
A QoS Aware Fault Tolerant Middleware for
Dependable Service Composition

Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

Hong Kong, China

DSN 2009, Lisbon, Portugal, June 29-July 2, 2009

2

Outlines

1. Introduction
2. Preliminaries
3. Optimal Fault Tolerance Strategy Selection
4. Experiments
5. Conclusion and Future Work

1. Introduction

4

1.1 Web Services
Self-description
Loosely-coupled
Highly-dynamic
Cross-domain
Compositional nature

5

1.2 A Motivating Example

SP=(T,P,B)
SP: service plan
T: a set of tasks
P: settings
B: Structure information

Challenges:
Optimal FT strategy selection
Local and global constraints
Stateful Web services

Local constraint:
Response time of t1 < 1000 ms.
Global constraint:
Success-rate of the whole service
plan > 99%.

Service Oriented Application

Web service 1

Web service 2

Web service n

t1

Service
Candidates

How to employ these alternative candidates for reliability enhancement?

Stateless Web services

Stateful Web services

6

1.3 Fault Tolerant Web Services
Web services are becoming popular for building
distributed Internet systems.
It is difficult to build reliable service-oriented
systems.

Reliability of the system is highly dependent on the
remote Web service components.
Web services are usually hosted by other
organizations.

• may contain faults.
• may become unavailable suddenly.
• Source codes of the Web services are usually unavailable.

The Internet environment is unpredictable.

7

1.3 Fault Tolerant Web Services
Traditional software reliability engineering

Software fault tolerance by design diversity is a major approach
for building highly reliable system.
It is expensive to develop redundant components.

Service reliability engineering
Web services with identical/similar functionality are abundant in
the Internet.
Cost becomes less of the concern.

How to employ these redundant Web services for
building fault tolerant services reliably and effectively?

8

1.4 Contributions

A systematic framework of fault tolerant Web
services:

User-collaborative QoS model of Web services.
Various commonly-used fault tolerance strategies for Web
services.
Web service QoS composition model.

Optimal fault tolerance strategy selection
algorithms for stateless and stateful Web
services.
Large-scale real-world experiments.

2. Preliminaries

10

2.1 System Architecture

YouTube: sharing videos.
Wikipedia: sharing knowledge.
WS-DREAM: sharing QoS data of Web services.
http://www.wsdream.net

11

2.2 QoS Model of WS

12

2.3 Web Service Composition

13

2.4 Fault Tolerance Strategies
• Basic fault tolerance strategies:

Retry: The original Web service will be tried for a certain number
of times if it fails.
Recovery Block (RB): Another standby Web service will be
tried sequentially if the primary Web service fails.
N-Version Programming (NVP): all the n candidates are
invoked in parallel and the final result will be determined by
majority voting.
Active. All the n candidates are invoked in parallel and the first
returned response will be selected as the final result.

• Combination of the basic fault tolerance strategies
– More complex strategies by combining the basic strategies.

3. Optimal Fault Tolerance Strategy
Selection

15

3.1 Utility Function
• Positive QoS properties (larger for better):

– Availability, popularity, success-rate, overall success-rate.
• Negative QoS properties (smaller for better):

– Response time, price, data-size, overall response-time.
• Transfer Negative QoS values to positive QoS.

• Normalization of the QoS values.

• Utility function:

16

3.2 Notations

17

3.3 Optimal Selection With Local Constraints

• Selection problem

18

3.4 Selection With Gobal Constraints

• 0-1 Integer Programming Problem

19

3.5 Hybrid Algorithm
As the IP problem is
NP-complete, we propose
a more effective hybrid
algorithm.

4. Experiments

21

4.1 Experimental Setup

• Obtain 21,197 publicly available Web services
from the Internet.

• Generate client stub classes for 18,102 Web
services. A total of 343,917 Java classes are
generated.

• Randomly select 100 Web services for
conducting experiment.

• 150 distributed computer nodes from PlanetLab.
• More than 1.5 millions Web service invocations

22

4.2 Location Information
• PlanetLab (http://www.planet-lab.org) is a global

research network, which consists of 1016 distributed
computers.

23

4.3 QoS of Web Services

Further information and the detailed Web service QoS dataset is
available in http://www.wsdream.net

24

4.4 Case Studies

25

4.5 Performance Study (1)

26

4.5 Performance Study (2)

5. Conclusion and Future Work

28

5.1 Conclusion and Future Work
Conclusion

Fault tolerance strategies
A QoS model for Web services
A QoS composition model for Web services
Optimal fault tolerance strategy selection algorithms
Large-scale real-world experiments

Future work
Investigation on more QoS properties
Experiments with more service users on more real-world Web
services

