Combinatorial Pure Exploration in Multi-Armed Bandits

Shouyuan Chen ${ }^{1}$ Tian Lin ${ }^{2}$ Irwin King ${ }^{1}$ Michael R. Lyu ${ }^{1}$ Wei Chen ${ }^{3}$
${ }^{1}$ CUHK $\quad{ }^{2}$ Tsinghua University ${ }^{3}$ Microsoft Research Asia

Single-armed bandit

$$
\underbrace{\substack{\text { (slot machine) }}}_{\text {arm }}
$$

Single-armed bandit

Single-armed bandit

sampled independently from an unknown distribution (reward distribution)

Multi-armed bandit

n arms
BCHBCH

1. each arm has an unknown
reward distribution
2. the reward distributions can be different.

Multi-armed bandit

n arms

rules
for round $t=1, \ldots, T$

- plays arm $i_{t} \in[n]$
- receives reward $X_{i t} \sim \phi_{i}$
a game on multiple rounds...

Multi-armed bandit

n arms

rules

for round $t=1, \ldots, T$

- plays arm $i_{t} \in[n]$
- receives reward $X_{i t} \sim \phi_{i}$
a game on multiple rounds...

Multi-armed bandit

n arms

rules
for round $t=1, \ldots, T$

- plays arm $i_{t} \in[n]$
- receives reward $X_{i t} \sim \phi_{i}$
a game on multiple rounds...

Multi-armed bandit

n arms

rules
for round $t=1, \ldots, T$

- plays arm $i_{t} \in[n]$
- receives reward $X_{i t} \sim \phi_{i}$
a game on multiple rounds...

Multi-armed bandit

n arms

rules
for round $t=1, \ldots, T$

- plays arm $i_{t} \in[n]$
- receives reward $X_{i t} \sim \phi_{i}$

Multi-armed bandit

n arms

rules
for round $t=1, \ldots, T$

- plays arm $i_{t} \in[n]$
- receives reward $X_{i t} \sim \phi_{i}$
in the end...
take all rewards $\$ \Rightarrow 5$
goal: maximize the cumulative reward
exploitation v.s. exploration

Multi-armed bandit

n arms

in the end...

goal: maximize the cumulative reward
exploitation v.s. exploration

Multi-armed bandit

rules

for round $t=1, \ldots, T$

- plays arm $i_{t} \in[n]$
- receives reward $X_{i t} \sim \phi_{i}$

Multi-armed bandit

rules

for round $t=1, \ldots, T$

- plays arm $i_{t} \in[n]$
- receives reward $X_{i t} \sim \phi_{i}$
n arms pure exploration

in the end...
(1) forfeit all rewards
(2) output $\mathbf{1}$ arm

goal: find the single best arm (largest expected reward)

Pure Exploration of MAB

A/B testing, clinical trials, wireless network, crowdsourcing, ...

- n arms $=n$ variants
- play arm $i=$ a page view on the i-th variant
- reward $=$ a click on the ads
- finding the best arm = finding the variant with the highest average ads clicks

Pure Exploration of MAB

A/B testing, clinical trials, wireless network, crowdsourcing, ...

- n arms $=n$ variants
- play arm $i=$ a page view on the i-th variant
- reward $=$ a click on the ads
- finding the best arm = finding the variant with the highest average ads clicks
extensions
- find top- k arms [KS10,GGL12,KTPS12,BWV13,KK13,ZCL14]
- find top arms in disjoint groups of arms [GGLB11,GGL12,BWV13]

Pure exploration: two settings

fixed budget

- play for T rounds.
- report the best arm after finished.
- goal: minimize the probability of error $\operatorname{Pr}\left[\right.$ out $\left.\neq i_{*}\right]$

fixed confidence

- play for any number of rounds.
- report the best arm after finished
- guarantee that probability of error $\operatorname{Pr}\left[\right.$ out $\left.\neq i_{*}\right]<\delta$.
- goal: minimize the number of rounds (sample complexity).

Combinatorial Pure Exploration of MAB

Combinatorial Pure Exploration (CPE)

- play one arm at each round
- find the optimal set of arms M_{*} satisfying certain constraint

$$
M_{*}=\underset{M \in \mathcal{M}}{\arg \max } \sum_{i \in M} w(i)
$$

- maximize the sum of expected rewards of arms in the set

size- k-sets

paths

spanning trees

matchings

Motivating Examples

- matching

Goal:

1) estimate the productivities from tests.
2) find the optimal 1-1 assignment.

Motivating Examples

- matching

Goal:

1) estimate the productivities from tests.
2) find the optimal 1-1 assignment.

- spanning trees and paths

Goal:

1) estimate the delays from measurements
2) find the minimum spanning tree or shortest path.

Motivating Examples

- matching

Goal:

1) estimate the productivities from tests.
2) find the optimal 1-1 assignment.

- spanning trees and paths

Goal:

1) estimate the delays from measurements
2) find the minimum spanning tree or shortest path.

- size-k-sets
- finding the top- k arms.

Our Results

- algorithms
- two general learning algorithms for a wide range of \mathcal{M}.

Our Results

- algorithms
- two general learning algorithms for a wide range of \mathcal{M}.
- upper bounds
- sample complexity / probability of error.

Our Results

- algorithms
- two general learning algorithms for a wide range of \mathcal{M}.
- upper bounds
- sample complexity / probability of error.
- lower bound
- algorithms are optimal (within log factors) for many types of \mathcal{M} (in particular, bases of a matroid).

Our Results

- algorithms
- two general learning algorithms for a wide range of \mathcal{M}.
- upper bounds
- sample complexity / probability of error.
- lower bound
- algorithms are optimal (within log factors) for many types of \mathcal{M} (in particular, bases of a matroid).
- compared with existing work
- the first lower bound for the top- k problem
- the first upper and lower bounds for other combinatorial constraints.

CLUCB: Fixed confidence algorithm

input

- confidence: $\delta \in(0,1)$
- access to a maximization oracle: Oracle $(\cdot): \mathbb{R}^{n} \rightarrow \mathcal{M}$
- $\operatorname{Oracle}(v)=\max _{M \in \mathcal{M}} \sum_{i \in M} v(i)$ for weights $v \in \mathbb{R}^{n}$
output
- a set of arms: $M \in \mathcal{M}$.

CLUCB: Fixed confidence algorithm

all arms
BHOH BH
maintain: for all \mathbf{i} and \mathbf{t}

notations

- for each arm $i \in[n]$ in each round t
- empirical mean: $\bar{w}_{t}(i)$
- confidence radius: $\operatorname{rad}_{t}(i)$ (proportional to $\left.1 / \sqrt{n_{t}(i)}\right)$

CLUCB: Fixed confidence algorithm

all arms

 maintain: for all \mathbf{i} and \mathbf{t}

Step 1

CLUCB: Fixed confidence algorithm

all arms

Step 1

Step 2

$$
-\operatorname{rad}_{t}(i) \quad+\operatorname{rad}_{t}(i)
$$

$$
\overbrace{0 \rightarrow B} \tilde{M}_{t}
$$

CLUCB: Fixed confidence algorithm

all arms

Step 1

Step 2

$$
-\operatorname{rad}_{t}(i)
$$

$$
+\operatorname{rad}_{t}(i)
$$

$$
\backsim \operatorname{Oracle}\left(\tilde{w}_{t}\right)
$$

maintain: for all \mathbf{i} and \mathbf{t}

$$
\tilde{w}_{t}(i)=\bar{w}_{t}(i) \pm \operatorname{rad}_{t}(i)
$$

If: $\quad \bar{M}_{t}=\tilde{M}_{t}$ Then: Stop and output \bar{M}_{t}

CLUCB: Fixed confidence algorithm

all arms

maintain: for all \mathbf{i} and \mathbf{t}

Step 1

Step 3

CLUCB: Fixed confidence algorithm

all arms

 maintain: for all \mathbf{i} and \mathbf{t}

Step 1

Step 3

CLUCB: Sample Complexity

Our sample complexity bound depends on two quantities.

- H: depends on expected rewards
- width (\mathcal{M}) : depends on the structure of \mathcal{M}

CLUCB: Sample Complexity

Theorem (Upper bound)
With probability at least $1-\delta$, CLUCB algorithm:

1. correctly outputs the optimal set M_{*}
2. uses at most $O\left(\right.$ width $\left.(\mathcal{M})^{2} \mathbf{H} \log (n \mathbf{H} / \delta)\right)$ rounds.

Our sample complexity bound depends on two quantities.

- H: depends on expected rewards
- width (\mathcal{M}) : depends on the structure of \mathcal{M}

Results at a glance

Theorem (Upper bound)
With probability at least $1-\delta$, CLUCB algorithm:

1. outputs the optimal set $M_{*} \triangleq \arg \max _{M \in \mathcal{M}} w(M)$.
2. uses at most $O\left(\right.$ width $\left.(\mathcal{M})^{2} \mathbf{H} \log (n \mathbf{H} / \delta)\right)$ rounds.

Theorem (Lower bound)
Given any expected rewards, any δ-correct algorithm must use at least $\Omega(\mathbf{H} \log (1 / \delta))$ rounds. (An algorithm \mathbb{A} is δ-correct algorithm, if \mathbb{A}^{\prime} s probability of error is at most δ for any instances)

Example (Sample Complexities)

- k-sets, spanning trees, bases of a matroid: $\tilde{O}(\mathbf{H})$ optimal!
- matchings, paths (in DAG): $\tilde{O}\left(|V|^{2} \mathbf{H}\right)$.
- in general: $\tilde{O}\left(n^{2} \mathbf{H}\right)$

H and gaps

- Δ_{e} : gap of arm $e \in[n]$

$$
\Delta_{e}= \begin{cases}w\left(M_{*}\right)-\max _{M \in \mathcal{M}: e \in M} w(M) & \text { if } e \notin M_{*}, \\ w\left(M_{*}\right)-\max _{M \in \mathcal{M}: e \notin M} w(M) & \text { if } e \in M_{*}\end{cases}
$$

- stability of the optimality of M_{*} wrt. arm e.
- $\mathbf{H}=\sum_{e \in[n]} \Delta_{e}^{-2}$
- for the top-K problem: recover the previous definition of \mathbf{H}.

Width and exchange class

Intuitions

- we need a unifying method of analyzing different \mathcal{M}
- an exchange class is a "proxy" for the structure of \mathcal{M}.
- an exchange class is a collection of "patches" that are used to interpolate between valid sets.

Width and exchange class

definition

width (\mathcal{B}) : the size of the largest "patch"

$$
\operatorname{width}(\mathcal{B})=\max _{\left(b_{+}, b_{-}\right) \in \mathcal{B}}\left|b_{+}\right|+\left|b_{-}\right|
$$

width (\mathcal{M}) : the width of the "thinnest" exchange class

$$
\operatorname{width}(\mathcal{M})=\min _{\mathcal{B} \in \operatorname{Exchange}(\mathcal{M})} \operatorname{width}(\mathcal{B})
$$

Example (Widths)

- k-sets, spanning trees, bases of a matroid: $\operatorname{width}(\mathcal{M})=2$.
- matchings, paths (in DAG): $\operatorname{width}(\mathcal{M})=O(|V|)$.
- in general: width $(\mathcal{M}) \leq n$

CSAR: Fixed budget algorithm

input

- budget: T (play for at most T rounds)
- access to a maximization oracle
output
- a set of arms: $M \in \mathcal{M}$.
overview:
- break the T rounds into n phases.

CSAR: Fixed budget algorithm

in each phase (n phases in total):

phase 2

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.

CSAR: Fixed budget algorithm

CSAR: Fixed budget algorithm

in each phase (n phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.
active: neither accepted nor rejected. require more samples
accepted: include in the output
rejected: exclude from the output
problem: which arm to accept or reject?

CSAR: Fixed budget algorithm

problem: which arm to accept or reject?

- accept/reject the arm with the largest empirical gap.

$$
\bar{\Delta}_{e}= \begin{cases}\bar{w}_{t}\left(\bar{M}_{t}\right)-\max _{M \in \mathcal{M}_{t}: e \in M} \bar{w}_{t}(M) & \text { if } e \notin \bar{M}_{t}, \\ \bar{w}_{t}\left(\bar{M}_{t}\right)-\max _{M \in: e \notin M} \bar{w}_{t}(M) & \text { if } e \in \bar{M}_{t}\end{cases}
$$

- $\mathcal{M}_{t}=\left\{M: M \in \mathcal{M}, A_{t} \subseteq M, B_{t} \cap M=\emptyset\right\}$.
- A_{t} : accepted arms, B_{t} : rejected arms (up to phase t).

CSAR: Fixed budget algorithm

problem: which arm to accept or reject?

- accept/reject the arm with the largest empirical gap.

$$
\bar{\Delta}_{e}= \begin{cases}\bar{w}_{t}\left(\bar{M}_{t}\right)-\max _{M \in \mathcal{M}_{t}: e \in M} \bar{w}_{t}(M) & \text { if } e \notin \bar{M}_{t}, \\ \bar{w}_{t}\left(\bar{M}_{t}\right)-\mathcal{M a x}_{M \in \mathcal{M}_{t}: e \notin M} \bar{w}_{t}(M) & \text { if } e \in \bar{M}_{t}\end{cases}
$$

- $\mathcal{M}_{t}=\left\{M: M \in \mathcal{M}, A_{t} \subseteq M, B_{t} \cap M=\emptyset\right\}$.
- A_{t} : accepted arms, B_{t} : rejected arms (up to phase t).
- $\bar{\Delta}_{e}$ can be computed using a maximization oracle.

CSAR: Fixed budget algorithm

problem: which arm to accept or reject?

- accept/reject the arm with the largest empirical gap.

$$
\bar{\Delta}_{e}= \begin{cases}\bar{w}_{t}\left(\bar{M}_{t}\right)-\max _{M \in \mathcal{M}_{t}: e \in M} \bar{w}_{t}(M) & \text { if } e \notin \bar{M}_{t}, \\ \bar{w}_{t}\left(\bar{M}_{t}\right)-\mathcal{M a x}_{M \in \mathcal{M}_{t}: e \notin M} \bar{w}_{t}(M) & \text { if } e \in \bar{M}_{t}\end{cases}
$$

- $\mathcal{M}_{t}=\left\{M: M \in \mathcal{M}, A_{t} \subseteq M, B_{t} \cap M=\emptyset\right\}$.
- A_{t} : accepted arms, B_{t} : rejected arms (up to phase t).
- $\bar{\Delta}_{e}$ can be computed using a maximization oracle.
- recall the (unknown) gap of arm e:

$$
\Delta_{e}= \begin{cases}w\left(M_{*}\right)-\max _{M \in \mathcal{M}: e \in M} w(M) & \text { if } e \notin M_{*}, \\ w\left(M_{*}\right)-\max _{M \in \mathcal{M}: e \notin M} w(M) & \text { if } e \in M_{*}\end{cases}
$$

CSAR: Probability of error

Theorem (Probability of error of CSAR)

Given any budget $T>n$, CSAR correctly outputs the optimal set M_{*} with probability at least

$$
1-2^{\tilde{O}\left(-\frac{T}{\operatorname{widht}(\mathcal{M})^{2} \mathbf{H}}\right)}
$$

and uses at most T rounds.

CSAR: Probability of error

Theorem (Probability of error of CSAR)
Given any budget $T>n$, CSAR correctly outputs the optimal set M_{*} with probability at least

$$
1-2^{\tilde{O}\left(-\frac{T}{\operatorname{width}(\mathcal{M})^{2} \mathbf{H}}\right)}
$$

and uses at most T rounds.
Remark: To guarantee a constant probability of error of δ, both CSAR and CLUCB need $T=\tilde{O}\left(\operatorname{width}(\mathcal{M})^{2} \mathbf{H}\right)$ rounds.

Summary

- combinatorial pure exploration: a general framework that covers many pure exploration problems in MAB.
- find top- k arms, optimal spanning trees, matchings or paths.
- two general algorithms for the problem
- only need a maximization oracle for \mathcal{M}.
- comparable performance guarantees.
- our algorithm is optimal (up to log factors) for matroids.
- including k-sets and spanning trees.

Future work

- tighten the bounds for matching, paths and other combinatorial constraints
- support approximate maximization oracles
- non-linear rewards

Thank you!

Exchange class: Formal definition

Exchange set

An exchange set b is an ordered pair of disjoint sets $b=\left(b_{+}, b_{-}\right)$ where $b_{+} \cap b_{-}=\emptyset$ and $b_{+}, b_{-} \subseteq[n]$.
Let M be any set. We also define two operators:

- $M \oplus b \triangleq M \backslash b_{-} \cup b_{+}$.
- $M \ominus b \triangleq M \backslash b_{+} \cup b_{-}$.

Exchange class

We call a collection of exchange sets \mathcal{B} an exchange class for \mathcal{M} if \mathcal{B} satisfies the following property. For any $M, M^{\prime} \in \mathcal{M}$ such that $M \neq M^{\prime}$ and for any e $\in\left(M \backslash M^{\prime}\right)$, there exists an exchange set $\left(b_{+}, b_{-}\right) \in \mathcal{B}$ which satisfies five constraints: (a) e $\in b_{-}$, (b) $b_{+} \subseteq M^{\prime} \backslash M$, (c) $b_{-} \subseteq M \backslash M^{\prime}$, (d) $(M \oplus b) \in \mathcal{M}$ and (e) $\left(M^{\prime} \ominus b\right) \in \mathcal{M}$.

Experiments of CPE

Width and exchange class

definition

Let \mathcal{B} be an exchange class.

$$
\operatorname{width}(\mathcal{B})=\max _{\left(b_{+}, b_{-}\right) \in \mathcal{B}}\left|b_{+}\right|+\left|b_{-}\right|
$$

Let Exchange (\mathcal{M}) denote the family of all possible exchange classes for \mathcal{M}. We define the width of \mathcal{M} to be the width of the thinnest exchange class

$$
\operatorname{width}(\mathcal{M})=\min _{\mathcal{B} \in \operatorname{Exchange}(\mathcal{M})} \operatorname{width}(\mathcal{B})
$$

where Exchange (\mathcal{M}) is the family of all possible exchange classes for \mathcal{M}.

