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Online Learning

@ Definition of Online learning
o learn from the streaming data
e update the model adaptively from the data stream
@ Properties
e process the data one by one
e update the model in each iteration
e approximate the learning performance of the batch-train methods

Figure : Rutrell Yasin, Amazon Kinesis does heavy-lifting on streaming, big data
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Imbalanced Data & Cost-sensitive Learning

© Properties:
e uneven data distribution
e No. of samples in one class <
No. of samples in the other
class

@ Problems:

e Accuracy: inappropriate !

e Misclassification costs for -
possitive and negative samples g 0 i E
are not the same.

Figure : Imbalanced data
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Support Vector Machine [Cortes 1995]

© SVM maps the instance x to the Reproducing Kernel Hilbert Space
¢ x — P(x)

@ In RKHS, dot product of two elements:

(d(xi), d(x;))m = k(xi, x;)
© The objective of SVM is to maximize the margins of the hyperplane
in RKHS.
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KOIL: Definitions & Notations

@ non-linear decision function f : RY — R

@ a sequence of imbalanced feature-labeled pair instances
{z: = (X¢,yt) € Z,t € [T]}, where Z =X x Y, x; € X CRY,
yeeY={-1,+1}and [T]={1,..., T}

© f(x) can be calculated by

<f()7 k(X, )>'H = f(x) (1)

© Assumption: positive class (minority) & negative class (majority)

o NZ(Z)Z the set of the k-nearest neighbors of z and have the label of .
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Related Work

@ Online Learning with Kernels: minimize the hinge loss function

mfin Ch(f,x,y) = max(0,1 — yf(x)) (2)

o NORMA [Kivinen 2004]
o Randomized Budget Perceptron [Cavallanti 2007]
o Forgetron [Dekel 2008]
Projectron [Orabona 2008]
@ Online Linear AUC Maximization: minimize the AUC-based loss
function
o Online AUC Maximization (OAM) [Zhao 2011]

min £p(w,xt,x7) := max(0,1 — w - (x© —x7)) (3)
e One-Pass AUC Optimization (OPAUC) [Gao 2013]

min Cp(w, x*,x7) = (1= w - (x" —x7))’ (4)
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Problems & Motivation

@ Deal with non-linear imbalanced data?

@ Pay more attention on minority class?

© Update the decision smoothly and robustly?

@ Store fixed number of subport vectors without information loss?
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KOIL: Formulation

@ KT and K~: the information of positive and negative SVs

respectively, where |[BT| = |B7|.
+
Kt A= {aF} B Kt B:={z]y = +1}I5] (5)
K- A:={a B K- B:={z;|y;=-1}F\. (6)

@ Goal: to seek a decision function f in Eq. (7).

Fx)= D ofk(xh.x)+ Y ark(x;,x), (7)
afekt. A a LA
X?FGIC*—'B xj_GIC*.B
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KOIL: AUC Optimization

@ Given the positive dataset D+ = {z;|y; = +1} and the negative
dataset D~ = {zj|y; = —1}, the AUC is measured as:

SIS () — F(x;) > 0]
CEER ®

SIS () — F(x)7) < 0]
|D+[|D

AUC(f) =

=1-

where I[r] is the indicator function.
@ Maximizing AUC equals to minimizing
S T2 () ~ Fxg) < 0

© Replace the discrete |nd|cator function I[x] in Eq. (8) by the
surrogate convex loss function in Eq. (9)

of2.2) = Y 60 - () ©)
+
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KOIL: Intuition

Synthetic data Synthetic data
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@ Assign an initial weight to z;

@ Update the weight of SVs, which are KNN of z; and have the
opposite label —y;.

© does not affect the weight of SVs in the whole buffer
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KOIL: Intuition — Update Kernel

.
Notation: .
z = (%, —1) Zy
7l = (%, +1) -
Zy3
Objective function: + A
Z
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KOIL: Problem for online learning with kernel

@ What if the fixed-size buffers are full?
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KOIL: Problem for online learning with kernel

@ What if the fixed-size buffers are full?

@ Reservoir Samping (RS)
@ First-In-First-Out (FIFO)
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KOIL: Problem for online learning with kernel

@ What if the fixed-size buffers are full?

@ Reservoir Samping (RS)
@ First-In-First-Out (FIFO)

@ What if we directly remove the SV from the buffer?
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KOIL: Problem for online learning with kernel

@ What if the fixed-size buffers are full?

@ Reservoir Samping (RS)
@ First-In-First-Out (FIFO)

@ What if we directly remove the SV from the buffer?

@ information loss
@ compensation scheme for information loss
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KOIL: Intuition — Update Buffers

L]

. Update Buffers:

Notation: ¢ 1. Not filled: Add to buffer

zp = (%, —1) Z1_4 2. Filled: i) Delete; ii) Add
iii) Compensate

z} == (x4, +1) 2

13 FEE () = fori (%) = onk(X,, %) FAc - k(X X)

Removal Compensation

REHS ix,x) < 42
k(xr,Xe) 2 &

+ Positive — Negative
Z| Buffer Z, Buffer
. —
VA
. 3
* Z2 Stream oblivious policies:
1. First-In-First-Out (FIFO)
.
2. Reservoir Sampling (RS)
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KOIL: Update Kernel

@ Minimize the instantaneous regularized risk of AUC.

) 1 t—1
min £(fe,z) = 5 [1fll3 + C Y la(fe,2e,2)) (10)

i=1

@ Minimize the localized instantaneous regularized risk of AUC (Reduce the effect of
outliers):

. 4 1
min £(f,z0) = Sl +C Y0 alfez2) (11)

Z; €N, (z)
© Stochastic Gradient Descent: update f; in each iteration
forn = fo — nOrL(F, 20) =, (12)
@ Updating rule for the kernel weights:

nCye > ld(ze,2)) <1Ay: # y], i=t
ZjEN;yr(Zt)

(1 —n)a; —nCys, Vi,zi € N, (z:)

(1 —n), otherwise

o = (13)
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KOIL: Update Budget

© Remove SV via Reservoir Samping (RS) or FIFO:
fer1(x) = frp1(x) — ark(x,,x) (14)
@ Compensate the loss by adding Aa.:
ftﬁj(x) = ft-i-l(x) + Aac - k(xc,x)
= frr1(X) — ark(x,, x) +Acc - k(Xc, X) (15)

Vv Vv
Removal Compensation

© By Eq. (15), we have

(16)
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Theoretical Analysis

Lemma 1 (Norm of f)

Suppose for all x € RY, k(x,x) < X2, where X > 0. Let & be in [0, X],
such that k(x¢, x;) > €2, Vz; = (x;,y:) € Ny ”*(z¢). With f; = 0, we have

[frr1lln < Chy/2X2 — 262 (17)

Lemma 2 (pair-wise hinge loss bound)

With the same assumption in Lemma 1 and the pair-wise hinge loss
function £ : H x Z x Z — [0, U] defined by Eq. (9), we can determine the
bound by

U=1+2Ck(X%-¢). (18)

Junjie Hu (CUHK) KOIL January 27, 2015 18 / 29



Theoretical Analysis

Theorem (Regret bound of KOIL)

Suppose for all x € R9, k(x,x) < X2, where X > 0. Let &1 be in [0, X],
such that k(x¢, x;) > €2, Vz; = (x;i,y;) € Ny "*(z¢). Given

k> 0,C > 0,7 >0 and a bounded convex loss function { : H x Z X Z —
[0, U] for fy updated by Eq. (12), with fi =0, we have

£ 112

Rr <=y H+nChk L, (U-1)+(k+1) C(X?~)). (19)

Moreover, assume that Vi € I;” U I, | ¢| € [0,9m] and k(x,,xc) > &3
with 0 < & < X for any replaced support vector x, and compensated
support vector x. at any trial. With £ =0 and £, updated by

Eq. (15), we have

REY<R7+T (4yCh/(XT—8)(XT-8) 4227 (X*-3) ). (20)

v

Set 7 to be O(#) Rt ~ O(\/T), as tight as the standard regret bound.
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Experiment Setup

@ All algorithms adopt the same setup.
@ the learning rate: n = 0.01

© A 5-fold cross validation on the training data is applied to find the
penalty cost C ¢ 2[-10:10]

© For kernel-based methods, we use the Gaussian kernel and tune its

parameter o € 2071910 by 3 5-fold cross validation on the training
data.
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Methods in Comparison

@ “Perceptron”: the classical perceptron algorithm [Rosenblatt 1958];

@ "OAMs": an online linear AUC maximization algorithm [Zhao 2011];
“OPAUC": One-pass AUC maximization [Gao 2013];

“NORMA": online learning with kernels [Kivinen 2004]

“RBP": Randomized budget perceptron [Cavallanti 2007];

“Forgetron”: a kernel-based perceptron on a fixed
budget [Dekel 2008];

“Projectron/Projectron++": a bounded kernel-based
perceptron [Orabona 2008];

“KOILRrs+": our proposed kernelized online imbalanced learning
algorithm with fixed budgets updated by RS++.

“KOILFpo4+4": our proposed kernelized online imbalanced learning
algorithm with fixed budgets updated by FIFO++.
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Benchmark Datasets

Table : Summary of the benchmark datasets.

Dataset Samples | Dimensions | T=/T+
sonar 208 60 1.144
australian 690 14 1.248
heart 270 13 1.250
ionosphere 351 34 1.786
diabetes 768 8 1.866
glass 214 9 2.057
german 1000 24 2.333
svmguide? 391 20 2.342
segment 2310 19 6.000
satimage 4435 36 9.687
vowel 528 10 10.000
letter 15000 16 26.881
poker 25010 10 47.752
shuttle 43500 9 328.546
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AUC Measure on Benchmark Dataset

Table : Average AUC performance (mean=std) on the benchmark datasets, /o
() indicates that both/one of KOILgs+ and KOILggo4 are/is significantly
better (worse) than the corresponding method (pairwise t-tests at 95%
significance level).

Data KOILRs KOILE|Fo n Perceptron OPAUC Forgetron | Projectron | Projectron+-H
R e BITEO7Te[- 0 ;
laustralian | .923 .9234.025 | .91 9234.024
I 901+.0430 905-+.042
ionospher 888.0460| 963-+.027@
diabetes 050356 .8334.033
lglass 800+.074 | 781+.0760
lgerman | X : X 75.026- 770F .0
svmguide2|.897+.040| .885+4.043 859+.0504| 886+.0450
segment |.983+.008| .9851-.012 88214.019e| 978+.016e
satimage |. k R k .016e| Olle
i 924+ .012| .923+.015 7244016 904+.011
owel 1.000+.000 1.000-+.001 8851.034 | 9944 .019e
letter .933£.021] . +.01 823+.018 926+.0150
poker .681+.031| .693+.032 509+.031| 675+.0270
shuttle .9504.040| .956+.021 54+ .043 0| 795+ .063@
win /tie/loss 12/1/1 10/4/0
Junjie Hu (CUHK KOIL 201




KOIL: RS++/FIFO++

@ RS/FIFO | when
the budget is full

@ RS++/FIFO++
approximate
KOIL without
removing SVs.

vs RS /FIFO
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Figure : Average AUC performance of KOIL.
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Experiment: Effect of Buffer Size

diabetes svmguide2
0.9
08
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Figure : Average AUC of KOIL for buffer sizes.
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Experiment: Effect of k

@ For noisy
dataset, set k
small to avoid
global effect

@ k extremely
small, KOIL
cannot learn
enough
knowledge.
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Figure : Average AUC of KOIL with different k
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Conclusion

In this talk, we introduced the KOIL algorithm, which has the following
properties :

©@ AUC maximization for streaming data

@ Two fixed-size buffers

© k-Nearest Neighbors to reduce the effect of noisy data

@ loss compensation for support vector replacement in the buffers
© Regret bound for KOIL and two lemmas

@ Experiments on benchmark and synthetic datasets.
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Thanks!
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