

Response Aware Model-Based Collaborative Filtering

Guang Ling Haiqin Yang Michael R. Lyu Irwin King {gling,hqyang,lyu,king}@cse.cuhk.edu.hk

Introduction

Two-fold information in CF rating data:

- Rating values
- Response patterns

Response patterns are ignored in most previous work:

- Assumption: rate all inspected items or randomly selected items
- Is the assumption true?
- Impact on prediction results?

Rate only favorite items

- Biased or even incorrect prediction
 - Example: assume only rate favourable items

5	3	4	3	5	4	
4	2	5	З	1	4	
5	1	3	5	2	5	
3	4	5	1	3	3	
4	5	1	5	З	2	
4	3	5	2	1	3	

Ground Truth

			5			5	
	5					5	
		5		5		5	
	5					5	
5		5				5	
	5					5	
Observed				P	os	S	

Recovered by traditional method

Unlikely

Rating value distribution of user selected items

Model

Model the response patterns explicitly using two-step procedure:

- Data model: generate the full data
- Response model: model the response patterns

Response aware probabilistic matrix factorization

- Data model: probabilistic matrix factorization (PMF)
- Response model?

 $P(R, X | U, V, \mu, \sigma^2) = P(R | X, U, V, \mu, \sigma^2) P(X | U, V, \sigma^2)$

Rating value distribution of randomly selected items

Our proposal:

- Model rating values as well as response patterns
- Response Aware Probabilistic Matrix Factorization (RAPMF)

Experiments and Results

Datasets

- Yahoo! music ratings for user selected and randomly selected songs
 - Normal interaction ratings (311704 ratings from 15400 users)
 - Survey ratings (54000 ratings on randomly selected songs from 5400 users)

• Synthetic dataset

Protocols:

- Traditional
- Train on training set
- Test on testing set
- Realistic
 - Train on training set
- Test on un-inspected items
- Adversarial
- Train on training set
- Test on Inspected and not responded

Rating dominant response model

- Observation: rating value affects response decision
- Model response prob. by a Bernoulli distribution $R_{ij} = \text{Bernoulli}(\mu_{X_{ij}})$

Discount parameter, control relative weight of response model

Context aware response model

- Context matters
 - Rating value
 - Heavy raters vs. Light raters
 - Hot items vs. Obscure items

- Hot item Obscure item
- Model response prob. by a Bernoulli distribution $R_{ij} = \text{Bernoulli}(\mu_{ijk})$

Results

Rating value	User feature	Item feature	

 $+\exp(-(\delta_k+U_i^T\boldsymbol{\theta}_U+V_j^T)$

Model inference

- Alternating gradient ascent
- Let \mathcal{L} be the log-likelihood of the full model $P(R, X|U, V, \mu, \sigma^2)$

Summary of RAPMF

- Subsumes PMF as a special case
- Performs better on randomly selected items (a better way of evaluating a recommender system)