

Topic-Aware Neural Keyphrase Generation for Social Media Language

Yue Wang¹, Jing Li², Hou Pong Chan¹, Irwin King¹, Michael R. Lyu¹, Shuming Shi² The Chinese University of Hong Kong¹ Tencent AI Lab²

¹{yuewang, hpchan, king, lyu}@cse.cuhk.edu.hk, ²{ameliajli, shumingshi}@tencent.com

Introduction

- **Keyphrase prediction:** distill salient information from massive posts
- Challenges:
 - Social media language is noisy and informal (data sparsity)
 - Prior work only extract keyphrases from the source post

Source post with keyphrase "*super bowl*":

[S]: Somewhere, a wife that is not paying attention to the *game*, says "I want the *team* in *yellow pants* to *win*."

Relevant tweets:

 $[T_1]$: I been a *steelers fan* way before *black* & *yellow* and this *super bowl*!

Data Description

Source posts	# of	Avg len	# of KP	Source
Source posts	posts	per post	per post	vocab
Twitter	44,113	19.52	1.13	34,010
Weibo	46,296	33.07	1.06	98,310
StackExchange	49,447	87.94	2.43	99,775
Target KP	KP	Avg len	% of	Target
		per KP	abs KP	vocab
Twitter	4,347	1.92	71.35	4,171
Weibo	2,136	2.55	75.74	2,833
StackExchange	12,114	1.41	54.32	10,852

- 80% training
- 10% validation
- 10% test

High absent rate

Experiment Results

Main results \bullet

Truitton	Weihe	StoolsExchange

 $[T_2]$: I will bet you the *team* with yellow pants wins. $[T_3]$: Wiz Khalifa song '*black* and *yellow*'' to spur the *pittsburgh steelers* and Lil Wayne is to sing "green and yellow' for the packers.

Our solution: topic-aware keyphrase generation model

- **Topic-aware**: post-level latent topics learned from corpus can alleviate the data sparsity
- Sequence generation: create new keyphrases

Our Approach

Overall framework

Model	I wittei			VV CIDO			StackExchange		
WIGUEI	F1@1	F1@3	MAP	F1@1	F1@3	MAP	F1@3	F1@5	MAP
Baselines									
MAJORITY	9.36	11.85	15.22	4.16	3.31	5.47	1.79	1.89	1.59
TF-IDF	1.16	1.14	1.89	1.90	1.51	2.46	13.50	12.74	12.61
TEXTRANK	1.73	1.94	1.89	0.18	0.49	0.57	6.03	8.28	4.76
KEA	0.50	0.56	0.50	0.20	0.20	0.20	15.80	15.23	14.25
State of the arts									
SEQ-TAG	22.79 ± 0.3	$12.27{\scriptstyle\pm0.2}$	$22.44{\scriptstyle\pm0.3}$	$16.34{\scriptstyle\pm0.2}$	$8.99{\scriptstyle \pm 0.1}$	$16.53{\scriptstyle \pm 0.3}$	17.58 ± 1.6	12.82 ± 1.2	$19.03{\scriptstyle \pm 1.3}$
SEQ2SEQ	34.10 ± 0.5	$26.01{\scriptstyle\pm0.3}$	41.11 ± 0.3	28.17 ± 1.7	$20.59{\scriptstyle \pm 0.9}$	$34.19{\scriptstyle \pm 1.7}$	22.99 ± 0.3	$20.65{\scriptstyle \pm 0.2}$	$23.95{\scriptstyle\pm0.3}$
SEQ2SEQ-COPY	<u>36.60</u> ±1.1	$\underline{26.79}{\scriptstyle \pm 0.5}$	43.12 ± 1.2	$\underline{32.01}\pm0.3$	$\underline{22.69}{\scriptstyle \pm 0.2}$	$\underline{38.01}{\scriptstyle \pm 0.1}$	31.53 ± 0.1	$27.41{\scriptstyle \pm 0.2}$	$33.45{\scriptstyle\pm0.1}$
SEQ2SEQ-CORR	$34.97{\scriptstyle\pm0.8}$	$26.13{\scriptstyle \pm 0.4}$	$41.64{\scriptstyle \pm 0.5}$	31.64±0.7	$22.24{\scriptstyle \pm 0.5}$	$37.47{\scriptstyle\pm0.8}$	30.89 ± 0.3	$26.97{\scriptstyle\pm0.2}$	$32.87{\scriptstyle\pm0.6}$
TG-Net	-	-	-	-	-	-	$\underline{32.02}\pm0.3$	$\underline{27.84}{\scriptstyle \pm 0.3}$	$\underline{34.05}{\pm 0.4}$
Our model	38.49±0.3	$27.84{\scriptstyle\pm0.0}$	$45.12{\scriptstyle\pm0.2}$	34.99 ±0.3	24.42 ± 0.2	$41.29{\scriptstyle\pm0.4}$	33.41±0.2	29.16 ±0.1	35.52 ± 0.1

Topic modeling

Datasets	Twitter	StackExchange
LDA	41.12	35.13
BTM	43.12	43.52
NTM	43.82	43.04
Our model	46.28	45.12
	_	

- Social media keyphrase prediction is challenging
- Seq2seq-based keyphrase generation models are effective
- Latent topics are consistently helpful for indicating keyphrases, especially for absent keyphrases

ΙΠΛ	bowl super <u>quote</u> steeler jan watching			
LDA	egypt playing glee girl			
BTM	bowl super anthem national christina			
	aguilera fail <u>word</u> brand playing			

Neural topic model (NTM)

BoW Encoder	BoW Decoder		
Prior latent variables	• Draw latent variable $z \sim N(\mu, \sigma^2)$		
• $\boldsymbol{\mu} = f_{\mu}(f_e(\boldsymbol{x}_{bow}))$	• Topic mixture $\theta = softmax(f_{\theta}(\mathbf{z}))$		
• $\log \sigma = f_{\sigma}(f_e(\mathbf{x}_{bow}))$	• For each word $w \in x$:		
	• Draw word $w \sim softmax(f_{\varphi}(\theta))$		

- **Keyphrase generation (KG) model**
 - **Base model**: standard seq2seq with copy mechanism
 - Advanced: topic-aware sequence decoder

Decoder state: $s_j = f_{GRU}([u_j; \theta], s_{j-1})$

Topic θ from NTM

The Chinese University of Hong Kong

Attention: $f_{\alpha}(\cdot) = \boldsymbol{v}_{\alpha}^{T} tanh(W_{\alpha}[h_{i}; s_{j}; \theta] + b_{\alpha})$

(a) Topic coherence (C_v scores)

super bowl eye protester winning NTM watch halftime ship sport mena Our bowl super yellow green packer steeler nom commercial win winner model

(b) Sample topics for "super bowl"

Further discussions

Model	Twitter	Weibo	SE
SEQ2SEQ-COPY	36.60	32.01	31.53
Our model (<i>separate train</i>)	36.75	32.75	31.78
Our model (<i>w/o topic-attn</i>)	37.24	32.42	32.34
Our model (<i>w/o topic-state</i>)	37.44	33.48	31.98
Our full model	38.49	34.99	33.41

(a) Ablation study

For tweet S, our model correctly predicts "super bowl", while the seq2seq-copy model without topic guidance wrongly predicts "team follow back"

Why? Visualize attention!

(c) KP absent rate across other text genres

Conclusion & Future Work

We are the first to propose a topic-aware keyphrase generation \bullet model that allows end-to-end training with latent topics

Copy switch: $\lambda_j = \sigma(W_{\lambda}[u_j; s_j; c_j; \theta] + b_{\lambda})$

Joint learning topics and keyphrases \bullet

$$\mathcal{L}_{NTM} = D_{KL}(p(\mathbf{z}) || q(\mathbf{z} | \mathbf{x})) - \mathbb{E}_{q(\mathbf{z} | \mathbf{x})}[p(\mathbf{x} | \mathbf{z})],$$

$$\mathcal{L}_{KG} = -\sum_{n=1}^{N} \log(Pr(\mathbf{y}_n | \mathbf{x}_n, \theta_n)),$$

$$\mathcal{L} = \mathcal{L}_{NTM} + \gamma \cdot \mathcal{L}_{KG}$$

End-to-end
training

- We newly construct three social media datasets for this task
- Extensive experiments demonstrate the effectiveness of our proposed model for social media language

Explore how to explicitly leverage the topic-word information

Extend to other text generation tasks

The 57th Annual Meeting of the Association for Computational Linguistics (ACL), Florence, Italy, 2019

