
GENERATING ADVERSARIAL EXAMPLES IN TEXT
CLASSIFICATION

A PREPRINT

Zhenyuan Liu ∗

Department of Computer Science
The Chinese University of Hong Kong

Hong Kong, China
zyliu8@cse.cuhk.edu.hk

Yuxiao Qu ∗

Department of Computer Science
The Chinese University of Hong Kong

Hong Kong, China
yxqu8@cse.cuhk.edu.hk

August 20, 2019

ABSTRACT

In this paper, we implement several effective strategies to generate adversarial examples for the text
classification task. Specifically, these strategies include occluding, replacing and deleting characters
or words based on the final confidence (black box attack) ?, and based on the gradients of inputs to
choose our modified target (white box attack) ?. These methods are applied to different kinds of text
classification models, include character level CNN (char-CNN) ?, word-level CNN (word-CNN) ?
and LSTM with Attention (LSTM) ?. The results of the experiments reveal that our strategies can
effectively attack Deep Neural Network models with different architectures through imperceptible
disturbances of human beings, which means within a small editing distance. On the other hand,
through the analysis of statistical data, we also found that the sensitivity of different models to specific
attack methods may vary. These conclusions allow us to design more adversarial examples based on
the model structures and improve the performance of NLP tasks more efficiently.

Keywords Adversarial samples · Sentiment Analysis · Deep Learning Classifier

∗Equal Contribution



A PREPRINT - AUGUST 20, 2019

1 Introduction

Deep learning has achieved remarkable results in the field of Natural Language Processing (NLP). The emergence
of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) has greatly improved the efficiency of
a series of NLP tasks such as sentiment analysis, machine translation, and question answering systems. Recent studies
have shown that by generating a series of adversarial samples, which can cause a well-trained model to misclassify ?.
As we can see from the following example, after deleting four letters of the original sentence, we can flip the prediction
of the classifier.

DVD player crapped out after one year,
I also began having the incorrect disc
dvd player crapped out after one year,
i also began having the incorrect disc
problems that i’ve read about on here.
the vcr still works, but the dvd side
is useless...
the probability of original text being negative is 99.87%

=⇒

DVD player crapped out afer ne year,
I also began having the incorrec disc
dvd player crapped out after one year,
i also began having the incorrect disc
problems that i’ve read about on here.
the vcr still works, but the dvd side
is useess...

the probability of adversarial sample being negative is 47.22%

This technology can greatly accelerate the training of a model and reduce the security risks in applications that are
based on natural language processing.

However, compared to the feature of picture or audio, the text data is discrete ?, which means that even a small
disturbance can change the meaning of the sentence, or make it lose its meaning. Therefore, the core of generating
corresponding adversarial samples for NLP tasks is keeping the original meaning as much as possible while fooling the
model.

In this paper, we generate an adversarial sample by following these steps:

Step 1: select the modified positing, and implement different "score function" to
evaluate the importance of a letter or a word to the whole sentence, then
select the most important one as the current modification object.

Step 2: Execute the modification strategy: modify the object selected in step one
by occlusion or deletion.

Step 3: Repeat steps one and two until the model makes an incorrect prediction,
or attack fails when exceeds the maximum edit distance.

Without loss of generality, in this paper, we selected three models in text analysis, Char-CNN, Word-CNN, and
Bi-LSTM as our targets. Experiments have confirmed that our attack strategies can effectively attack different models
at the character level and word level within a limited edit distance, guide it to make misclassifications. Also, the
experimental results show that the effect of the attack is affected by the model structure and the initial prediction
probability. In addition to reveal the vulnerability of the Deep Neural Network (DNN) models to the adversarial samples,
these conclusions also shed the light of training DNN models more efficiently and more specifically

2 Related Work

2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) ? is a type of neural network in which convolution layers are included.
Convolution layers are intended to find the connectivity feature of the input text. Empirical study reveals that
convolutional layers are effective to extract features of the input. Max Pooling layers can be appended at the end of
each convolution layer to improve the robustness of the model.

CNN is one of the state-of-the-art models among nowadays text classification models. It can be applied on both
character level or word level with word embedding layers involved.

2.2 Long Short-term Memory Network

Long Short-term memory network (LSTM) ? is a variation of Recurrent Neural Network. The neurons of the
network will be recurrently used for an input sequence. The behavior enables the models to extract and gather sequential
information of the input.

2



A PREPRINT - AUGUST 20, 2019

2.3 Attention

In the normal LSTM model, input sentences are encoded into fixed-length context vectors. However, a key and
obvious disadvantage of this kind of fixed-length context vector design are that the system cannot remember long
sequences. As the length of the sequence increases, the correlation between the output and the early stage of the
sequence becomes weak, resulting in the model unable to summarize all the information contained in the long sequence.
The attention mechanism was born to solve this problem ?. The core idea of the attention mechanism is not only using
the final state of each as the input of the next layer but to making use of every RNN unit to construct a vector containing
all context information.

2.4 Word Embedding

If an NLP model processes input text from word level, then before processing input texts, words in the text need to
be transformed into a series of vectors as tokens. This transformation step is finished by word embedding models so
that each word in the text corpus is represented by a unique vector. ?

2.5 Black-box attack

Our summer research concentrates on current black-box attack strategies. In black-box attacks, it is assumed that
the attacker does not have any information about the inner structure of the model to be attacked including the gradient,
parameters, and hyperparameter. The only information accessible to the attacker is the probability of different classes
after the input is fed.

The black-box attack is a practical setting since nowadays most of the machine learning models are deployed on
the server, receiving the inputs from clients and returning predictions. All the parameters and gradients are hidden to
the users, making a white-box attack that requires gradients of the input, becomes an impossible task.

Therefore, in the black-box scenario, we implemented several attack strategies that only depend on the output of
the model, to generate adversarial input sequences out of the current input sequence while controlling the difference
within an imperceptible range.

To conduct black-box attacks and generate an imperceivable adversarial sequence, our method consists of two
steps, respectively are,

• First step: Choose a token to attack

• Second step: Choose an approach to modify the token

3 Score Function

Since we are intended to craft an adversarial sequence that can ’fool’ the NLP model but not human, we cannot
make to many modifications on the input. Hence, we have to select the most significant tokens to attack. To measure
the significance of each token in the input sequences. We need to use a scoring function to calculate the significance of
the tokens. In our experiment, we use four different kinds of scoring functions proposed by Gao et al ?. and a new
scoring function proposed by us.

3.1 Delete-1 Score

One of the most straightforward ways of measuring the significance for each token is calculating the probability
decrease after the token is deleted. Hence we have the formula for the significance of token at position i using the
delete-1 scoring function:

D1S (xi) = F (x1, x2, . . . , xi−1, xi, . . . , xn)− F (x1, x2, . . . , xi−1, xi+1, . . . , xn)

3.2 Temporal Head Score

RNN models will retain the sequential information of the input sequences, hence the scoring function should
reflect these features. Therefore the Temporal Head function is defined as the difference in probability after the model
read the i th and i − 1th token, which can sequentially measure the significance. The mathematical definition of
Temporal Head Score (THS) is defined as:

3



A PREPRINT - AUGUST 20, 2019

THS (xi) = F (x1, x2, . . . , xi−1, xi, . . . , xn)− F (x1, x2, . . . , xi−1, xi+1, . . . , xn)

3.3 Temporal Tail Score

Some variations of RNN models such as Bidirectional LSTM models read the input sequence in both directions,
but the Temporal Head function only measures the significance from beginning to end. Hence as the counterpart of the
Temporal Head function, the Temporal Tail function is introduced. It is defined as the difference in probability between
the two trailing parts of the sequence. Then, the mathematical definition of Temporal Head Score (TTS) is defined as:

TTS (xi) = F (x1, x2, . . . , xi−1, xi, . . . , xn)− F (x1, x2, . . . , xi−1, xi+1, . . . , xn)

3.4 Combined Score

Both Temporal Head and Tail consider sequential information in only one direction, hence we can combine the
result of them to obtain the significance considering the whole surrounding context. The Combine Score (CS) function
is defined as below with λ as a hyperparameter:

CS(xi) = THS(xi) + λTTS(xi)

3.5 Delete-m Score

One of the disadvantages of the delete-1 function is that it only considers the token whose significance to be
measured, but the context information is lost. Therefore, we generalize the delete-1 scoring function to delete-m score,
which will remove m consecutive tokens starting from the token whose significance to be measured. The delete-m
scoring function is defined as below, with m as a hyperparameter:

DMS (xi) = F (x1, x2, . . . , xi−1, xi, . . . , xn)− F (x1, x2, . . . , xi−1, xi+m−1, . . . , xn)

4 Modification Function

After selecting the character to attack, we could use different methods to modify the token, including deletion and
occlusion, to create imperceivable perturbation to the input. Then we follow the procedure described in Algorithm 1 to
conduct experiments, using different scoring functions and modification functions.

Table 1: Different modification functions on character-based model
Original Occlusion Deletion
computer co puter coputer
science sci nce scince

Table 2: Different modification functions on word-based model
Original Occlusion Deletion

I love computer science I computer science I computer science
I am from Hong Kong I am Hong Kong I am Hong Kong

4



A PREPRINT - AUGUST 20, 2019

Procedure generateAdversarialExample;
Input: input sequence x, maximum edit distance ε, scoring function Score, modification function Modify;
Result: an adversarial example
initialize scores;
for i in 1..len(x) do

scores[i]← Score(x, x[i])
end
i = 1, scores = 0;
while The prediction not flip and cost < ε do

index← index of the ith largest value in scores;
cost← cost +Modify(x, x[index])

end
return x;

Algorithm 1: Generate Adversarial Examples

5 Target Models and Datasets

We choose three models to evaluate predefined methods. The character level CNN model is 9 layers with 6
convolutional layers and 3 fully-connected layers, each layer’s parameters are shown in Table 1 ?.

Table 3: specific structure of char-CNN model
Layer Index Feature Kernel size Pool Output

Convolution

1 256 7 3 256
2 256 7 3 256
3 256 3 N/A 256
4 256 3 N/A 256
5 256 3 N/A 256
6 256 3 3 256

Fully-Connected
7 1024 N/A N/A 1024
8 1024 N/A N/A 1024
9 1024 N/A N/A 2

The word-level CNN model is similar to the character level CNN model, plus an extra word embedding layer.

5



A PREPRINT - AUGUST 20, 2019

The LSTM model is consists of two LSTM layers with hierarchical attention, which is slightly variant of the
hierarchical LSTM model build by Zichao Yang etc. All these models are trained on Amazon Review Polarity Dataset,

where class 1 is the negative and class 2 is positive. Each class has 1,800,000 training samples and 200,000 testing
samples.

6 Experiments

6.1 Baseline Methods

To evaluate our attack method, we need to compare the attacking results of our methods with another method.

6.1.1 Random Method

In our experiment, given that we are conducting a black-box attack, we decided to choose Random Scoring
function as the baseline method, which uses no information of the structures or the outputs of the models. The random
method means each time a random token of the input will be selected to be modified.

Since the random method only yields trivial results, only if a method has better performance than the baseline
method, it can be considered as a successful attacking method.

6.1.2 Gradient Method

We also use gradient as the scoring function, which uses the inner information of the model and depends on the
model implementation. The gradient method calculates the gradient of the loss function with respect to the input and
chooses the token with the greatest gradient value. Although it is not a black-box method, we can still use it to evaluate
other methods.

6



A PREPRINT - AUGUST 20, 2019

6.2 Result of Experiments

The result of experiments reveals all the NLP models we used to have a severe decrease in accuracy under our
attack when the edit distance ε set to 30, even though the models reach nearly state-of-the-art performance without
being attacked. The statistics of the results of the experiments are listed in Table ??. All the methods we used have
better results than the baseline attack method, thus all the methods successfully attack the models. To compare different
methods and prove them being effective as ε varies, figures of different methods of attack with ε ranging from 0 to 30
are summarized in Figure 2.

The performance of the same attacking method varies among different models. Among all the scoring functions
we tested, the delete-1 has the best result, which decreases the accuracy of the Char-CNN model from 90.00% down
to 6.79%. In other words, around 92.46% of input sequences that can be transformed into adversarial examples with
ε = 30, and the model become completely untrustworthy. However, the delete-1 scoring function does not report such
good results when evading Word-CNN and LSTM models, whose attacked accuracy is respectively 26.97% and 37.26%.
Similarly, for other scoring functions, Temporal Head has the greatest accuracy decrease on the Word-CNN model but
does not exceed the baseline method much on the Char-CNN model.

Char-CNN Word-CNN LSTM
Deletion Occlusion Deletion Occlusion Deletion Occlusion

Original 90.00 90.00 91.72 91.72 90.97 90.97
Baseline (Random) 86.33 86.33 79.62 79.62 80.01 80.01

Delete-1 6.79 6.79 26.97 26.97 37.26 37.26
Temporal Head 82.00 82.00 68.20 68.20 73.08 73.08
Temporal Tail 70.11 70.11 77.44 77.44 72.65 72.65

Combined 43.74 43.74 64.31 64.31 63.92 63.92
Delete-m (m = 2) 3.36 3.36 48.72 48.72 55.98 55.98
Table 4: Results of attack. Numbers are the accuracy after attack with ε = 30, in percentage

Comparing two modification functions, deletion and occlusion always have identical results. The phenomenon not
only occurs in the data of Table 4, but also in the other tables of the experiments. Hence, in other tables, the results of
deletion and occlusion will not be listed separately.

6.2.1 The Effects of Delete-m Scoring function with different m

We also attempt to investigate the effects of delete-m scoring function as the value of m changes, hence we draw
the figure of curves of different values of m. We found the delete-1 function appears to be the most efficient one when
ε less than 10, it can decrease the accuracy down to 25%. However, in the long run of the attack on Char-CNN, that
is when ε increases to 22, the performance of delete-2 will surpass the performance of the delete-1 function. What is
behind the delete-1 function is a greedy algorithm, it always chooses the token with the greatest score in this round of
choosing. The feature of a greedy algorithm results in a good performance in the first several edits, but there is likely
to be a more optimal solution, which is the delete-2 in our case. Nonetheless, the optimal value for m is not easy to
find. When edit distance is set to 30, the delete-2 has the best outcome. delete-m with greater m perhaps can give better
performance with larger edit distance but it needs to be further verified.

6.2.2 Comparison in robustness across models

In Figure 1a, the curve of Delete-1 Scoring function has a steep slope even when the edit distance is below 10,
whereas it is not the case for two word-level models. Besides, as is revealed in Figure 3a, 3b and 3c The boundary of
scatter plot of Char-CNN model is closed to a parabola and the boundary of LSTM is closed to a straight line, whereas
the one of Word-CNN is in the middle. Each time the word-level models choose a word, the edit distance will increase
by the length of the chosen word, which is usually larger than 1 but results in similar drops in probability. It causes the
samples to distribute more evenly. Nonetheless, word-level models are still more robust than the Char-CNN model in
terms of the decrease in edit distance, since the more samples will become adversarial ones with small changes.

7 Conclusions

This summer, we investigated the robustness of current state-of-the-art NLP models and tested various attacking
strategies. We found deletion and occlusion have the same effect on word-based and character-based model. The same

7



A PREPRINT - AUGUST 20, 2019

attacking strategy may have different effects on different models. Under the same edit distance constraint, word-based
models are generally more robust in terms of a decrease in accuracy.

8



A PREPRINT - AUGUST 20, 2019

8 Appendix

(a) Char-CNN (b) Word-CNN

(c) LSTM

Figure 1: Comparison among Temporal Head, Temporal Tail, Combined and Delete-one Scoring function, with edit
distance ε ranging from 0 to 30

(a) Char-CNN (b) Word-CNN

Figure 2: Attack result of Delete-m Scoring function with different m values and different ε

9



A PREPRINT - AUGUST 20, 2019

(a) char-CNN

(b) word-CNN

(c) LSTM

Figure 3: The scatter plots of successful attack samples with initial probability of prediction against edit distance needed
to flip the prediction 10



A PREPRINT - AUGUST 20, 2019

(a) char-CNN

(b) word-CNN

(c) LSTM

Figure 4: The boxplots of successful attack samples with initial probability of prediction against edit distance needed to
flip the prediction 11


	Introduction
	Related Work
	Convolutional Neural Network
	Long Short-term Memory Network
	Attention
	Word Embedding
	Black-box attack

	Score Function
	Delete-1 Score
	Temporal Head Score
	Temporal Tail Score
	Combined Score
	Delete-m Score

	Modification Function
	Target Models and Datasets
	Experiments
	Baseline Methods
	Random Method
	Gradient Method

	Result of Experiments
	The Effects of Delete-m Scoring function with different m
	Comparison in robustness across models


	Conclusions
	Appendix

