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Synonyms

Collaborative filtering; Matrix factorization;
Social network analysis; Social recommender
system

Glossary

Collaborative
filtering

A type of recommendation
technique

Matrix
factorization

Factorizing the user-item
matrix into user latent matrix
and item latent matrix

Recommender
system

A system that
provides recommendations
for users

Social
relations

Various social relationships
between users, like social trust
relationships

Definition

The research of social recommendation aims at
modeling recommender systems more accu-
rately and realistically. The characteristic of
social recommendation that is different from
the tradition recommender system is the avail-
ability of social network, i.e., relational informa-
tion among the users. Social recommendation
focuses on how to utilize user social information
to effectively and efficiently compute recom-
mendation results.
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Introduction

As the exponential growth of information gener-
ated on the World Wide Web, the Information
Filtering techniques like recommender systems
have become more and more important and
popular. Recommender systems form a specific
type of information filtering technique that
attempts to suggest information items (movies,
books, music, news, Web pages, images, etc.)
that are likely to interest the users. Typically,
recommender systems are based on collaborative
filtering, which is a technique that automatically
predicts the interest of an active user by
collecting rating information from other similar
users or items. The underlying assumption of
collaborative filtering is that the active user will
prefer those items which other similar users pre-
fer (Ma et al. 2007). Based on this simple but
effective intuition, collaborative filtering has
been widely employed in some large, well-
known commercial systems, including product
recommendation at Amazon and movie recom-
mendation at Netflix.

Due to the potential commercial values and
the great research challenges, recommendation
techniques have drawn much attention in data
mining, information retrieval, and machine learn-
ing communities. Recommendation algorithms
suggesting personalized recommendations greatly
increase the likelihood of customers making their
purchases online.

Traditional recommender systems assume that
users are independent and identically distributed.
This assumption ignores the social relationships
among the users. But the fact is, offline, social
recommendation is an everyday occurrence. For
example, when you ask a trusted friend for a
recommendation of a movie to watch or a good
restaurant to dine, you are essentially soliciting a
verbal social recommendation. In (2001), Sinha
and Swearingen (2001) have demonstrated that,
given a choice between recommendations from
trusted friends and those from recommender sys-
tems, in terms of quality and usefulness, trusted
friends’ recommendations are preferred, even
though the recommendations given by the

recommender systems have a high novelty factor.
Trusted friends are seen as more qualified to make
good and useful recommendations compared to
traditional recommender systems (Bedi et al.
2007). From this point of view, the traditional
recommender systems that ignore the social net-
work structure of the users may no longer be
suitable.

Thanks to the popularity of the Web 2.0 appli-
cations, recommender systems are now associated
with various kinds of social information. This
kind of information contains abundant additional
information about users, hence providing a huge
opportunity to improve the recommendation qual-
ity. For example, in users’ social trust network,
users tend to share their similar interests with the
friends they trust. In reality, we always turn to
friends we trust for movie, music, or book recom-
mendations, and our tastes and characters can be
easily affected by the company we keep. Hence,
how to incorporate social information into the
recommendation algorithms becomes a trend in
the research of recommender systems.

Historical Background

As mentioned in Huang et al. (2004), one of the
most commonly used and successfully deployed
recommendation approaches is collaborative filter-
ing. In the field of collaborative filtering, two types
of methods are widely studied: neighborhood-
based approaches and model-based approaches.

Neighborhood-based methods mainly focus on
finding the similar users (Breese et al. 1998; Jin
et al. 2004) or items (Deshpande andKarypis 2004;
Linden et al. 2003; Sarwar et al. 2001) for recom-
mendations. User-based approaches predict the rat-
ings of active users based on the ratings of similar
users found, while item-based approaches predict
the ratings of active users based on the computed
information of items similar to those chosen by the
active user. User-based and item-based approaches
often use Pearson Correlation Coefficient (PCC)
algorithm (Resnick et al. 1994) and Vector Space
Similarity (VSS) algorithm (Breese et al. 1998) as
the similarity computation methods. PCC method
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can generally achieve higher performance than
VSS approach, since the former considers the dif-
ferences of user rating style.

In contrast to the neighborhood-based
approaches, the model-based approaches to col-
laborative filtering use the observed user-item rat-
ings to train a compact model that explains the
given data, so that ratings could be predicted via
the model instead of directly manipulating the
original rating database as the neighborhood-
based approaches do (Liu and Yang 2008). Algo-
rithms in this category include the clustering
model (Kohrs and Merialdo 1999), the aspect
models (Hofmann 2003, 2004; Si and Jin 2003),
the latent factor model (Canny 2002), the Bayes-
ian hierarchical model (Zhang and Koren 2007),
and the ranking model (Liu and Yang 2008).
Kohrs and Merialdo (1999) presented an algo-
rithm for collaborative filtering based on hierar-
chical clustering, which tried to balance both
robustness and accuracy of predictions, especially
when few data were available. Hofmann (2003)
proposed an algorithm based on a generalization
of probabilistic latent semantic analysis to contin-
uous-valued response variables.

Recently, due to the efficiency in dealing with
large datasets, several low-dimensional matrix
approximation methods (Rennie and Srebro
2005; Salakhutdinov and Mnih 2008a, b; Srebro
and Jaakkola 2003) have been proposed for col-
laborative filtering. These methods all focus on
fitting the user-item rating matrix using low-rank
approximations and employ the matrix to make
further predictions. The Low-rank matrix factori-
zation methods are very efficient in training since
they assume that in the user-item rating matrix,
only a small number of factors influence prefer-
ences and that a user’s preference vector is deter-
mined by how each factor applies to that user.
Low-rank matrix approximations based on mini-
mizing the sum-squared errors can be easily
solved using Singular Value Decomposition
(SVD), and a simple and efficient Expectation
Maximization (EM) algorithm for solving
weighted low-rank approximation is proposed in
Srebro and Jaakkola (2003). In 2004, Srebro et al.
(2004) proposed a matrix factorization method to

constrain the norms of U and V instead of their
dimensionality. Salakhutdinov and Mnih pre-
sented a probabilistic linear model with Gaussian
observation noise in (2008b). In Salakhutdinov
and Mnih (2008a), the Gaussian–Wishart priors
are placed on the user and item hyperparameters.

Traditional recommender systems have been
well studied and developed both in academia
and in industry, but they are all based on the
assumption that users are independent and identi-
cally distributed, and ignore the relationships
among users. Based on this intuition, many
researchers have recently started to analyze trust-
based recommender systems (Bedi et al. 2007;
Massa and Avesani 2004, 2007; O’Donovan and
Smyth 2005).

Bedi et al. (2007) proposed a trust-based rec-
ommender system for the Semantic Web; this sys-
tem runs on a server with the knowledge
distributed over the network in the form of ontol-
ogies and employs the Web of trust to generate the
recommendations. In Massa and Avesani (2004), a
trust-aware method for recommender system is
proposed. In this work, the collaborative filtering
process is informed by the reputation of users,
which is computed by propagating trust. Trust
values are computed in addition to similarity mea-
sures between users. The experiments on a large
real dataset show that this work increases the cov-
erage (number of ratings that are predictable) while
not reducing the accuracy (the error of predictions).
In O’Donovan and Smyth (2005), two trust-aware
methods are proposed to improve standard collab-
orative filtering methods. The experimental analy-
sis shows that these trust information can help
increase recommendation accuracy.

Previously proposed trust-aware methods
are all neighborhood-based methods which
employ only heuristic algorithms to generate
recommendations. There are several problems
with this approach, however. The relationship
between the trust network and the user-item
matrix has not been studied systematically.
Moreover, these methods are not scalable to
very large datasets since they may need to cal-
culate the pairwise user similarities and pairwise
user trust scores.
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Social Recommendation Using Matrix
Factorization

Matrix Factorization
In this subsection, we review one popular matrix
factorization method that is widely studied in the
literature.

Considering an m ! n matrix R describing m
users’ ratings on n items, a low-rank matrix fac-
torization approach seeks to approximate the fre-
quency matrix R by a multiplication of d-rank
factors R"UTV, where U ∊ℝd ! m and V ∊ℝd ! n

with d # min.(m, n). The matrix R in the real
world is usually very sparse since most of the
users only visited a few Web sites.

Traditionally, the Singular Value Decomposi-
tion (SVD) method is employed to estimate a
matrix R by minimizing

min
U,V

1

2

Xm

i¼1

Xn

j¼1

Iij rij % uTi vj
! "2

, (1)

where ui and vj are column vectors with d
values and Iij is the indicator function that is
equal to 1 if user i rated item j and equal to
0 otherwise.

In order to avoid overfitting, two regularization
terms are added into Eq. 1. Hence we have the
following Regularized SVD equation:

min
U,V

1

2

Xm

i¼1

Xn

j¼1

Iij rij % uTi vj
! "2

n

þ l1
2
j Ujj j2F þ

l2
2
j Vjj j2F,

(2)

where l1; l2 >0. The optimization problem in
Eq. 2 minimizes the sum-of-squared-errors objec-
tive function with quadratic regularization terms.
Gradient-based approaches can be applied to find
a local minimum. It also contains a nice probabi-
listic interpretation with Gaussian observation
noise, which is detailed in Salakhutdinov and
Mnih (2008b). In Salakhutdinov and Mnih
(2008b), the conditional distribution over the
observed data is defined as

p RjU,V,s2R
! "

¼
Ym

i¼1

Yn

j¼1

! N rijj uTi vj,s
2
R

! "# $Iij
,

(3)

whereN xj m,s2ð Þ is the probability density func-
tion of the Gaussian distribution with mean m and
variance s2. The zero-mean spherical Gaussian
priors are also placed on user and item feature
vectors:

p Uj s2U
! "

¼
Ym

i¼1

N uij 0, s2UI
! "

,

p Vj s2V
! "

¼
Yn

j¼1

N vjj 0, s2VI
! "

:
(4)

Through a Bayesian inference, we can easily
obtain the objective function in Eq. 2.

By adopting a simple stochastic gradient
descent technique, for each observed rating rij,
we have the following efficient updating rules to
learn latent variables ui, vj:

ui  ui þ g1 Dijvj % l1ui
! "

,
vj  vj þ g2 Dijui % l2vj

! "
,

(5)

where Dij ¼ rij % uTi vj, and g1; g2 are the learning
rates.

The Regularized SVD algorithm introduced in
this section is both effective and efficient in solv-
ing the collaborative filtering problem, and it is
perhaps one of the most popular methods in col-
laborative filtering.

Social Trust Ensemble
However, the above algorithm does not consider
any information from users’ social network. In
order to better model the recommendation prob-
lem, in Ma et al. (2009), Ma et al. proposed a
matrix factorization-based Social Trust Ensemble
(STE) method upon the following intuitions:

• Users have their own tastes.
• Users can also be easily influenced by the

trusted friends they have.
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• A user’s final rating is composed of the com-
bination of this user’s own taste and this user’s
friends’ tastes.

Based on the above interpretations, the objec-
tive function can be formulated as

L

¼ 1

2

Xm

i¼1

Xn

j¼1

Iij rij% auTi vjþ 1% að Þ
X

k�T ið Þ
wiku

T
k vj

0

@

1

A

0

@

1

A
2

þl1
2

Uk k2Fþ
l2
2

Vk k2F,

(6)

where a is a parameter to balance the impact of
user’s own taste and user’s friends’ tastes, T (i)
represents a list of user i’s trusted friends, and wik

is a normalized weight that equals to 1/ǀ T (i) ǁ.
We can see that in this approach, a user’s latent

factor is smoothly integrated with this user’s
trusted friends’ tastes. This equation also coin-
cides with the real-world observation that we
always ask our friends for movies, books, or
music recommendations.

For each observed rating rij, the stochastic gra-
dient decent learning rules for this method are

ui  ui

þg1 Dij aþ 1% að Þ
X

p�ℬ ið Þ
wpi

0

@

1

Avj % l1ui

0

@

1

A,

vj  vj

þg2 Dij aui þ 1% að Þ
X

k� T ið Þ
wikuk

0

@

1

A% l2vj

0

@

1

A,

(7)

where

Dij ¼ rij

% auTi vj þ 1% að Þ
X

k� T ið Þ
wiku

T
k vj

0

@

1

A,

(8)

and ℬ(i) is the set that includes all the users who
trust user i.

Social Regularization
The STE method mentioned above is originally
designed for trust-aware recommender systems.
In trust-aware recommender systems, we can
always assume that users have similar tastes with
other users they trust. Unlike trust relationships
among users, the tastes among social friend rela-
tionships are more diverse. User k is a friend of
user i does not necessarily indicate that user k has
similar taste with user i. Hence, in order to model
the social recommendation problems more accu-
rately, another more general social recommenda-
tion approach, Social Regularization (SR), is
proposed in Ma et al. (2011).

The objective function of this approach is for-
mulated as

L ¼ 1

2

Xm

i¼1

Xn

j¼1

Iij rij % uTi vj
! "2

þ a
2

Xm

i¼1

X

f �Fþ ið Þ
sif ui % uf
%% %%2

F

þ l1
2

Uk k2F þ
l2
2

Vk k2F,

(9)

where sif indicates the similarity between user i and
user f andF+. (i) represents user i’s outlink friends.

In this method, the social network information
is employed in designing the social regularization
term to constrain the matrix factorization objective
function. The social regularization term also indi-
rectly models the propagation of tastes. More spe-
cifically, if user i has a friend f and user f has a
friend user g, this regularization term actually indi-
rectly minimizes the distance between latent vec-
tors ui and ug. The propagation of tastes will reach a
harmonic status once the learning is converged.

Similarly, for each observed rating rij, we have
the following stochastic gradient descent updating
rules to learn the latent parameters:

ui ui

þg1 Dijvj%a
X

f �Fþ ið Þ
sif ui%uf
! "

%a
X

g�F% ið Þ
sig ui%ug
! "

%l1ui

0

@

1

A,

!vj vjþ g2 Dijui%l2vj
! "

,

(10)
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where Dij ¼ rij % uTi vj, and F%(i) represents user
i’s inlink friends.

The experiments conducted in Ma et al. (2009,
2011) suggest that social recommendation algo-
rithms outperform traditional recommendation
algorithms, especially when the user-item matrix
is sparse. This indicates that using social informa-
tion is a promising direction in the research of
recommender systems.

Future Directions

The methods mentioned above can be solved effi-
ciently by using simple gradient descent or sto-
chastic gradient descent algorithms. However, for
statistical machine learning’s point of view, the
methods themselves are not full Bayesian
methods. Hence, learning those methods can eas-
ily have the overfitting problem. How to apply full
Bayesian method on these models hence becomes
worth of studying.

We already demonstrate how to recommend by
incorporating users’ social trust and friend infor-
mation. Actually, sometimes there are more data
sources available on Web 2.0 sites, such as tags
issued by users to items and temporal information.
These sources are also valuable information to
improve recommender systems.
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Synonyms

Logical algebra; Query model; Search and query-
ing social data; Time-aware social search

Glossary

Social
content

The content that appears in social
networks due to user activities,
reflecting their relationships with other
users and the content they shared

Social
graph

A graph representing a social network.
The nodes of the graph correspond to
the entities of the social network,
while the edges capture the social
relationships between the entities.
Typically, there are two types of
entities: the type user, representing the
social network users or participants;
and the type object, including all other
entities other than users, e.g., images,
videos, events, and applications

Social
network

A structure, typically nowadays
expressed as an online application,
that enables social interactions and
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