A Runtime Dependability Evaluation Framework for Fault Tolerant Web Services

Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong
Hong Kong, China

PFARM 2009, Lisbon, Portugal, June 29, 2009

Outlines

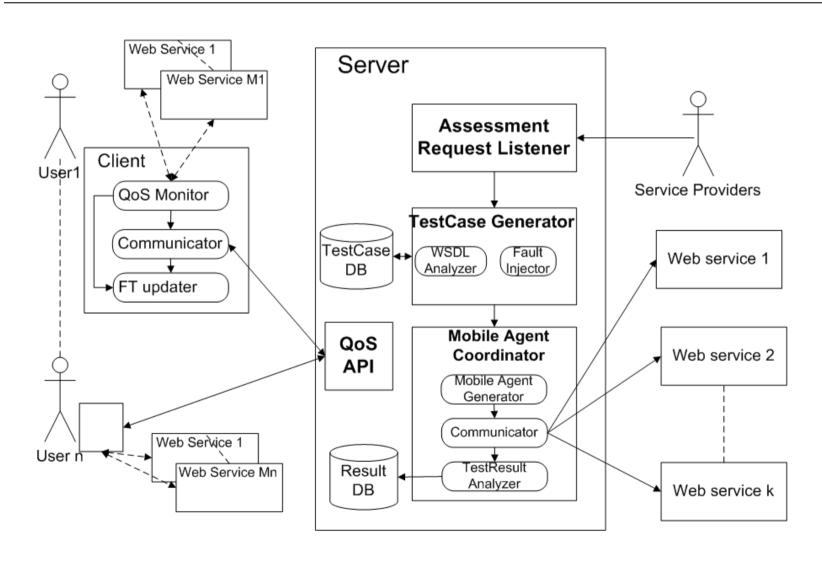
- 1. Introduction
- 2. System Architecture
- 3. Methodology
- 4. Experiments
- 5. Conclusion

1.1 Web services

- Web service is becoming popular.
- Difficult to build reliable service-oriented systems
 - Internet and Web services are highly dynamic
 - Web service components are provided by different organizations

Service Oriented Application

The compositional nature is hard
 to predict

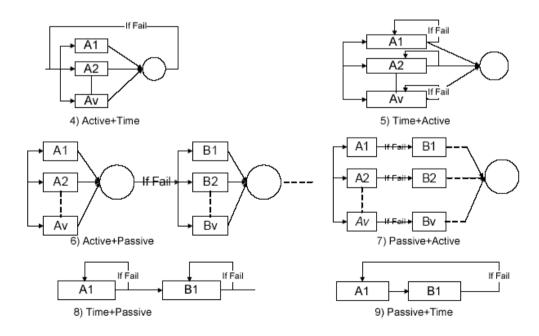

Web service 2

Web service n

1.2 Fault Tolerant Web Services

- Fault tolerant Web services by design diversity
 - Becomes less expensive, as the alternative components are available in the Internet
 - Requires adaptation, as the traditional fault tolerance strategies are too static
- Runtime evaluation on the target Web services
- Runtime proactive reconfiguration of the fault tolerance strategy

2 System Architecture


3.1 QoS of Web Services

- QoS offered by service provider:
 - Availability
 - Price
 - Popularity
 - Datasize
- QoS observed by service users:
 - Failure-rate
 - Response-time
 - Overall failure-rate
 - Overall response-time

$$q = (q^1, ..., q^m),$$

3.2 Fault Tolerance Strategy

- 1) Time
- 2) Active
- 3) Passive

$$\begin{array}{|c|c|c|}\hline \textbf{Pormula}\\\hline 1 & r=1-\prod\limits_{i=1}^{n}(1-r_i);\\ & t=\left\{\begin{array}{ll} \min\{T_c\}:|T_c|>0\\ \max\{T_f\}:|T_c|=0\end{array}\right\}; T=\{t_1,...,t_n\}=T_c\cup T_f\\\hline 2 & r=1-(1-r_1)^m; t=\sum\limits_{i=1}^{m}t_i(1-r_1)^{i-1};\\\hline 3 & r=1-\prod\limits_{i=1}^{m}(1-r_i); t=\sum\limits_{i=1}^{m}t_i\prod\limits_{k=1}^{i-1}(1-r_k)\\\hline 4 & r=1-(\prod\limits_{i=1}^{v}(1-r_i))^m;\\ & t=\sum\limits_{i=1}^{m}t_i(\prod\limits_{j=1}^{v}(1-r_j))^{i-1}; t_i=\left\{\begin{array}{ll} \min\{T_c^i\}:|T_c^i|>0\\ \max\{T_f^i\}:|T_c|=0\end{array}\right.\\\hline 5 & r=1-\prod\limits_{i=1}^{v}(1-r_i)^m;\\ & t=\left\{\begin{array}{ll} \min\{T_c\}:|T_c|>0\\ \max\{T_f\}:|T_c|=0\end{array}\right.; t_i\in T=\sum\limits_{j=1}^{m}t_{ij}(1-r_i)^{j-1}\\\hline 6 & r=1-\prod\limits_{i=1}^{m}(1-r_{ij});\\ & t=\sum\limits_{i=1}^{m}t_i\prod\limits_{k=1}^{i-1}\sum\limits_{j=1}^{v}(1-r_{kj}); t_i=\left\{\begin{array}{ll} \min\{T_c^i\}:|T_c^i|>0\\ \max\{T_f^i\}:|T_c|=0\end{array}\right.\\\hline 7 & r=1-\prod\limits_{j=1}^{v}(1-r_{ij});\\ & t=\left\{\begin{array}{ll} \min\{T_c\}:|T_c|>0\\ \max\{T_f^i\}:|T_c|=0\end{array}\right.\\\hline 7 & r=1-\prod\limits_{j=1}^{v}(1-r_{ij});\\ & t=\left\{\begin{array}{ll} \min\{T_c\}:|T_c|>0\\ \max\{T_f^i\}:|T_c|=0\end{array}\right.\\\hline \end{cases}\\\hline 8 & r=1-\prod\limits_{i=1}^{u}(1-r_i)^m;\\ & t=\sum\limits_{i=1}^{u}(\sum\limits_{j=1}^{i-1}t_i(1-r_i)^{j-1}\prod\limits_{k=1}^{i-1}(1-r_k)^m);\\\hline 9 & r=1-(\prod\limits_{i=1}^{u}(1-r_i))^m;\\ & t=\sum\limits_{i=1}^{u}(\sum\limits_{j=1}^{u}t_i\prod\limits_{k=1}^{j-1}(1-r_k)(\prod\limits_{j=1}^{u}(1-r_j))^{i-1});\\ & t=\sum\limits_{i=1}^{m}(\sum\limits_{j=1}^{u}t_j\prod\limits_{k=1}^{j-1}(1-r_k))^{i-1});\\ \end{array}$$

3.3 Optimal Web Service Selection

 Method 1: rank target Web services by their overall QoS performance (OP)

$$OP = \sum_{i=1}^{m} w_i \tilde{q}^i, \qquad \tilde{q}^i = \frac{1}{n} \sum_{j=1}^{n} q^{ij},$$

- Weak point: new service users may not obtain similar performance
 - The network condition is different
 - The user geographic location is different

3.3 Optimal Web Service Selection

- Method 2: collaborative filtering algorithm
 - Similarity computation

$$Sim(a,u) = \frac{\sum_{i \in I} (r_{a,i} - \overline{r}_a)(r_{u,i} - \overline{r}_u)}{\sqrt{\sum_{i \in I} (r_{a,i} - \overline{r}_a)^2} \sqrt{\sum_{i \in I} (r_{u,i} - \overline{r}_u)^2}},$$

- Similar user selection
- QoS performance prediction

$$P(r_{u,i}) = \overline{u} + \frac{\sum_{u_a \in S(u)} Sim'(u_a, u)(r_{u_a,i} - \overline{u}_a)}{\sum_{u_a \in S(u)} Sim'(u_a, u)},$$

Optimal Web service selection

3.4 Dynamic FT Strategy Reconfiguration

- Update QoS performance of target Web service candidates dynamically.
- Update user requirements.
 - e.g., response-time < 1000 ms.
 - e.g., failure-rate < 5%.
- Dynamic optimal fault tolerance strategy determination
 - Zibin Zheng, Michael R. Lyu, "A QoS-Aware Fault Tolerant Middleware for Dependable Service Composition", in DSN2009.

4.1 Experimental setup

- Prototype: http://www.wsdream.net
 - Client: Java applet.
 - Server: Java servlet, MySQL
- Service users: CN, TW, AU, SG, HK, US
- Functionally equivalent Amazon Web services: a-us, a-jp, a-de, a-ca, a-fr, a-uk.

http://ecs.amazonaws.com http://ecs.amazonaws.jp http://ecs.amazonaws.de http://ecs.amazonaws.ca http://ecs.amazonaws.fr http://ecs.amazonaws.co.uk

4.2 Evaluation of Individual WS

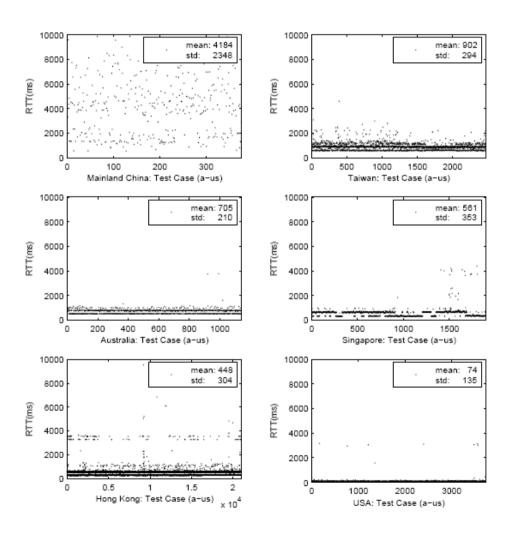


Table 2. Failure-rate of the Web Services

•	unio L	<u> aa</u>	io iat	20 00: 1:00			
	WS	CN	TW	AU	SG	HK	US
•	a-us	22.52	0	0	0	0.38	0
	a-jp	26.55	0.03	0	0	0.05	0
	a-de	23.40	0	0	0	3.45	0
	a-ca	24.23	0.19	0	0	0.58	0
	a-fr	19.27	0	0	0	3.52	0
	a-uk	20.28	0.03	0.25	0	3.87	0
-							

4.3 Evaluation of FT Strategies

Table 3. Evaluation of FT Strategies

Туре	Cases			RTT(ms)			
_J I	All	Fail	R%	Avg	Std	Min	Max
1	21556	6	0.027	279	153	203	3296
2	22719	0	0	389	333	203	17922
3	23040	0	0	374	299	203	8312
4	21926	4	0.018	311	278	203	10327
5	21926	1	0.004	312	209	203	10828
6	21737	2	0.009	311	225	203	10282
7	21737	2	0.009	310	240	203	13953
8	21735	0	0	411	1130	203	51687
9	21808	0	0	388	304	203	9360

5.1 Conclusion

- QoS of Web services
- Fault tolerance strategies
- Web service selection framework
- Proactive reconfiguration of optimal FT strategy