{RALL})$$ \hspace{1cm} (5.5)

Finally, the probability that both an unrelated fault and two related faults are simultaneously activated is give by

$$\binom{N}{2} P_V^2 P_{RV} (1 - P_V)^{N-2} (1 - P_{RV})^\binom{N}{2} (1 - P_{RALL})$$ \hspace{1cm} (5.6)

Because the three events are disjoint, we can sum their probabilities, and set the sum equal to
Figure 5.8 Fault tree model used to estimate P_{RALL} for a 3-version system

F_2, the observed frequency of two coincident errors.

$$F_2 = \binom{N}{2}(P_{V}^2 + P_{RV} - P_{V}^2 P_{RV})(1 - P_{V})^{(N-2)}(1 - P_{RV})^{(N-3)}(1 - P_{RALL}) \quad (5.7)$$

Dividing equation 5.7 by 5.2 and performing some algebraic manipulations yields an estimate for P_{RV} which depends on the experimental data and the previously derived estimate for P_{V}.

$$P_{RV} = \frac{2F_2P_V(1 - P_V) - (N - 1)F_1P_V^2}{2F_2P_V(1 - P_V) + (N - 1)F_1(1 - P_V^2)} \quad (5.8)$$

The estimate for P_{RALL} is more involved, as there are many ways in which all versions can fail. There may be a related fault between all versions that is activated by the input, or all versions might simultaneously fail from a combination of unrelated and related faults. Consider the case where there are three versions. In addition to the possibility of a single fault affecting all three versions, all three versions could experience a simultaneous activation of unrelated faults, or one of three combinations of an unrelated and related fault affecting different versions may be activated. The fault tree in Figure 5.8 illustrates the combinations of events which can cause all three versions to fail coincidentally. A simple (but inelegant) methodology for estimating P_{RALL} could use the previously determined estimates for P_{V} and P_{RV} and repeated guessing for P_{RALL} in the solution of the fault tree in Figure 5.8, until the fault tree solution for the probability of simultaneous errors approximates the observed frequency of all versions failing simultaneously.

The fault tree model for three versions can easily be generalized to the case where there are N versions. The top event of the fault tree is an OR gate with two inputs, an AND gate showing all versions failing, and a basic event, representing a related fault that affects all versions simultaneously. The AND gate has N inputs, one for each version. Each of the N
inputs to the AND gate is itself an OR gate with N inputs, all basic events. Each OR gate has one input representing an unrelated fault in the version, and $N - 1$ inputs representing related faults with each other possible version.

5.6 A CASE STUDY IN PARAMETER ESTIMATION

In this section we analyze experimental data from a recent multiversion programming experiment to determine parameter values for our models of fault-tolerant software systems. The data is derived from an experimental implementation of a real-world automatic (i.e., computerized) airplane landing system, or so-called “autopilot.” The software systems of this project were developed and programmed by 15 programming teams at the University of Iowa and the Rockwell/Collins Avionics Division. A total of 40 students (33 from ECE and CS departments at the University of Iowa, 7 from the Rockwell International) participated in this project to independently design, code, and test the computerized airplane landing system, as described in the Lyu-He study [Lyu93].

5.6.1 System Description

The software project in the Lyu-He study was scheduled and conducted in six phases: (1) Initial design phase for four weeks; (2) Detailed design phase for two weeks; (3) Coding phase for three weeks; (4) Unit testing phase for one week; (5) Integration testing phase for two weeks; (6) Acceptance testing phase for two weeks. It is noted that the acceptance testing was a two-step formal testing procedure. In the first step (AT1), each program was run in a test harness of four nominal flight simulation profiles. For the second step (AT2), one extra simulation profile, representing an extremely difficult flight situation, was imposed. By the end of the acceptance testing phase, 12 of the 15 programs passed the acceptance test successfully and were engaged in operational testing for further evaluations. The average size of these programs were 1564 lines of uncommented code, or 2558 lines when comments were included. The average fault density of the program versions which passed AT1 was 0.48 faults per thousand lines of uncommented code. The fault density for the final versions was 0.05 faults per thousand lines of uncommented code.

5.6.1.1 THE NVP OPERATIONAL ENVIRONMENT

The operational environment for the application was conceived as airplane/autopilot interacting in a simulated environment, as shown in Figure 5.9. Three channels of diverse software independently computed a surface command to guide a simulated aircraft along its flight path. To ensure that significant command errors could be detected, random wind turbulences of different levels were superimposed in order to represent difficult flight conditions. The individual commands were recorded and compared for discrepancies that could indicate the presence of faults.

This configuration of a 3-channel flight simulation system consisted of three lanes of control law computation, three command monitors, a servo control, an Airplane model, and a turbulence generator. The lane computations and the command monitors would be the accepted software versions generated by the programming teams. Each lane of independent computation monitored the other two lanes. However, no single lane could make the decision...
as to whether another lane was faulty. A separate servo control logic function was required to make that decision. The aircraft mathematical model provided the dynamic response of current medium size, commercial transports in the approach/landing flight phase. The three control signals from the autopilot computation lanes were inputs to three elevator servos. The servos were force-summed at their outputs, so that the mid-value of the three inputs became the final elevator command. The Landing Geometry and Turbulence Generator were models associated with the Airplane simulator.

In summary, one run of flight simulation was characterized by the following five initial values regarding the landing position of an airplane: (1) initial altitude (about 1500 feet); (2) initial distance (about 52800 feet); (3) initial nose up relative to velocity (range from 0 to 10 degrees); (4) initial pitch attitude (range from -15 to 15 degrees); and (5) vertical velocity for the wind turbulence (0 to 10 ft/sec). One simulation consisted of about 5280 iterations of lane command computations (50 milliseconds each) for a total landing time of approximately 264 seconds.

5.6.1.2 OPERATIONAL ERROR DISTRIBUTION

During the operational phase, 1000 flight simulations, or over five million program executions, were conducted. For a conservative estimation of software failures in the NVP system, we took the program versions which passed the AT1 for study. The reason behind this was that had the Acceptance Test not included an extreme situation of AT2, more faults would have remained in the program versions. We were interested in seeing how the remaining faults would be manifested during the operational testing, and how they would or would not be tolerated in various NVP configurations.

Table 5.1 shows the software failures encountered in each single version. We examine two levels of granularity in defining software execution errors and coincident errors: “by-case” or “by-frame.” The first level was defined based on test cases (1000 in total). If a version failed at any time in a test case, it was considered failed for the whole case. If two or more versions failed in the same test case (no matter at the same time or not), they were said to have coincident errors for that test case. The second level of granularity was defined based
Table 5.1 Error characteristics for individual versions

<table>
<thead>
<tr>
<th>Version Id</th>
<th>Number of failures</th>
<th>Prob. by-case</th>
<th>Prob. by-frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>510</td>
<td>0.51</td>
<td>0.000096574</td>
</tr>
<tr>
<td>γ</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ε</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ζ</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>η</td>
<td>1</td>
<td>0.001</td>
<td>0.000000189</td>
</tr>
<tr>
<td>θ</td>
<td>360</td>
<td>0.36</td>
<td>0.000068169</td>
</tr>
<tr>
<td>κ</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>λ</td>
<td>730</td>
<td>0.73</td>
<td>0.000138233</td>
</tr>
<tr>
<td>μ</td>
<td>140</td>
<td>0.14</td>
<td>0.000026510</td>
</tr>
<tr>
<td>ν</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ξ</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>θ</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Average</td>
<td>145.1</td>
<td>0.1451</td>
<td>0.000027472</td>
</tr>
</tbody>
</table>

Table 5.2 Error characteristics for two-version configurations

<table>
<thead>
<tr>
<th>Category</th>
<th>BY-CASE</th>
<th></th>
<th>BY-FRAME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cases</td>
<td>Frequency</td>
<td>Number of cases</td>
<td>Frequency</td>
</tr>
<tr>
<td>F_0 - no errors</td>
<td>53150</td>
<td>0.8053</td>
<td>348522546</td>
<td>0.99994786</td>
</tr>
<tr>
<td>F_1 - single error</td>
<td>11160</td>
<td>0.1691</td>
<td>18128</td>
<td>0.00005201</td>
</tr>
<tr>
<td>F_2 - two coincident</td>
<td>1690</td>
<td>0.0256</td>
<td>46</td>
<td>0.00000013</td>
</tr>
<tr>
<td>Total</td>
<td>66000</td>
<td>1.0000</td>
<td>348540720</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

on execution time frames (5,280,920 in total). Errors were counted only at the time frame upon which they manifested themselves, and coincident errors were defined to be the multiple program versions failing at the same time frame in the same test case (with or without the same variables and values).

In Table 5.1 we can see that the average failure probability for single version is 0.145 measured by-case, or 0.000027 measured by-frame.

5.6.2 Data Analysis and Parameter Estimation

The 12 programs accepted in the Lyu-He experiment were configured in pairs, whose outputs were compared for each test case. Table 5.2 shows the number of times that 0, 1, and 2 errors were observed in the 2-version configurations. The data from Table 5.2 yields an estimate of $P_V = 0.095$ for the probability of activation of an unrelated fault in a 2-version configuration, and an estimate of $P_{RV} = 0.0167$ for the probability of a related fault for the by-case data. The by-frame data in Table 5.2 produces $P_V = 0.000026$ and $P_{RV} = 1.3 \times 10^{-7}$ as estimates.

Next, the 12 versions were configured in sets of three programs. Table 5.3 shows the number of times that 0, 1, 2, and 3 errors were observed in the 3-version configurations. The data from Table 5.3 yields an estimate of $P_V = 0.0958$ for the probability of activation of an independent fault in a 3-version configuration. Table 5.4 compares the probability of activation of 1, 2 and 3 faults as predicted by a model assuming independence between versions, with the observed values. The observed frequency of two simultaneous errors is lower than predicted by the
Table 5.3 Error characteristics for three-version configurations

<table>
<thead>
<tr>
<th>Category</th>
<th>BY-CASE</th>
<th></th>
<th>BY-FRAME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cases</td>
<td>Frequency</td>
<td>Number of cases</td>
<td>Frequency</td>
</tr>
<tr>
<td>F_0 - no errors</td>
<td>163370</td>
<td>0.7426</td>
<td>1161707015</td>
<td>0.99991790</td>
</tr>
<tr>
<td>F_1 - single error</td>
<td>51930</td>
<td>0.2360</td>
<td>948835</td>
<td>0.00008163</td>
</tr>
<tr>
<td>F_2 - two coincident</td>
<td>4440</td>
<td>0.0202</td>
<td>550</td>
<td>0.00000047</td>
</tr>
<tr>
<td>F_4 - three coincident</td>
<td>260</td>
<td>0.0012</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>Total</td>
<td>220000</td>
<td>1.0000</td>
<td>1161802400</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Table 5.4 Comparison of independent model with observed data for 3 versions (by-case)

<table>
<thead>
<tr>
<th>No. errors activated</th>
<th>Independent model</th>
<th>Observed frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7393</td>
<td>0.7426</td>
</tr>
<tr>
<td>1</td>
<td>0.2350</td>
<td>0.2360</td>
</tr>
<tr>
<td>2</td>
<td>0.0249</td>
<td>0.0202</td>
</tr>
<tr>
<td>3</td>
<td>0.0009</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

independent model, while the observed frequency of three simultaneous errors is higher than predicted. For this set of data we will assume therefore that $P_{RV} = 0$ and will instead derive an estimate for P_{RALL}.

Using the assumption that $P_{RV} = 0$, the probability that three simultaneous errors are activated is given by

$$F_3 = P_V^3 + P_{RALL} - P_V^3 P_{RALL},$$

yielding an estimate of $P_{RALL} = 0.0003$ for the by-case data.

The by-frame data in Table 5.3 produces $P_V = 0.000027$ as an estimate. For this by-frame data, when the failure probabilities which are predicted by the independent model are compared to the actual data (Table 5.5), the observed frequency of two errors is two orders of magnitude higher than the predicted probability. There were no cases for which all three programs produced erroneous results. Thus, we will estimate $P_{RALL} = 0$ and derive an estimate for $P_{RV} = 1.57 \times 10^{-7}$.

The same 12 programs which passed the acceptance testing phase of the software development process were analyzed in combinations of four programs, the results are shown in Table 5.6. The by-case data from Table 5.6 yields an estimate of $P_V = 0.106$ for the probability of activation of an unrelated fault in a 4-version configuration. Table 5.7 compares the probability of activation of 1, 2, 3 and 4 faults as predicted by a model assuming independence between versions, with the observed values. The observed frequency of two simultaneous errors is lower than predicted by the independent model, while the observed frequency of three simultaneous errors is higher than predicted. For this set of data we will assume that

Table 5.5 Comparison of independent model with observed data for 3 versions (by-frame)

<table>
<thead>
<tr>
<th>No. errors activated</th>
<th>Independent model</th>
<th>Observed frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.999919</td>
<td>0.999918</td>
</tr>
<tr>
<td>1</td>
<td>0.000081</td>
<td>0.0000816</td>
</tr>
<tr>
<td>2</td>
<td>2×10^{-9}</td>
<td>5×10^{-7}</td>
</tr>
<tr>
<td>3</td>
<td>2×10^{-14}</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 5.6 Error characteristics for four-version configurations

<table>
<thead>
<tr>
<th>Category</th>
<th>BY-CASE</th>
<th>BY-FRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cases</td>
<td>Frequency</td>
</tr>
<tr>
<td>F_0 - no errors</td>
<td>322010</td>
<td>0.65052</td>
</tr>
<tr>
<td>F_1 - single error</td>
<td>152900</td>
<td>0.30889</td>
</tr>
<tr>
<td>F_2 - two coincident</td>
<td>16350</td>
<td>0.03303</td>
</tr>
<tr>
<td>F_3 - three coincident</td>
<td>3700</td>
<td>0.00747</td>
</tr>
<tr>
<td>F_4 - four coincident</td>
<td>40</td>
<td>0.00008</td>
</tr>
<tr>
<td>Total</td>
<td>495000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Table 5.7 Comparison of independent model with observed data for 4 versions (by-case)

<table>
<thead>
<tr>
<th>No. errors activated</th>
<th>Independent model</th>
<th>Observed frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.63878</td>
<td>0.65052</td>
</tr>
<tr>
<td>1</td>
<td>0.30296</td>
<td>0.30889</td>
</tr>
<tr>
<td>2</td>
<td>0.05388</td>
<td>0.03303</td>
</tr>
<tr>
<td>3</td>
<td>0.00426</td>
<td>0.00747</td>
</tr>
<tr>
<td>4</td>
<td>0.00013</td>
<td>0.00008</td>
</tr>
</tbody>
</table>

$P_{BV} = 0$. The observed frequency of four simultaneous failures is also lower than predicted by the independent model, so we will also assume that $P_{RA} = 0$. The by-frame data in Table 5.6 produces $P_V = 0.000026$ and $P_{RA} = 1.3 \times 10^{-7}$ as estimates.

Table 5.8 summarizes the parameters estimated from the Lyu-He data. The parameter values for the three systems were applied to the fault tree models shown in Figure 5.10, using both the by-case and by-frame data. The predicted failure probability using the derived parameters in the fault tree models agrees quite well with the observed data, as listed in Table 5.8. The observed failure frequency for the 4-version configuration is difficult to estimate because of the possibility of a 2-2 split vote. The data for the occurrences of such a split are not available. Thus the observed failure frequency in Table 5.8 is a lower bound (it is the sum of the observed cases of 3 or 4 coincident failures). If the data on a 2-2 split were available, then the probability of a 2-2 split would be added to the observed frequency values listed in Table 5.8. For the by-frame data, for example, if 5% of the 2 coincident failures produced similar wrong results, then the model and the observed data would agree quite well.

The parameters are derived from a single experimental implementation and so may not be generally applicable. Similar analysis of other experimental data will help to establish a set of reasonable parameters that can be used in models that are developed during the design phase of a fault tolerant system.

5.7 QUANTITATIVE SYSTEM-LEVEL ANALYSIS

This section contains a quantitative analysis of the system-level reliability and safety models for the DRB, NVP and NSCP systems. The software parameter values used in this study are those derived from the Lyu-He data, with the exception of values for decider failure. For the DRB system models, the parameter values from the 2-version configurations are used; for the
Figure 5.10 Fault tree models for 2, 3 and 4 version systems

Table 5.8 Summary of parameter values derived from Lyu-He data

<table>
<thead>
<tr>
<th></th>
<th>2-version model</th>
<th>3-version model</th>
<th>4-version model</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY-CASE DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_V</td>
<td>0.095</td>
<td>0.0958</td>
<td>0.106</td>
</tr>
<tr>
<td>P_{RV}</td>
<td>0.0167</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_{RALL}</td>
<td>0.0003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Predicted failure probability (from the model)</td>
<td>0.0265</td>
<td>0.0262</td>
<td>0.0044</td>
</tr>
<tr>
<td>Observed failure probability (from the data)</td>
<td>0.0256</td>
<td>0.0214</td>
<td>0.0076</td>
</tr>
<tr>
<td>BY-FRAME DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_V</td>
<td>0.000026</td>
<td>0.000027</td>
<td>0.000026</td>
</tr>
<tr>
<td>P_{RV}</td>
<td>1.3×10^{-7}</td>
<td>1.57×10^{-7}</td>
<td>1.3×10^{-7}</td>
</tr>
<tr>
<td>P_{RALL}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Predicted failure probability (from the model)</td>
<td>1.31×10^{-7}</td>
<td>4.73×10^{-7}</td>
<td>7.8×10^{-7}</td>
</tr>
<tr>
<td>Observed failure probability (from the data)</td>
<td>1.32×10^{-7}</td>
<td>4.73×10^{-7}</td>
<td>0</td>
</tr>
</tbody>
</table>
NVP system models, we use the parameters derived from the 3-version configurations, while the NSCP model uses the parameters derived from the 4-version configurations.

Since no decider failures were observed during the experimental implementation, it is difficult to estimate this probability. The decider used for the recovery block system is an acceptance test, and for this application is likely to be significantly more complex than the comparator used for the NVP and NSCP systems. For the sake of comparison, for the by-case data we will assume that the comparator used in the NVP and NSCP systems has a failure probability of only 0.0001 and that the acceptance test used for the DRB system has a failure probability of 0.001. For the by-frame data, the decider is considered to be extremely reliable, with a failure probability of 10^{-7} for all three systems. If the decider were any less reliable, then its failure probability would dominate the system analysis, and the results would be far less interesting.

Typical permanent failure rates for processors range in the 10^{-5} per hour range, with transients perhaps an order of magnitude larger. Thus we will use $\lambda_p = 10^{-5}$ per hour for the Markov model.

In the by-case scenario, a typical test case contained 5280 time frames, each time frame being 50 ms., so a typical computation executed for 264 seconds. Assuming that hardware transients occur at a rate $\lambda_t = (10^{-4}/3600)$ per second, we see that the probability that a hardware transient occurs during a typical test case is

$$1 - e^{-\lambda_t \times 264 \text{ seconds}} = 7.333 \times 10^{-6}$$

We conservatively assume that a hardware transient that occurs anywhere during the execution of a task disrupts the entire computation running on the host.

For the by-frame data, the probability that a transient occurs during a time frame is

$$1 - e^{-\lambda_t \times 0.05 \text{ seconds}} = 1.4 \times 10^{-9}$$

If we further assume that the lifetime of a transient fault is one second, then a transient can affect as many as 20 time frames. We thus take the probability of a transient to be 20 times the value calculated in equation 5.11, or 2.8×10^{-8}.

Finally, for both the by-case and by-frame scenarios, we assume a fairly typical value for the coverage parameter in the Markov model, $c = 0.999$.

5.7.1 Analysis Results

Figure 5.11 compares the predicted reliability of the three systems. Under both the by-case and by-frame scenarios, the recovery block system is most able to produce a correct result, followed by NVP. NSCP is the least reliable of the three. Of course, these comparisons are dependent on the experimental data used and assumptions made. More experimental data and analysis are needed to enable a more conclusive comparison.

Figure 5.12 gives a closer look at the comparisons between the NVP and DRB systems during the first 200 hours. The by-case data shows a crossover point where NVP is initially more reliable but is later less reliable than DRB. Using the by-frame data, there is no crossover point, but the estimates are so small that the differences may not be statistically significant.

Figure 5.13 compares the predicted safety of the three systems. Under the by-case scenario, NSCP is the most likely to produce a safe result, and DRB is an order of magnitude less safe than NVP or NSCP. This difference is caused by the difference in assumed failure probability...
Figure 5.11 Predicted reliability, by-case data (left) and by-frame data (right)

Figure 5.12 Predicted reliability, by-case data (left) and by-frame data (right)

Figure 5.13 Predicted safety, by-case data (left) and by-frame data (right)
5.8 SENSITIVITY ANALYSIS

5.8.1 Sensitivity of Reliability Model

To see which parameters are the strongest determinant of the system reliability, we increased each of the non-zero failure probabilities in turn by 10 percent and observed the effect on the predicted unreliability. The sensitivity of the predictions to a ten-percent change in input parameters for the DRB model is shown in Table 5.9. It can be seen that the DRB model is most sensitive to a change in the probability of an unrelated fault for the by-case data, and to a change in the probability of a related fault for the by-frame data.

Table 5.9 shows, the change in the predicted unreliability (at $t = 0$) when each of the non-zero NVP nominal parameters is increased. For the by-case data, a ten percent increase in the probability of an unrelated software fault results in a twenty percent increase in the probability of an unacceptable result. A ten-percent increase in the probability of a related or decider fault activation has an almost negligible effect on the unreliability. For the by-frame data, the probability of a related fault has the largest impact on the probability of an unacceptable result. This is similar to the DRB model.

The sensitivity of the NSCP model to the nominal parameters is shown in Table 5.11. The
Table 5.11 Sensitivity to parameter change for NSCP reliability model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BY-CASE Data</th>
<th>BY-FRAME Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Result</td>
<td>Percent Change</td>
</tr>
<tr>
<td>Nominal</td>
<td>0.04041</td>
<td>8%</td>
</tr>
<tr>
<td>PV + 10%</td>
<td>0.04833</td>
<td>19.6%</td>
</tr>
<tr>
<td>PRV + 10%</td>
<td>0.04042</td>
<td>0.02%</td>
</tr>
</tbody>
</table>

Table 5.12 Sensitivity to parameter change for NVP safety model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BY-CASE Data</th>
<th>BY-FRAME Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Result</td>
<td>Percent Change</td>
</tr>
<tr>
<td>Nominal</td>
<td>4 x 10^{-4}</td>
<td>7.5%</td>
</tr>
<tr>
<td>PRV + 10%</td>
<td>4.3 x 10^{-4}</td>
<td>10%</td>
</tr>
<tr>
<td>PRALL + 10%</td>
<td>4.1 x 10^{-4}</td>
<td>10%</td>
</tr>
<tr>
<td>PD + 10%</td>
<td>4.1 x 10^{-4}</td>
<td>10%</td>
</tr>
</tbody>
</table>

fault tree models and the sensitivity analysis show that NSCP is vulnerable to related faults, whether they involve versions in the same error confinement area or not.

5.8.2 Sensitivity of Safety Model

The sensitivity analysis for the DRB safety model is simple, as the only software fault contributing to an unsafe result is a decider failure. A ten-percent increase in the decider failure probability leads to a ten percent increase in the probability of an unsafe result.

Table 5.12 shows the sensitivity of the safety prediction to a ten-percent change in the non-zero parameter values. For the by-case data, the prediction is sensitive to a change in either the decider failure probability or the probability of a related fault affecting all versions. For the by-frame data, the prediction is much more sensitive to a change in the probability of a two-way related fault than to a change in the decider failure probability.

Table 5.13 shows the sensitivity of the safety analysis to a change in a parameter value. A change in the decider failure probability directly affects the system safety prediction for the by-case parameter values.

Table 5.13 Sensitivity to parameter change for NSCP safety model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BY-CASE Data</th>
<th>BY-FRAME Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Result</td>
<td>Percent Change</td>
</tr>
<tr>
<td>Nominal</td>
<td>1 x 10^{-4}</td>
<td>10%</td>
</tr>
<tr>
<td>PRV + 10%</td>
<td>1.1 x 10^{-4}</td>
<td>10%</td>
</tr>
<tr>
<td>PD + 10%</td>
<td>1.1 x 10^{-4}</td>
<td>10%</td>
</tr>
</tbody>
</table>
5.9 DECIDER FAILURE PROBABILITY

The probability of a decider failure may be an important input parameter to the comparative analysis of software fault tolerant systems. In this section we vary the decider failure probability to assess its importance. Figures 5.14 and 5.15 show the unreliability and unsafety of the three systems as the probability of decider failure is varied. For these analyses, we set the probability of failure for the decider to the same value for all three models, and show the probability of an unacceptable or unsafe result at time $t = 0$.

For the parameters derived from the by-case experimental data, if all three systems have the same probability of decider failure, it seems that DRB and NVP are nearly equally reliable, and that DRB and NSCP are nearly equally safe. In fact, the safety analysis plots for DRB and NSCP appear collinear. Under the by-frame parameterization, the probability of related faults at first dominates the decider failure probability and provides the same relative ranking for NSCP, NVP and DRB, from least to most reliable and safe.

It is not reasonable for this application to assume equally reliable deciders for both DRB and NVP or NSCP. The decider for the DRB system is an acceptance test, while that for the NVP is a simple voter and NSCP a simple comparator. For this application, it seems likely that
Figure 5.16 Effect on reliability of varying acceptance test failure probability for DRB, (while holding that of NVP constant), by-case data(left) and by-frame data (right)

Figure 5.17 Effect on safety of varying acceptance test failure probability for DRB, (while holding that of NVP constant), by-case data(left) and by-frame data (right)

an acceptance test will be more complicated than a majority voter. The increased complexity is likely to lead to a decrease in reliability, with a corresponding impact on the reliability and safety of the system. In fact, reliability of DRB will collapse if the acceptance test in DRB is as complex and unreliable as its primary or secondary software versions. For example, if the probability of failure in acceptance test \(P_D \) is close to \(P_V \), which is 0.095 by-case or 0.0004 by-frame, then Figure 5.14 indicates that DRB will initially perform the worst comparing with NVP and NSCP.

Figure 5.16 shows how the reliability comparison between DRB and NVP is affected by a variation in the probability of failure for the acceptance test. Figure 5.17 shows how the safety comparison between DRB and NSCP is affected by a variation in the probability of failure for the acceptance test. The parameters for the NVP and NSCP analysis were held constant, and the parameters (other than the probability of acceptance test failure) for the DRB model were also held constant. Figures 5.16 and 5.17 show that the acceptance test for a recovery block system must be very reliable for it to be comparable in reliability to a similar NVP system, or comparable in safety to an NSCP system.
CONCLUSIONS

This chapter proposed a system-level modeling approach to study the reliability and safety behavior of three types of fault-tolerant architectures: DRB, NVP and NSCP. Using a recent fault-tolerant software project data, we parameterized the models and displayed the probabilities of unacceptable results and unsafe results from each of the three architectures.

We used two types of data to parameterize the models. The “by-case” data could detect error only at the end of a test case, each representing a complete simulation profile of five thousand program iterations, while the “by-frame” data performed error detection and recovery at the end of each iteration. A drastic improvement of safety and reliability were observed in the second situation where a finer and more frequent error detection mechanism was assumed by the decider for each architecture.

In comparing reliability analysis of the three different architectures, DRB performed better than NVP which in turn was better than NSCP. DRB also enjoyed the feature of relative insensitivity to time in its reliability function. This comparison, however, had to be conditioned by the probability of decider failures. In the safety analysis NSCP became the best in the by-case parameters, followed by NVP and then DRB. In the by-frame data the order was reversed again. As explained in the text, this phenomenon was due to the relative probabilities of related faults and decider failure.

We also performed a sensitivity analysis over the three models. It was noted from the by-case data that varying the probability of an unrelated software fault had the major impact to the system reliability, while from the by-frame data, varying the probability of a related fault had the largest impact. This could be due to the fact that the by-frame data compares results in a finer granularity level, and was thus more sensitive to related faults among program versions.

In the decider failure analysis, the impact of decider was clearly seen. It was noted that related faults were the dominant cause of failure when the decider failure probability was low, then the decider failure probability dominated as it increased. Moreover, if the acceptance test in DRB was as unreliable as its application versions, DRB lost its advantage to NVP and NSCP.

Finally, we believe more data points are necessary for at least two purposes. First, the modeling methodology must be validated by considering other experimental data and models for related or correlated faults. Second, the current parameters were derived from a single experimental implementation and so may not be generally applicable. Similar analysis of other experimental data will help to establish a set of reasonable parameters that can be used in a broader comparison of these and other fault-tolerant architectures.

REFERENCES

