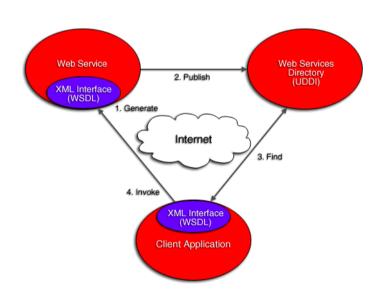
A QoS Aware Fault Tolerant Middleware for Dependable Service Composition

Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong
Hong Kong, China

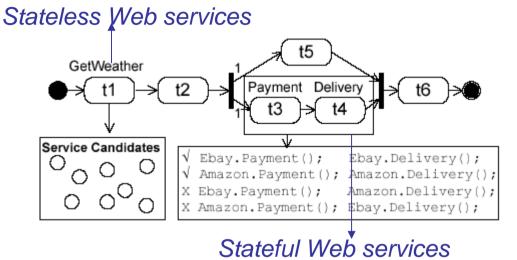
DSN 2009, Lisbon, Portugal, June 29-July 2, 2009

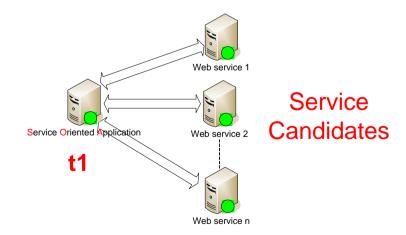

Outlines

- 1. Introduction
- 2. Preliminaries
- 3. Optimal Fault Tolerance Strategy Selection
- 4. Experiments
- 5. Conclusion and Future Work

1. Introduction

1.1 Web Services


- Self-description
- Loosely-coupled
- Highly-dynamic
- Cross-domain
- Compositional nature



1.2 A Motivating Example

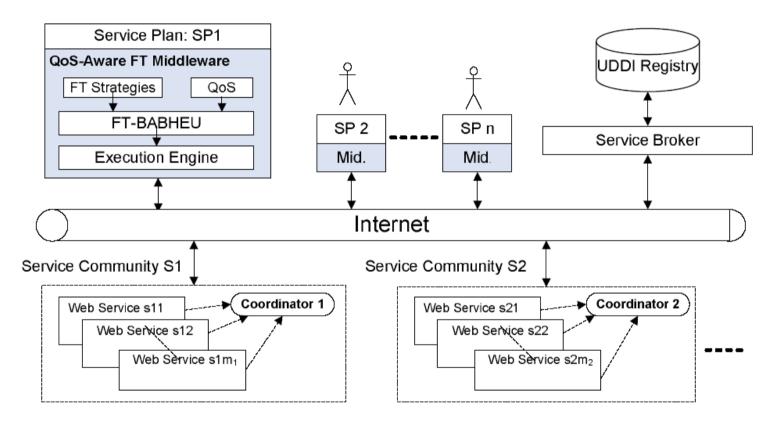
- SP=(T,P,B)
 - O SP: service plan
 - T: a set of tasks
 - P: settings
 - B: Structure information
- Challenges:
 - Optimal FT strategy selection
 - Local and global constraints
 - Stateful Web services
- Local constraint:
 Response time of t1 < 1000 ms.
- Global constraint:
 Success-rate of the whole service
 plan > 99%.

1.3 Fault Tolerant Web Services

- Web services are becoming popular for building distributed Internet systems.
- It is difficult to build reliable service-oriented systems.
 - Reliability of the system is highly dependent on the remote Web service components.
 - Web services are usually hosted by other organizations.
 - may contain faults.
 - may become unavailable suddenly.
 - Source codes of the Web services are usually unavailable.
 - The Internet environment is unpredictable.

1.3 Fault Tolerant Web Services

- Traditional software reliability engineering
 - Software fault tolerance by design diversity is a major approach for building highly reliable system.
 - It is expensive to develop redundant components.
- Service reliability engineering
 - Web services with identical/similar functionality are abundant in the Internet.
 - Cost becomes less of the concern.


How to employ these redundant Web services for building fault tolerant services reliably and effectively?

1.4 Contributions

- A systematic framework of fault tolerant Web services:
 - User-collaborative QoS model of Web services.
 - Various commonly-used fault tolerance strategies for Web services.
 - Web service QoS composition model.
- Optimal fault tolerance strategy selection algorithms for stateless and stateful Web services.
- Large-scale real-world experiments.

2. Preliminaries

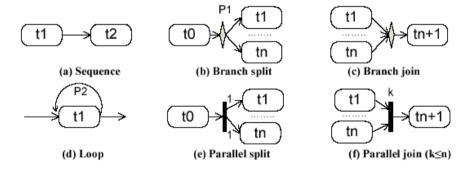
2.1 System Architecture

YouTube: sharing videos.

Wikipedia: sharing knowledge.

WS-DREAM: sharing QoS data of Web services.

http://www.wsdream.net


2.2 QoS Model of WS

- Availability (av) q¹: the percentage of time that a Web service is operating during a certain time interval.
- 2. Price (pr) q^2 : the fee that a service user has to pay for invoking a Web service.
- 3. Popularity (po) q^3 : the number of received invocations of a Web service during a certain time interval.
- Data-size (ds) q⁴: the size of the Web service invocation response.
- Success-rate (sr) q⁵: the probability that a request is correctly responded within the maximum expected time. q⁵ = succInvocationNum.
- 6. Response-time (rt) q^6 : the time duration between service user sending a request and receiving a response.
- 7. Overall Success-rate (osr) q^7 : the average value of the invocation success rate (q^5) of all service users.
- 8. Overall Response-time (ort) q^8 : the average value of the response-time (q^6) of all service users.

$$q = (q^1, ..., q^8).$$

2.3 Web Service Composition

QoS	Basic Structures				
Properties	sequence	parallel	branch	loop	
rt, ort (x=6, 8)	$\sum_{i=1}^{n} q_i^x$	$\max_{i=1}^k q_i^x$	$\sum_{i=1}^{n} p_i q_i^x$	$\sum_{i=0}^{n} p_i q_1^x i$	
av, sr, osr (x=1, 5, 7)	$\prod_{i=1}^{n} q_i^x$	$\sum_{i=k}^{n} S^{x}(i)$	$\sum_{i=1}^{n} p_i q_i^x$	$\sum_{i=0}^{n} p_i (q_1^x)^i$	
pr, po, ds (x=2, 3, 4)	$\sum_{i=1}^{n} q_i^x$	$\sum_{i=1}^{n} q_i^x$	$\sum_{i=1}^{n} p_i q_i^x$	$\sum_{i=0}^{n} p_i q_1^x i$	

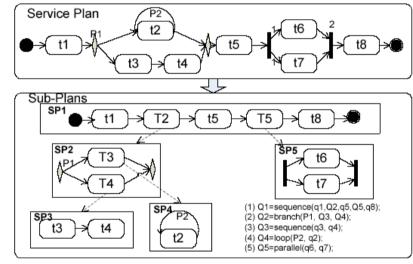


Figure 3. Service Plan Decomposition

Figure 2. Basic Compositional Structures

2.4 Fault Tolerance Strategies

Basic fault tolerance strategies:

- Retry: The original Web service will be tried for a certain number of times if it fails.
- Recovery Block (RB): Another standby Web service will be tried sequentially if the primary Web service fails.
- N-Version Programming (NVP): all the n candidates are invoked in parallel and the final result will be determined by majority voting.
- Active. All the n candidates are invoked in parallel and the first returned response will be selected as the final result.

Combination of the basic fault tolerance strategies

More complex strategies by combining the basic strategies.

3. Optimal Fault Tolerance Strategy Selection

3.1 Utility Function

- Positive QoS properties (larger for better):
 - Availability, popularity, success-rate, overall success-rate.
- Negative QoS properties (smaller for better):
 - Response time, price, data-size, overall response-time.
- Transfer Negative QoS values to positive QoS.

$$q_{ij}^k = \max q_i^k - q_{ij}^k,$$

Normalization of the QoS values.

$$\tilde{q}_{ij}^k = \begin{cases} \frac{q_{ij}^k - \min q_i^k}{\max q_i^k - \min q_i^k} & \text{if } \max q_i^k \neq \min q_i^k \\ 1 & \text{if } \max q_i^k = \min q_i^k \end{cases}$$

Utility function:

$$u_{ij} = utility(q_{ij}) = \sum_{k=1}^{c} w_k \times \tilde{q}_{ij}^k,$$

3.2 Notations

Table 3. Notations

Table 3. Notations						
Symbol	Description					
SP	a service plan, which is a triple (T, P, B) .					
T	a set of tasks in the service plan, $T = SLT \cup SFT$.					
SLT	a set of stateless tasks, $SLT = \{t_i\}_{i=1}^{n_l}$.					
SFT	a set of stateful tasks, $SFT = \{SFT_i\}_{i=n_l}^n$					
SFT_i	a set of related tasks of the i^{th} stateful task.					
n	the number of tasks in SP, $n=n_l+n_f$.					
n_l	the number of the stateless tasks in SP, $n_l = SLT $.					
n_f	the number of the stateful tasks in SP, $n_f = SFT $.					
n_i	number of state related tasks of SFT_i , $n_i = SFT_i $.					
S_i	a set of candidates for $t_i, S_i = \{s_{ij}\}_{j=1}^{m_i}$.					
m_i	the number of candidates for t_i , $m_i = S_i $.					
ρ_i	the optimal candidate index for t_i .					
LC_i	local constraints for task t_i , $LC_i = \{lc_k^i\}_{k=1}^c$.					
GC	global constraints for $SP, GC = \{gc^k\}_{k=1}^c$.					
c	the number of quality properties.					
q_{ij}	a quality vector for s_{ij} , $q_{ij} = (q_{ij}^k)_{k=1}^c$.					
ER	a set of execution routes of SP , $ER = \{ER_i\}_{i=1}^{n_e}$.					
n_e	the number of execution routes of a service plan.					
$pro(ER_i)$	the execution probability of ER_i .					
SR	a set of sequential routes of SP , $SR = \{SR_i\}_{i=1}^{n_s}$.					
n_s	the number of sequential routes of SP .					
pct	a user defined threshold for ER .					

3.3 Optimal Selection With Local Constraints

Selection problem

Problem 1 Minimize: $\sum_{j=1}^{m_i} u_{ij} x_{ij}$

Subject to:

- $\sum_{j=1}^{m_i} q_{ij}^k x_{ij} \le lc_i^k (k = 1, 2, ..., c)$
- $\bullet \ \sum_{i=1}^{m_i} x_{ij} = 1$
- $x_{ij} \in \{0, 1\}$

```
Data: Service plan SP, local constraints LC, candidates S
    Result: Optimal candidate index \rho for SP.
 1 n_l = |SLT|; n_f = |SFT|; n = n_l + n_f; n_i = |SFT_i|; m_i = |S_i|;
 2 for (i = 1; i \le n_l; i++) do
          for (j = 1; j \le m_i; j++) do
                if \forall x (q_{ij}^x \leq lc_i^x) then u_{ij} = utility(q_{ij});
          if no candidate meet lc_i then Throw exception;
          u_{ix} = \min\{u_{ij}\};
          \rho_i = x;
9 end
10 for (i=n_i+1; i \le n; i++) do
          for (j=1; j \le m_i; j++) do
                if \forall x \overline{\forall y} (q^x_{iyj} \leq lc^x_{iy}) then
                      q = flowQoS(SP, q_{i1i}, ..., q_{in_ii});
                      u_{ij} = utility(q);
                end
          if no candidate meet lc_i then Throw exception;
          u_{ix} = \min\{u_{ij}\};
          for all tasks in SFT_i do \rho_{ik} = x;
20 end
```

Algorithm 2: FT Selection with Local Constraints

3.4 Selection With Gobal Constraints

0-1 Integer Programming Problem

Problem 2: Minimize:

$$\sum_{i \in ER_i} \sum_{j \in S_i} u_{ij} x_{ij}$$

Subject to:

$$\sum_{i\in ER_i}\sum_{j\in S_i}q^y_{ij}x_{ij}\leq gc^y(y=2,3,4)$$

$$\forall k, \sum_{i \in SR_{ik}} \sum_{j \in S_i} q_{ij}^y x_{ij} \le gc^y (y = 6, 8)$$

$$\prod_{i \in ER_i} \prod_{j \in S_i} (q_{ij}^y)^{x_{ij}} \le gc^y (y = 1, 5, 7)$$

$$\forall SFT_i, x_{y_1j} = x_{y_2j} = \dots = x_{y_{n_i}j}(t_{y_i} \in SFT_i)$$

$$\forall i, \sum_{j \in S_i} x_{ij} = 1; x_{ij} \in \{0, 1\}$$

$$\sum_{i\in ER_i}\sum_{j\in S_i}x_{ij}ln(q^y_{ij})\leq ln(gc^y)(y=1,5,7),$$

$$\frac{\tilde{q}_{ER_i}^y - \min ln(q^y)}{\max ln(q^y) - \min ln(q^y)},$$

$$\tilde{q}^y_{ER_i} = ln(q^y_{ER_i}) = \sum_{i \in ER_i} \sum_{j \in S_i} x_{ij} ln(q^y_{ij}).$$

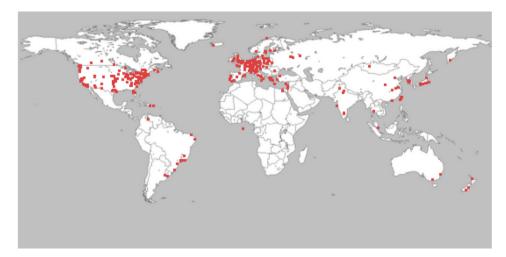
3.5 Hybrid Algorithm

As the IP problem is NP-complete, we propose a more effective hybrid algorithm.

```
Data: SP, ER, Constraints GC, LC, Candidates S, pct
    Result: Optimal candidates index \rho for SP.
 1 n=n_l+n_f; n_l=|SLT|; m_i=|s_i|; n_e=|ER|; T_e=\{\};
 2 for (i=1; i \le n_e; i++) do
          if ER_i \in the first pct major routs then
                FTBAB(ER_i);
 4
                T_e = T_e \cup T_i;
 6
          end
 7 end
    foreach t_k \in T_e do
          if t_k \in only one ER_i then
                \rho_k = ER_i . \rho_k;
          else if t_k \in multiply ER_i then
                pro(ER_x) = \max\{pro(ER_i)\};
                \rho_k = ER_x . \rho_k;
          end
15 end
16 if T_e == T then return \rho;
17 ρ = findInitialSolution(T, GC, LC, S, T<sub>e</sub>, ρ);
18 q_{all} = flowQoS(SP, q_{1\rho_1}, ..., q_{n\rho_n});
    while \exists x (\frac{q_{all}^x}{q_c^x} > 1) do
          S' = \text{findExchangeCandidate}(T,GC,LC,\rho);
          if |S'| == 0 then
                return No Feasible Solution Exist!
          else
                forall s_{xy} \in S' do \rho_x = y;
25
          end
26 end
27 repeat
          \rho=feasibleUpgrade(SP,GC,LC,S,\rho);
29 until ρ do not change ;
30 return \rho;
```

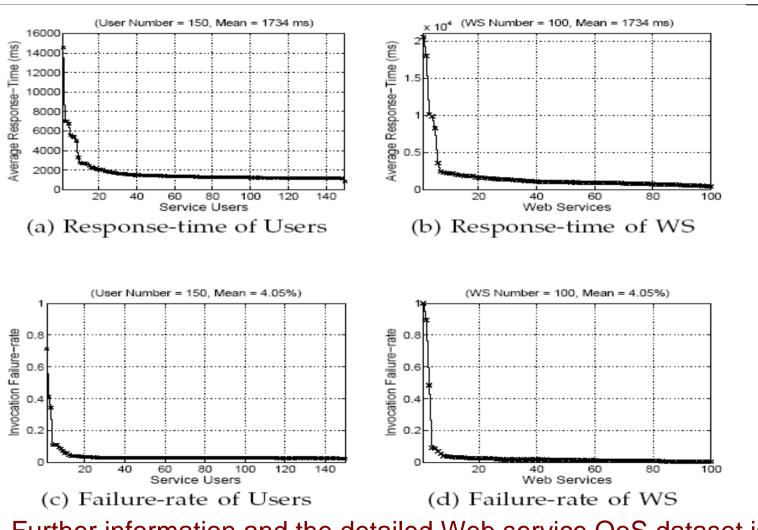
Algorithm 3: Hybrid Algorithm: FT-BABHEU

4. Experiments


4.1 Experimental Setup

- Obtain 21,197 publicly available Web services from the Internet.
- Generate client stub classes for 18,102 Web services. A total of 343,917 Java classes are generated.
- Randomly select 100 Web services for conducting experiment.
- 150 distributed computer nodes from PlanetLab.
- More than 1.5 millions Web service invocations

4.2 Location Information


PlanetLab (http://www.planet-lab.org) is a global research network, which consists of 1016 distributed computers.

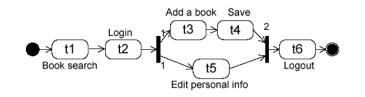
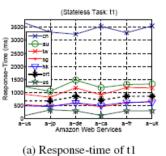
PlanetLab currently consists of 1016 nodes at 479 sites.

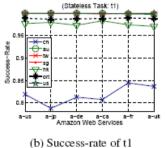
Table 5.1. Locations of the Service Users and Web Services User Locations Num WS Locations Num							
United States	72	United States	33				
European Union	37	Canada	10				
Japan	6	China	8				
Canada	5	Germany	7				
Germany	4	France	6				
Brazil	3	Spain	6				
France	3	United Kingdom	5				
United Kindom	3	Netherlands	4				
Republic of Korea	2	Poland	3				
Belgium	1	Republic of Korea	3				
Cyprus	1	Switzerland	3				
Republic of Czech	1	Italy	2				
Finland	1	Australia	1				
Greece	1	Belgium	1				
Hungary	1	Ireland	1				
Ireland	1	Islamic Republic of Iran	1				
Norway	1	Japan	1				
Poland	1	New Zealand	1				
Portugal	1	Norway	1				
Puerto Rico	1	Serbia and Montenegro	1				
Slovenia	1	South Africa	1				
Spain	1	Thailand	1				
Taiwan	1						
Uruguay	1						
Total	150	Total	100				

4.3 QoS of Web Services

Further information and the detailed Web service QoS dataset is available in http://www.wsdream.net

4.4 Case Studies


Table 5.2. QoS Values of the Stateless Task (t_1)

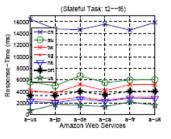

Table 3.2. Q03 values of the Stateless Task (v_1)								
WS	Q	CN	AU	US	SG	TW	HK	ALL
	rt	3659	1218	121	544	934	491	681
aus	sr	0.819	1.000	1.000	1.000	1.000	0.977	0.989
	rt	3310	1052	338	472	824	469	686
ajp	sr	0.788	1.000	1.000	1.000	1.000	0.980	0.987
	rt	3233	1476	303	596	1178	612	846
ade	sr	0.813	1.000	1.000	1.000	1.000	0.973	0.987
	rt	3530	1190	130	456	916	509	714
aca	sr	0.807	1.000	1.000	1.000	0.998	0.983	0.988
	rt	3289	1309	306	600	1193	630	864
afr	sr	0.844	0.998	1.000	1.000	1.000	0.974	0.989
	rt	3550	1326	305	671	1178	633	862
auk	sr	0.837	0.997	1.000	1.000	1.000	0.971	0.988

Table 5.3. QoS Values of the Stateful Task (t_2 – t_6)

WS	Q	CN	AU	US	SG	TW	HK	ALL
	rt	16434	5625	717	2708	4166	2328	3297
aus	sr	0.450	1.000	1.000	1.000	1.000	0.972	0.940
	rt	14763	4980	1751	2505	3730	2058	3335
ajp	sr	0.450	1.000	1.000	1.000	0.998	0.973	0.944
	rt	14640	6718	1646	3038	5209	2730	3985
ade	sr	0.438	1.000	1.000	1.000	1.000	0.972	0.935
	rt	15602	5527	1403	2488	4150	2305	3427
aca	sr	0.452	1.000	1.000	1.000	0.996	0.979	0.944
	rt	14560	5983	2211	3009	5175	2862	4045
afr	sr	0.496	0.992	1.000	1.000	1.000	0.969	0.937
	rt	15898	6066	1630	3044	5209	2819	4048
auk	sr	0.484	0.988	1.000	1.000	0.998	0.970	0.939

(d) Success-rate of t2-t6 (c) Response-time of t2-t6

24

4.5 Performance Study (1)

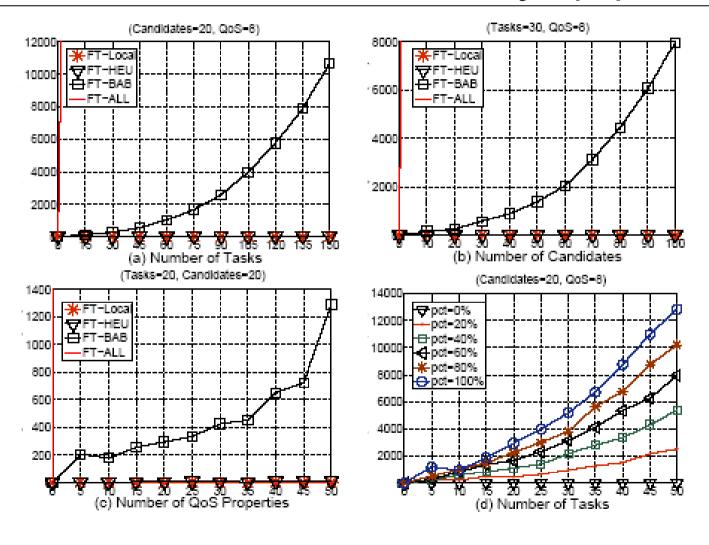


Figure 6. Performance of Computation Time

4.5 Performance Study (2)

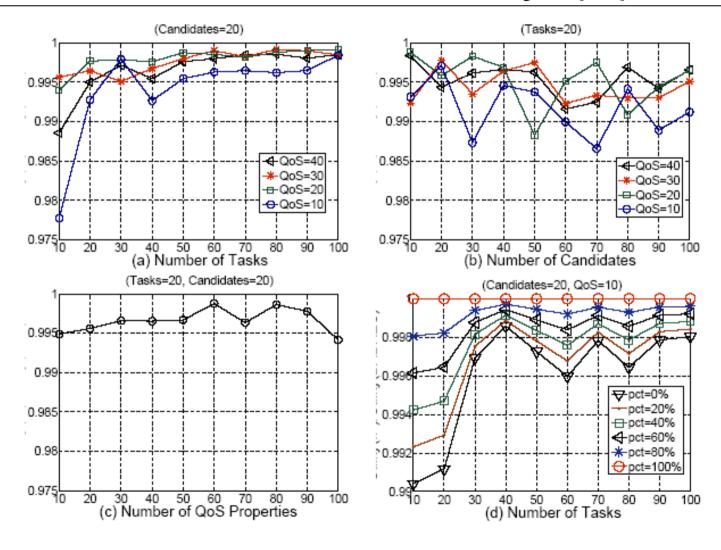


Figure 7. Performance of Selection Results

5. Conclusion and Future Work

5.1 Conclusion and Future Work

Conclusion

- Fault tolerance strategies
- A QoS model for Web services
- A QoS composition model for Web services
- Optimal fault tolerance strategy selection algorithms
- Large-scale real-world experiments

Future work

- Investigation on more QoS properties
- Experiments with more service users on more real-world Web services