Combinatorial Pure Exploration in Multi-Armed Bandits

Shouyuan Chen¹ Tian Lin² Irwin King¹ Michael R. Lyu¹ Wei Chen³

¹ CUHK ² Tsinghua University ³ Microsoft Research Asia

Single-armed bandit

Single-armed bandit

Single-armed bandit

sampled independently from an **unknown** distribution

(reward distribution)

n arms

- **1.** each arm has an **unknown** reward distribution
- **2.** the reward distributions can be **different**.

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

in the end...

take all rewards $\delta \Rightarrow \langle \widehat{ } \rangle$

goal: maximize the cumulative reward

exploitation v.s. exploration

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

pure exploration *n* arms

in the end...

take all rewards (\bigcirc)

goal: maximize the cumulative reward

exploitation v.s. exploration

n arms pure exploration

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

Pure Exploration of MAB

A/B testing, clinical trials, wireless network, crowdsourcing, ...

• n arms = n variants

- play arm *i* = a page view on the *i*-th variant
- reward = a click on the ads
- finding the best arm = finding the variant with the highest average ads clicks

Pure Exploration of MAB

A/B testing, clinical trials, wireless network, crowdsourcing, ...

- n arms = n variants
- play arm *i* = a page view on the *i*-th variant
- reward = a click on the ads
- finding the best arm = finding the variant with the highest average ads clicks

extensions

- find top-k arms [KS10,GGL12,KTPS12,BWV13,KK13,ZCL14]
- find top arms in disjoint groups of arms [GGLB11,GGL12,BWV13]

Pure exploration: two settings

fixed budget

- play for *T* rounds.
- report the best arm after finished.
- **goal**: minimize the probability of error $Pr[out \neq i_*]$

fixed confidence

- play for any number of rounds.
- report the best arm after finished
- guarantee that probability of error $Pr[out \neq i_*] < \delta$.
- **goal**: minimize the number of rounds (sample complexity).

Combinatorial Pure Exploration of MAB

Combinatorial Pure Exploration (CPE)

- play one arm at each round
- find the optimal **set** of arms *M*_{*} satisfying certain constraint

$$M_* = \arg\max_{M \in \mathcal{M}} \sum_{i \in M} w(i)$$

maximize the sum of expected rewards of arms in the set

Motivating Examples

• matching

Goal:

estimate the productivities from tests.
find the optimal 1-1 assignment.

Motivating Examples

• matching

Goal:

estimate the productivities from tests.
find the optimal 1-1 assignment.

• spanning trees and paths

Goal:

 estimate the delays from measurements
find the minimum spanning tree or shortest path.

Motivating Examples

• matching

Goal:

estimate the productivities from tests.
find the optimal 1-1 assignment.

• spanning trees and paths

Goal:

 estimate the delays from measurements
find the minimum spanning tree or shortest path.

- size-k-sets
 - ▶ finding the top-*k* arms.

• algorithms

• two general learning algorithms for a wide range of \mathcal{M} .

- algorithms
 - two general learning algorithms for a wide range of \mathcal{M} .
- upper bounds
 - sample complexity / probability of error.

- algorithms
 - two general learning algorithms for a wide range of \mathcal{M} .
- upper bounds
 - sample complexity / probability of error.
- lower bound
 - ► algorithms are optimal (within log factors) for many types of \mathcal{M} (in particular, bases of a matroid).

- algorithms
 - \blacktriangleright two general learning algorithms for a wide range of $\mathcal{M}.$
- upper bounds
 - sample complexity / probability of error.
- lower bound
 - ► algorithms are optimal (within log factors) for many types of \mathcal{M} (in particular, bases of a matroid).
- compared with existing work
 - the first lower bound for the top-*k* problem
 - the first upper and lower bounds for other combinatorial constraints.

input

- confidence: $\delta \in (0, 1)$
- access to a maximization oracle: $Oracle(\cdot) : \mathbb{R}^n \to \mathcal{M}$
 - Oracle(v) = max_{$M \in M$} $\sum_{i \in M} v(i)$ for weights $v \in \mathbb{R}^n$

output

• a set of arms: $M \in \mathcal{M}$.

notations

- for each arm $i \in [n]$ in each round t
 - empirical mean: $\bar{w}_t(i)$
 - confidence radius: $rad_t(i)$ (proportional to $1/\sqrt{n_t(i)}$)

CLUCB: Sample Complexity

Our sample complexity bound depends on two quantities.

- **H**: depends on expected rewards
- width(\mathcal{M}): depends on the structure of \mathcal{M}

CLUCB: Sample Complexity

Theorem (Upper bound)

With probability at least $1 - \delta$, CLUCB algorithm:

- 1. correctly outputs the optimal set M_*
- 2. uses at most $O(\text{width}(\mathcal{M})^2 \mathbf{H} \log(n\mathbf{H}/\delta))$ rounds.

Our sample complexity bound depends on two quantities.

- H: depends on expected rewards
- width(\mathcal{M}): depends on the structure of \mathcal{M}

Results at a glance

Theorem (Upper bound)

With probability at least $1 - \delta$, CLUCB algorithm:

- 1. outputs the optimal set $M_* \triangleq \arg \max_{M \in \mathcal{M}} w(M)$.
- 2. uses at most $O(\text{width}(\mathcal{M})^2 \mathbf{H} \log(n\mathbf{H}/\delta))$ rounds.

Theorem (Lower bound)

Given any expected rewards, any δ -correct algorithm must use at least $\Omega(\mathbf{H} \log(1/\delta))$ rounds. (An algorithm \mathbb{A} is δ -correct algorithm, if \mathbb{A} 's probability of error is at most δ for any instances)

Example (Sample Complexities)

- *k*-sets, spanning trees, bases of a matroid: $\tilde{O}(\mathbf{H})$ optimal!
- matchings, paths (in DAG): $\tilde{O}(|\mathbf{V}|^2 \mathbf{H})$.
- in general: $\tilde{O}(n^2 \mathbf{H})$

${\bf H}$ and gaps

• Δ_e : gap of arm $e \in [n]$

$$\Delta_{e} = \begin{cases} w(M_{*}) - \max_{M \in \mathcal{M}: e \notin M} w(M) & \text{if } e \notin M_{*}, \\ w(M_{*}) - \max_{M \in \mathcal{M}: e \notin M} w(M) & \text{if } e \in M_{*} \end{cases}$$

- ▶ stability of the optimality of *M*^{*} wrt. arm *e*.
- $\mathbf{H} = \sum_{e \in [n]} \Delta_e^{-2}$

▶ for the top-*K* problem: recover the previous definition of **H**.
Width and exchange class

Intuitions

- we need a unifying method of analyzing different ${\cal M}$
 - an exchange class is a "proxy" for the structure of \mathcal{M} .
- an exchange class is a collection of "patches" that are used to interpolate between valid sets.

Width and exchange class

definition width(\mathcal{B}): the size of the largest "patch"

width(
$$\mathcal{B}$$
) = $\max_{(b_+,b_-)\in\mathcal{B}} |b_+| + |b_-|$.

width(\mathcal{M}): the width of the "thinnest" exchange class

$$\mathsf{width}(\mathcal{M}) = \min_{\mathcal{B} \in \mathsf{Exchange}(\mathcal{M})} \mathsf{width}(\mathcal{B}),$$

Example (Widths)

- *k*-sets, spanning trees, bases of a matroid: width $(\mathcal{M}) = 2$.
- matchings, paths (in DAG): width(\mathcal{M}) = O(|V|).
- in general: width(\mathcal{M}) $\leq n$

input

- budget: *T* (play for at most *T* rounds)
- access to a maximization oracle

output

• a set of arms: $M \in \mathcal{M}$.

overview:

• break the *T* rounds into *n* phases.

in each phase (*n* phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.

active: neither accepted nor rejected. require more samples

accepted: include in the output

rejected: exclude from the output

in each phase (*n* phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.

active: neither accepted nor rejected. require more samples

accepted: include in the output

rejected: exclude from the output

in each phase (*n* phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.

active: neither accepted nor rejected. require more samples

accepted: include in the output

rejected: exclude from the output

problem: which arm to accept or reject?

problem: which arm to accept or reject?

• accept/reject the arm with the largest empirical gap.

$$\bar{\Delta}_{e} = \begin{cases} \bar{w}_{t}(\bar{M}_{t}) - \max_{\substack{M \in \mathcal{M}_{t}: e \in M}} \bar{w}_{t}(M) & \text{if } e \notin \bar{M}_{t}, \\ \bar{w}_{t}(\bar{M}_{t}) - \max_{\substack{M \in \mathcal{M}_{t}: e \notin M}} \bar{w}_{t}(M) & \text{if } e \in \bar{M}_{t} \end{cases}$$

•
$$\mathcal{M}_t = \{ M : M \in \mathcal{M}, A_t \subseteq M, \mathbf{B}_t \cap M = \emptyset \}.$$

• A_t : accepted arms, B_t : rejected arms (up to phase *t*).

problem: which arm to accept or reject?

• accept/reject the arm with the largest empirical gap.

$$\bar{\Delta}_{e} = \begin{cases} \bar{w}_{t}(\bar{M}_{t}) - \max_{\substack{M \in \mathcal{M}_{t}: e \in M}} \bar{w}_{t}(M) & \text{if } e \notin \bar{M}_{t}, \\ \bar{w}_{t}(\bar{M}_{t}) - \max_{\substack{M \in \mathcal{M}_{t}: e \notin M}} \bar{w}_{t}(M) & \text{if } e \in \bar{M}_{t} \end{cases}$$

$$\blacktriangleright \mathcal{M}_t = \{ M : M \in \mathcal{M}, A_t \subseteq M, \underline{B}_t \cap M = \emptyset \}.$$

- A_t : accepted arms, B_t : rejected arms (up to phase *t*).
- $\bar{\Delta}_e$ can be computed using a maximization oracle.

problem: which arm to accept or reject?

• accept/reject the arm with the largest empirical gap.

$$\bar{\Delta}_{e} = \begin{cases} \bar{w}_{t}(\bar{M}_{t}) - \max_{\substack{M \in \mathcal{M}_{t}: e \in M}} \bar{w}_{t}(M) & \text{if } e \notin \bar{M}_{t}, \\ \bar{w}_{t}(\bar{M}_{t}) - \max_{\substack{M \in \mathcal{M}_{t}: e \notin M}} \bar{w}_{t}(M) & \text{if } e \in \bar{M}_{t} \end{cases}$$

$$\blacktriangleright \mathcal{M}_t = \{ M : M \in \mathcal{M}, A_t \subseteq M, \underline{B}_t \cap M = \emptyset \}.$$

- A_t : accepted arms, B_t : rejected arms (up to phase *t*).
- $\bar{\Delta}_e$ can be computed using a maximization oracle.
- recall the (unknown) **gap** of arm e:

$$\Delta_e = \begin{cases} w(M_*) - \max_{M \in \mathcal{M}: e \in M} w(M) & \text{if } e \notin M_*, \\ w(M_*) - \max_{M \in \mathcal{M}: e \notin M} w(M) & \text{if } e \in M_* \end{cases}$$

CSAR: Probability of error

Theorem (Probability of error of CSAR)

Given any budget T > n, CSAR correctly outputs the optimal set M_* with probability at least

$$1-2^{\tilde{O}\left(-rac{T}{\mathrm{width}(\mathcal{M})^{2}\mathbf{H}}
ight)}$$

and uses at most T rounds.

CSAR: Probability of error

Theorem (Probability of error of CSAR)

Given any budget T > n, CSAR correctly outputs the optimal set M_* with probability at least

$$1 - 2^{\tilde{O}\left(-\frac{T}{\operatorname{width}(\mathcal{M})^{2}\mathbf{H}}\right)}$$

and uses at most T rounds.

Remark: To guarantee a constant probability of error of δ , both CSAR and CLUCB need $T = \tilde{O}(\text{width}(\mathcal{M})^2 \mathbf{H})$ rounds.

Summary

- combinatorial pure exploration: a general framework that covers many pure exploration problems in MAB.
 - ▶ find top-*k* arms, optimal spanning trees, matchings or paths.
- two general algorithms for the problem
 - only need a maximization oracle for \mathcal{M} .
 - comparable performance guarantees.
- our algorithm is optimal (up to log factors) for matroids.
 - ▶ including *k*-sets and spanning trees.

Future work

- tighten the bounds for matching, paths and other combinatorial constraints
- support approximate maximization oracles
- non-linear rewards

Thank you!

Exchange class: Formal definition

Exchange set

An **exchange set** *b* is an ordered pair of disjoint sets $b = (b_+, b_-)$ where $b_+ \cap b_- = \emptyset$ and $b_+, b_- \subseteq [n]$. Let *M* be any set. We also define two operators:

•
$$M \oplus b \triangleq M \setminus b_- \cup b_+.$$

•
$$M \ominus b \triangleq M \setminus b_+ \cup b_-$$
.

Exchange class

We call a collection of exchange sets \mathcal{B} an **exchange class for** \mathcal{M} if \mathcal{B} satisfies the following property. For any $M, M' \in \mathcal{M}$ such that $M \neq M'$ and for any $e \in (M \setminus M')$, there exists an exchange set $(b_+, b_-) \in \mathcal{B}$ which satisfies five constraints: (a) $e \in b_-$, (b) $b_+ \subseteq M' \setminus M$, (c) $b_- \subseteq M \setminus M'$, (d) $(M \oplus b) \in \mathcal{M}$ and (e) $(M' \oplus b) \in \mathcal{M}$.

Experiments of CPE

Width and exchange class

definition Let \mathcal{B} be an exchange class.

width(
$$\mathcal{B}$$
) = $\max_{(b_+,b_-)\in\mathcal{B}} |b_+| + |b_-|.$

Let $Exchange(\mathcal{M})$ denote the family of all possible exchange classes for \mathcal{M} . We define the width of \mathcal{M} to be the width of the thinnest exchange class

$$\operatorname{width}(\mathcal{M}) = \min_{\mathcal{B} \in \operatorname{Exchange}(\mathcal{M})} \operatorname{width}(\mathcal{B}),$$

where $Exchange(\mathcal{M})$ is the family of all possible exchange classes for \mathcal{M} .