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Introduction
Two-fold information in CF rating data:

• Rating values

• Response patterns

Response patterns are ignored in most previous work:

• Assumption: rate all inspected items or randomly selected items

• Is the assumption true?                   Unlikely

• Impact on prediction results?

• Biased or even incorrect prediction

• Example: assume only rate favourable items

Our proposal:

• Model rating values as well as response patterns

• Response Aware Probabilistic Matrix Factorization (RAPMF)
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Rate only favorite items Recovered by traditional method

Model
Model the response patterns explicitly using two-step 

procedure:
• Data model: generate the full data

• Response model: model the response patterns

Response aware probabilistic matrix factorization
• Data model: probabilistic matrix factorization (PMF)

• Response model?

Rating dominant response model
• Observation: rating value affects response decision

• Model response prob. by a Bernoulli distribution

Context aware response model
• Context matters

• Rating value

• Heavy raters vs. Light raters

• Hot items vs. Obscure items

• Model response prob. by a Bernoulli distribution

• Adopt the same structure as rating dominant response model

Model inference
• Alternating gradient ascent

• Let     be the log-likelihood of the full model 
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Experiments and Results
Datasets

• Yahoo! music ratings for user selected and randomly selected songs

• Normal interaction ratings (311704 ratings from 15400 users)

• Survey ratings (54000 ratings on randomly selected songs from 5400 users)

• Synthetic dataset

Results

Sensitivity analysis

Summary of RAPMF
• Subsumes PMF as a special case

• Performs better on randomly selected items (a better way of evaluating 

a recommender system)
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Protocols:
• Traditional

• Train on training set

• Test on testing set

• Realistic
• Train on training set

• Test on un-inspected items

• Adversarial
• Train on training set

• Test on Inspected and not 

responded

Performance on synthetic dataset Performance on Yahoo! dataset

Impact of regularization parameter Impact of discount parameter

Response prob. when rating is k


