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Introduction
• When information from different viewpoints are jointly filtered, the 

process is called collaborative filtering.

– Neighborhood approach: Express similarity metric between 

items to be rated.

– Latent factor approach: low rank approximation of the full 

matrix.

• This paper develops a non-linear latent factor approach for 

collaborative filtering which gives fully probabilistic predictions on 

ratings.

• The proposed model yields desirable attributes of both latent factor 

and neighborhood approaches.  It differs from previous combined 

approaches because it arises naturally from Gaussian process 

prediction.



Introduction
• Consider a user-item dataset with N items and D users                    .  

• Goal: factorize Y into a lower rank form

where                    and                   .

• A natural probabilistic interpretation of the above factorization is 

called probabilistic matrix factorization (pmf)

where Gaussian priors are placed over U and V



PMF and Bayesian PCA
• PMF can be shown to be equivalent to probabilistic PCA.  Let 

denote a matrix of latent variable and let 

be a mapping matrix .  Then the previous 

likelihood can be written as

• If the following prior is placed over X

and we marginalize it over X, we have

which is the same likelihood optimized in PPCA. 



DPPCA and Bayesian PCA
• Alternatively, we could marginalize W instead of X by assuming the 

following prior on W

which, when marginalized, yields

or the marginal likelihood of a multi-output Bayesian linear 

regression model, where X is unknown and also optimized.

• Optimization here results in Dual Probabilistic PCA (DPPCA).

• Marginalization and optimization with respect to both W and X

results in Bayesian PCA.



Handling Missing Values
• The special covariance structure of the above models allows 

straightforward marginalization of over missing values.  Let the 

observed set over vector y be denoted by      where i represents the 

indices of the observed values.  

• Marginalizing over the missing values yields                             .  

Thus, when the data matrix is sparse, the above marginalized 

likelihoods have the forms



• The authors proceed by selecting to marginalize over W.  This is to 

minimize the number of parameters which must be estimated since 

the number of users is generally greater than the number of items.  

• If Y is fully observed, then a global optimal solution can be found.  

If the matrix is not fully observed, either EM or stochastic gradient 

descent can be used to optimize the parameters and 

hyperparameters.

• When the item dimensionality D is large, EM becomes 

computationally expensive, making stochastic gradient descent an 

attractive choice.

DPPCA



Stochastic Gradient Descent
• To optimize the parameters, the algorithm is shown users with their 

observed ratings one at a time, the gradients with respect to                        

are found for user j, and the parameters are updated 

based on the computed gradients.

• Maximization of the log likelihood is equivalent to minimizing the 

inverse log likelihood, which is given by

• Differentiating with respect to X yields



Non-Linear PMF
• The models discussed fall under the broader category of Gaussian 

Process Latent Variable Model (GP-LVM) if the covariance matrix                                     

is interpreted as the covariance function of a 

linear Gaussian process model.

• If the inner product          is replaced with a Mercer kernel, the 

model becomes non-linear.

• If we define                             , then the original probabilistic  

regression model from above can be written as a product of 

univariate Gaussians



Non-Linear PMF
• A zero mean GP prior can be placed over the functions f.

• where K is a covariance function with members                   which 

measures the degree of correlation between samples i and j from 

p(f|X) .

• We can denote a linear regression model as one in which 

• For this paper, the authors chose the radial basis function as their 

non-linear kernel

which can be directly substituted into the marginal likelihood



Making Predictions
• Suppose we wish to predict ratings for all users for the previously 

unseen item    .  The mean of user j’s predicted rating is given by

where                                              Notice that the mean prediction 

for a new item is simply the weighted sum of the user’s rated items, 

similar to neighborhood based approaches.

• Moreover, application of the GP allows a full posterior over the 

predictions, with variance

• It is shown that the variance is highly related to the number of items 

rated by the user.



Results
• The authors show results on 3 widely used benchmark datasets

– EachMovie: 2.6M ratings for 1,648 movies and 74,424 users.

– 1M MovieLens: 1M ratings for 3,952 movies and 6,040 users.

– 10M MovieLens:  10M ratings for 10,681 movies and 71,567 

users.

• The normalized mean absolute error (NMAE) was used as the score 

metric, computed by normalizing the MAE by a factor 

corresponding to the score range such that random guessing yields 

an NMAE of 1.

• Weak generalization is the filling of missing values for movies 

already seen, and strong generalization is the rating prediction for 

previously unseen items.



Results: EachMovie

• For the EachMovie dataset, 36,656 users with more than 20 ratings 

to their name were used.  The group was split into 30,000 users for 

weak generalization, and the remaining users for strong 

generalization.

• The proposed approaches offered superior performance with 20 

latent dimensions, much smaller than the 100 latent dimensions used 

in MMMF and E-MMMF.



Results: 1M MovieLens

• Here, 5000 users were used for weak generalization and the 

remainder were used for strong generalization.

• The latent dimensionalities ranged from 10 to 11 for weak 

generalization, and 14 to 15 in strong generalization.

• When an ensemble approach of the author’s model was set up 

(similar to E-MMMF), NMAE was reduced to (0.3987     0.0013).



Results: GP Variance

• Here, the authors plot the prediction variance as a function of the 
number of movies rated, using a 10D RBF model learned for 1M 
MovieLens Weak.

• The prediction variance is a good indicator of model uncertainty, 
and decreases (as expected) with the number of movies rated by the 
user, and thus the amount of data seen by the model.



Results: Latent Dimensionality 

• Here, the authors show the NMAE and RMSE for both strong and 

weak generalization as a function of the latent dimensionality.  The 

colors represent the different kernels used.  The metadata kernel 

computed the covariance matrix using a binary vector over the 

genres that defines each movie in the database.



Results: 10M MovieLens
• The 10M MovieLens dataset is very new and at the time of 

publication there were published results to compare against.

• The RMSE of author’s method on the 10M Movielens dataset is 

0.8740      0.0278.

• For the 1M Movielens dataset, the weak RBF RMSE was 

, the weak linear RMSE was                       

The strong RBF RMSE was                               and the strong linear 

RMSE was                              .

• For the EachMovie dataset, the weak RBF RMSE was 

, the weak linear RMSE was                       

The strong RBF RMSE was                                and the strong linear 

RMSE was                                 .



Results

• These two plots show the NMAE and RMSE as a function of the 

latent space dimensionality.  The different curves correspond to 

various percentages of the database used for training.  In general, as 

the training set increases, the latent dimensionality also increases.



Conclusions
• The authors have proposed a non-linear GP-LVM to perform 

collaborative filtering.

• The proposed model shows desirable traits of both neighborhood 

based and latent factor based approaches, and the predictive 

equations of the model are very similar to neighborhood based 

approaches.

• Besides offering state of the art performance, a particular advantage 

of the model is its ability to compute a fully probabilistic 

predictions.

• Parameter estimation was performed using stochastic gradient 

descent.


