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Abstract—In this paper, we present a fusion approach to solve the nonrigid shape recovery problem, which takes advantage of both

the appearance information and the local features. We have two major contributions. First, we propose a novel progressive finite

Newton optimization scheme for the feature-based nonrigid surface detection problem, which is reduced to only solving a set of linear

equations. The key is to formulate the nonrigid surface detection as an unconstrained quadratic optimization problem that has a

closed-form solution for a given set of observations. Second, we propose a deformable Lucas-Kanade algorithm that triangulates the

template image into small patches and constrains the deformation through the second-order derivatives of the mesh vertices. We

formulate it into a sparse regularized least squares problem, which is able to reduce the computational cost and the memory

requirement. The inverse compositional algorithm is applied to efficiently solve the optimization problem. We have conducted

extensive experiments for performance evaluation on various environments, whose promising results show that the proposed

algorithm is both efficient and effective.

Index Terms—Image processing and computer vision, nonrigid detection, real-time deformable registration, nonrigid augmented

reality, medical image registration.

Ç

1 INTRODUCTION

RECOVERING nonrigid shapes is an interesting and
beneficial research problem for computer vision and

image analysis [1], [2], [3]. An effective nonrigid shape
recovery technique can be applied in a variety of applica-
tions for digital entertainment, medical imaging [2], and
augmented reality, such as the retexturing of images and
videos [4], [5], [6], [7].

Nonrigid shape recovery can usually be regarded as
the problem of recovering the explicit surface with a few
deformation parameters. In contrast to nonrigid shape
recovery, nonrigid surface detection [8] does not require
any initialization or a priori pose information. Further-
more, the goal of nonrigid surface detection is to extract
the deformable shape’s structure from an input image
and find out the correct correspondences from noisy data
automatically.

Many applications have been investigated for deformable
object tracking [9], [10], [11] and registration, such as face
tracking and modeling [12], [13], [14], [15], and also more
generic and more deformable objects [2]. The major problem
of these methods is that they tend to be computationally
expensive and mainly aim at object recognition and image

segmentation tasks rather than nonrigid shape recovery.
However, a real-time and automated solution has recently
been proposed [8], [16], which takes advantage of an iterative
semi-implicit optimization scheme.

Since the nonrigid shape is usually highly dynamic and
represented by many deformation parameters, the nonrigid
shape recovery problem is far more complex than the rigid
object detection. Moreover, it requires a sufficient number
of correct correspondences in order to obtain high registra-
tion accuracy. Therefore, it is difficult to directly employ a
robust estimator used in the rigid object pose estimation,
such as RANSAC [17] or the Hough transform [18], to
remove the spurious matches for nonrigid surface detec-
tion. An alternative strategy is to iteratively solve for both
the correspondence and the transformation [19], [20].
However, these methods tend to be computationally
expensive and few of them can be applied to point sets
extracted from real images; an exception is the most recent
part-based approach [21].

Most of the current nonrigid shape recovery methods
can be divided into two categories. The first is dependent
on local feature correspondences [8], [22]. The second is
based on the appearance, which directly minimizes the
residual image between the synthesized template image
and the input image [12], [13], [23]. As for the feature-based
methods, it is difficult to guarantee the registration accuracy
in regions lacking texture. On the other hand, the appear-
ance-based approach can exploit more of the texture
information and therefore achieves better registration
accuracy. However, it tends to be computationally expen-
sive and requires good initialization to avoid the local
optima, and only a few automated solutions have been
proposed in the literature. Since both the feature and
appearance-based methods have limitations, there is a need
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for an automated method that can make use of both the

appearance information and the local features.
In this paper, we propose a novel automated approach to

efficiently handle the nonrigid shape recovery problem, as

shown in Fig. 1. Also, the proposed fusion approach is able

to take advantage of both the appearance information and

the local features.
Our first major contribution is the proposed progressive

finite Newton optimization scheme for nonrigid surface

detection, which has the advantage of solving only a fixed

number of linear equations. The previous method [8] is

currently generally accepted as the most effective method of

solving this kind of problem. It employs an implicit iterative

scheme for the first-order partial differential equation;

however, this requires a large number of iterations to solve

the problem and remove the outliers simultaneously. We

tackle this critical problem from two angles. First, the

nonrigid surface detection is formulated as an uncon-

strained quadratic optimization problem, which has a

closed-form solution for a given set of observations. Thus,

it can be efficiently solved through LU factorization. Then, a

progressive sample [24] scheme is employed to initialize the

optimization scheme, which can decrease the number of

trials significantly. Therefore, the present approach requires

much fewer iterations than the semi-implicit iterative

optimization scheme [16].
Our second contribution is the proposed deformable

Lucas-Kanade algorithm, which triangulates the template

image into small patches and preserves the regularity of the

mesh through the second-order derivatives of the mesh

vertices. Moreover, the optimization of our proposed

deformable Lucas-Kanade algorithm is formulated into a

sparse regularized least squares problem, which is able to

reduce the computational cost and the memory require-

ment. The inverse compositional algorithm [25] is applied

to efficiently solve the optimization problem. Furthermore,

we solve the optimization for our fusion approach with a

modified deformable Lucas-Kanade algorithm.
The rest of this paper is organized as follows: Section 2

reviews the previous approaches employed for the nonrigid

surface detection and recovery. In Section 3, we present the

proposed fusing features and appearance approach for

nonrigid shape recovery. Section 4 provides the details of

our experimental implementation and describes our experi-

mental results. We discuss limitations and future work in

Section 5. Section 6 sets out our conclusion.

2 RELATED WORK

Considerable research effort has been devoted to nonrigid
shape recovery problems in the computer vision and image
analysis domain [1], [2], [7], [12]. However, only a few
approaches are automatic and can achieve real-time results.

In a recent study, the repeating properties of a near
regular texture were exploited to track new texture tiles in
video frames [26]. Well-designed markers widely used in
motion capture are also applied to recover the structure of a
nonrigid surface, such as cloth and paper [6], [7]. As these
methods rely on the physical markers, they require the
placing of predefined patterns on the target surface.
Nevertheless, they are capable of high accuracy.

In fact, a large number of the appearance-based methods
[12], [15], [23] can be viewed as extensions of the original
Lucas-Kanade algorithm [25], which has been one of the
most widely used techniques in computer vision. These
approaches directly minimize the residual image between
the input image and the synthesized model image [12], [27].
An inverse compositional method [25] has recently been
proposed to efficiently solve the optimization problem in
the Lucas-Kanade algorithm, reducing the computational
cost by precomputing the Hessian matrix. In [28], a feature-
driven method is described to make use of the composi-
tional algorithms for the parametric warps. In addition,
optical flow information [2], [15] can be incorporated into
the optimization scheme to obtain better results. The major
limitation of these methods is that they tend to become
stuck at a local minimum and hence require good
initialization.

On the other hand, feature-based methods [8], [19], [29]
try to find out the transformation from the correspondences
built by feature matching methods. Thus, these methods
can benefit from the recent advances in the feature detection
and matching. In [8], [16], Pilet et al. proposed an iterative
approach to attack the nonrigid surface detection problem.
Physical constraints based on the Finite Element Model [3]
are employed for regularization. A semi-implicit iterative
scheme is proposed to solve the optimization problem.

The feature matching algorithm plays a very important
role for the feature-based nonrigid surface recovery
method. Recently, several sophisticated feature descriptors
[30], [31] have been proposed to handle the wide-baseline
matching problem, including images with large deforma-
tion [32]. In addition, machine learning methods such as
random classification trees [33] are also employed to find
the point correspondences. These methods can take
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Fig. 1. Recovering nonrigid shapes in real-time video. (a) The contour is overlaid on the Starbucks pad. (b) T-shirt. (c) The cover of a magazine. (d) A

piece of paper.
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advantage of shifting part of the computational load from
the matching phase to the training phase.

It is more complex to handle a large amount of
deformation parameters for detecting the nonrigid surface
rather than only a few pose parameters used in rigid object
detection. Therefore, there are several challenges when
applying conventional robust estimators such as RANSAC
and M-estimator for the nonrigid surface detection task.
One is the lack of a concise function that can estimate the
deformed mesh from the correspondences directly. Ob-
viously, the semi-implicit iterative approach [8] is not
efficient enough to deal with this problem. Another
challenge is that the RANSAC-based approach requires a
large number of trials. To the best of our knowledge, there is
still a lack of criteria for selecting the number of samples for
each trial in nonrigid surface detection. We tackle the
initialization problem through a modified RANSAC meth-
od. The key is to draw from progressively larger sets of top-
ranked correspondences [24]. Thus, our progressive sample
scheme affords large computational savings and the
conventional robust estimator can be engaged for initializ-
ing the nonrigid surface detection.

3 FUSING FEATURES AND APPEARANCE

3.1 Overview

In this section, we describe the fusion approach to dealing
with the nonrigid shape recovery, which takes advantage of
both the local features and appearance information. For
tackling the challenges, a 2D nonrigid shape model is
introduced. We formulate the proposed algorithm into an
optimization problem that minimizes the correspondence
error, the texture difference, and the surface energy. The
key of our fusion approach is to solve this problem in the
following. First, we present a progressive finite Newton
method that employs the feature correspondences to detect
the nonrigid surface. Then, we describe a novel deformable
Lucas-Kanade algorithm to handle the appearance error.
Based on these two algorithms, the optimization scheme for
our fusion approach is formulated.

3.2 Mesh Model

The nonrigid shape can be explicitly represented by
triangulated meshes. As shown in Fig. 2a, we employ a

triangulated 2D mesh with N hexagonally connected

vertices, which are formed into a shape vector s as follows:

s ¼ sx sy½ �>

¼ x1 x2 . . . xN y1 y2 . . . yN½ �>;

where sx and sy are the vectors of the coordinates of mesh

vertices. Instead of treating the template image as a whole

block, as in [34], [35], we employ this 2D deformable mesh

model to triangulate it into small patches, as shown in

Fig. 2a. Then, the mesh associated with the model image is

defined as the reference mesh s0.
We assume that a point m lies in a triangle whose three

vertices’ coordinates are ðxi; yiÞ, ðxj; yjÞ, and ðxk; ykÞ,
respectively, and fi; j; kg 2 ½1; N � is the index of each vertex.

The piecewise affine warp function is used to map the

image points inside the corresponding triangle into the

vertices in the mesh. Thus, the mapping function Wðm; sÞ is

defined as follows:

W ðm; sÞ ¼ xi xj xk
yi yj yk

� �
�1 �2 �3½ �>; ð1Þ

where ð�1; �2; �3Þ are the barycentric coordinates for the

point m. Also, the piecewise affine warp Wðm; sÞ is used to

map the input image into the reference frame s0. Fig. 2b shows

an example of the template image in the reference frame.
Based on this triangulated mesh model, we describe in

detail the proposed approach to nonrigid shape recovery in

the following.

3.3 Fusing Features and Appearance Approach

3.3.1 Proposed Algorithm

The aim of our fusion approach is to make use of both the

local features and the appearance information:

. Local feature correspondences. A set of correspon-
dences M between the model and the input image
can be built through a point matching algorithm.
Therefore, a pair of matched points is represented in
the form of m ¼ fm0;m1g 2M, where m0 is defined
as the 2D coordinates of a feature point in the
training image and m1 is the coordinates of its match
in the input image. Then, the correspondence error
term EcðsÞ is the sum of the weighted square error
residuals for the matched points, which is formu-
lated as follows:

EcðsÞ ¼
X
m2M

Vð�; �Þ; ð2Þ

where Vð�; �Þ is a robust estimator, which is

described in Section 3.4.
. Appearance. In this paper, we try to handle the

appearance error under the Lucas-Kanade frame-
work. The objective of the Lucas-Kanade algorithm is
to minimize the sum of the squared errors between the
template imageT and the input image I warped back
onto the coordinate frame of the template. Baker
and Matthews [25] have proposed an inverse
compositional algorithm that switches the role of
the template image T and input image I in the
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Fig. 2. (a) The mesh model with 216 vertices and 374 triangles. (b) The

reference image size of 403 � 516. (a) Model mesh s0. (b) Reference

image.
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computation of the incremental warp. Using this
approach, the computational cost can be reduced by
precomputing the Hessian matrix. Instead of using
the affine transformation or homography, as in [34],
[35], we directly employ the parameterization of the
mesh model vertices s in this paper. Due to the direct
parameterization, �s is defined as the increments to
the mesh vertices. We employ the inverse composi-
tional method to formulate the energy for the
appearance Ea. Following the notation in [25], [27],
Ea is defined as follows:

EaðsÞ ¼
X

x

T Wðx; �sÞð Þ � I Wðx; sÞð Þ½ �2: ð3Þ

In general, the nonrigid shape recovery problem approx-
imates a 2D mesh with 2N free variables, which is usually
ill-posed. One effective way to attack this problem is to
introduce regularization, which preserves the regularity of
a deformable surface. This leads to the following energy
function:

EðsÞ ¼ EaðsÞ þ �EcðsÞ þ �rErðsÞ; ð4Þ

where � is a weight coefficient and �r is a regularization
coefficient. The regularization term ErðsÞ represents the
surface deformation energy. Also, ErðsÞ, known as internal
force in Snakes [36], is composed of the sum of the squared
second-order derivatives of the mesh vertex coordinates.

As the mesh is regular, ErðsÞ can be formulated through
a finite difference:

Er ¼ s>Ks; ð5Þ

where matrix K 2 R2N�2N is defined as follows:

K ¼ K 0
0 K

� �
;

where K is a sparse and banded matrix that is determined
by the structure of the explicit mesh model [37].

3.3.2 Optimization Framework

To enable an automated solution, we employ the result of
minimizing the feature correspondences error to initialize
the optimization for the fusion approach. This is because
EcðsÞ is independent of the image during the optimization
and, so, it can be computed very efficiently. More
specifically, the initial result is obtained by the nonrigid
surface detection method, which deals with the following
energy minimization problem:

EF ðsÞ ¼ EcðsÞ þ �rErðsÞ: ð6Þ

We describe the details of solution for the above optimiza-
tion problem in Section 3.4.

In this paper, the optimization for our fusion approach is
based on the Lucas-Kanade framework. To simplify the
formulation, we start from only taking into consideration the
texture differenceEaðsÞ. Also, the regularization termErðsÞ is
introduced to preserve the surface regularity. Thus, we can
obtain the following regularized least squares problem:

EAðsÞ ¼ EaðsÞ þ �rErðsÞ: ð7Þ

We name this approach the deformable Lucas-Kanade
algorithm, which can be used to solve the optimization
for our fusion approach with slight modification.

Therefore, the essence of our fusion approach is to first
detect the nonrigid shape using feature correspondences
and then solve the fusion optimization based on the
modified deformable Lucas-Kanade algorithm. We will
describe it in detail in the following sections. The overview
of our method is shown in Fig. 3, where each step is
highlighted using a shaded box.

3.4 Feature-Based Nonrigid Surface Detection

To tackle the nonrigid surface detection problem in (6), we
first present our finite Newton formulation. Then, a
progressive optimization scheme is proposed to deal with
outliers and find out as many correct correspondences as
possible. The complete feature-based nonrigid surface
detection algorithm is summarized in Fig. 4.

3.4.1 Finite Newton Formulation

In this paper, we employ a robust estimator Vð�; �Þ with
compact support size �. Moreover, � is the residual error,
which is defined as follows:

� ¼m1 �Wsðm0Þ: ð8Þ

The robust estimator function Vð�; �Þ that assesses a fixed
penalty for residuals larger than a threshold � is employed
in the present work; this approach is relatively insensitive to
outliers [38]:

Vð�; �Þ ¼
k�k
�n ; M1 ¼ fmj k�k � �2g
�2�n; M2 ¼M1;

�
ð9Þ

where the set M1 contains the inlier matches and M2 is the
set of the outliers. In addition, the order n determines the
scale of the residual. As shown in Fig. 5, the most
correspondences are included when the support � is large.
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Fig. 3. Overview of our 2D shape recovery algorithm.

Fig. 4. Progressive Newton approach to nonrigid surface detection.
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As � decreases, the robust estimator becomes narrower and

more selective.
Since the robust estimator function is not convex, the

associated penalty function approximation problem be-

comes a hard combinational optimization problem. We

tackle this problem under the finite Newton optimization

framework. An augmented vector t 2 RN containing the

barycentric coordinates is defined as follows:

ti ¼ �1; tj ¼ �2; tk ¼ �3;

while the remaining elements in the vector t are all set to

zero. Therefore, the residuals for the inlier correspondences

can be rewritten as follows:

k��k ¼ ðu� t>xÞ2 þ ðv� t>yÞ2

¼ u2 þ v2 � 2ðut>xþ vt>yÞ þ x>tt>xþ y>tt>y;

where ðu; vÞ are the coordinates of m1. Therefore, the error

term in (6) turns out to be

Ec ¼
X

m2M1

1

�n

 
u2 þ v2 � 2

ut

vt

� �>
s

þ s>
tt> 0

0 tt>

� �
s

!
þ q�2�n;

where q is the number of outliers.
Let b 2 R2N be defined as follows:

b ¼ bx
by

� �
¼
X

m2M1

1

�n
ut
vt

� �
; ð10Þ

and a matrix A 2 RN�N is equal to

A ¼
X

m2M1

1

�n
tt>: ð11Þ

Thus, the energy function (6) is formulated into an

unconstrained quadratic optimization problem, which can

be solved by the modified finite Newton method [39], [40]:

EF ¼ s>
�rK þA 0

0 �rK þA

� �
s� 2b>s

þ
X

m2M1

!m

�n
ðu2 þ v2Þ þ q�2�n:

The finite gradient of the energy function EF with respect to
s can be derived as follows:

r ¼ 2
�rK þA 0

0 �rK þA

� �
s� bx

by

� �� �
; ð12Þ

and the Hessian [38] can also be computed by

H1 ¼ 2
�rK þA 0

0 �rK þA

� �
: ð13Þ

Thus, the gradient can be rewritten as follows:

r ¼ H1s� 2b: ð14Þ

Each Newton step will perform the following operation:

s s� �H�1
1 r; ð15Þ

where � is the step size. We simply set � equal to one, and
no convergence problem occurs in our experiments. Since K
is regular, we find that the update of the state vector s can
be computed by the following linear equation:

�rK þA 0
0 �rK þA

� �
s ¼ bx

by

� �
:

Moreover, the problem can be further simplified into two
linear equations that can be efficiently solved via LU
decomposition:

sx ¼ ð�rK þAÞ�1bx; ð16Þ

sy ¼ ð�rK þAÞ�1by: ð17Þ

The overall complexity is thus the complexity of one
Newton step. Note that the complexity of one step for the
proposed method is same as that in [41].

3.4.2 Progressive Finite Newton Optimization

Generally speaking, the incorrect matches cannot be
avoided in the first stage of the matching process where
only local image descriptors are compared. We introduce a
coarse-to-fine scheme to deal with those outliers. The
support � of robust estimator Vð�; �Þ is progressively
decayed at a constant rate �. Since the derivatives of
Vð�; �Þ are inversely proportional to the support �, the
regularization coefficient �r is kept constant during the
optimization. For each value of �, the object function EF is
minimized through the finite Newton step and the result is
employed as the initial state for the next minimization. The
minimization of EF is directly solved through (16) and (17)
for a given initial state and one step is enough to achieve
convergence. The optimization procedure stops when �

reaches a value close to the expected precision, which is
usually one or two pixels. The algorithm reports a
successful detection when the number of inlier matches is
above a given threshold. Thus, the whole optimization
problem can be solved within a fixed number of steps. This
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Fig. 5. The robust estimator that assesses a fixed penalty to residuals

larger than a threshold �.
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is in contrast to the semi-implicit optimization scheme [16],

which involves a few iterations for each � and at least

40 iterations in total to ensure the convergence.
In order to select most of the correspondences into the

initial active set and avoid getting stuck at local minima, the

initial value of � is usually set to a sufficiently large

value �0. However, this requires a fixed initial state. The

method is dependent on the object position and needs a few

iterations to compensate for the errors generated by the

pose variations. In the present work, we solve this problem

through a modified RANSAC approach. Taking advantage

of our concise finite Newton formulation and closed-form

solution, the explicit mesh can be directly estimated from a

given set of correspondences. Moreover, we draw from

progressively larger sets of top-ranked correspondences,

which decreases the number of trials significantly. In the

experiments, the sampling process stopped within five

trials. In the worst case, such as when an object does not

appear in the scene, it still behaves as RANSAC. Therefore,

the output of the proposed progressive sample can be

employed as the initial state for the finite Newton

optimization. Since the result of progressive sample estima-

tion is quite close to the solution, � is relatively small. Thus,

the proposed progressive scheme requires fewer stages and

is somewhat invariant to the initial position.

3.5 Deformable Lucas-Kanade Algorithm

Taking consideration of appearance information only, we

try to solve the optimization problem in (7) using the

inverse compositional method. The deformable Lucas-

Kanade algorithm is summarized in Fig. 6.

3.5.1 Deformable Lucas-Kanade Algorithm

The warp update equation can be defined as follows:

WðxÞ  W ðxÞ �Wðx; �sÞ�1:

Performing the first-order Taylor expansion on (7) gives

X
x

T Wðx; s0Þð Þ þ rT @W
@s

�s� I Wðx; sÞð Þ
� �2

þ �rðsþ�sÞ>Kðsþ�sÞ;
ð18Þ

whererT is the gradient of the template image evaluated at

W ðx; s0Þ and @W
@s is the Jacobian of the warp parameters

evaluated at s. Note that rT @W
@s is the gradient and s0 is the

reference mesh shown in Fig. 2a.

Assuming that W ðx; s0Þ is the identity warp, the gradient
of (18) with respect to �s can be derived as follows:

X
x

rT @W
@s

� �>
T Wðx; s0Þð Þ þ rT @W

@s
�s� I Wðx; sÞð Þ

� �

þ �rKðsþ�sÞ:

As the above gradient vanishes for optimality, this leads to
the following closed-form solution:

�s ¼H�1
2

X
x

rT @W
@s

� �>
I Wðx; sÞð Þ � T W ðx; s0Þð Þ½ �

� �rH�1
2 Ks;

ð19Þ

where H2 is the 2N � 2N Hessian matrix:

H2 ¼
X

x

rT @W
@s

� �>
rT @W

@s

� �
þ �rK: ð20Þ

Note that the Hessian matrix H2 is independent of the
parameter vector s and it is kept constant across iterative
optimization, can be precomputed, and is also independent
of the gradient matrixrT @W

@s . Therefore, the warp update of
the shape parameters �s can be computed very efficiently.

Since the coordinates of the mesh vertices s are directly
employed as the warp parameter in the deformable Lucas-
Kanade algorithm, the computation of the warp inversion
becomes much easier than the linear combination model
method in Active Appearance Models (AAMs) [27].
Specifically, the shape vector s is updated by

s s��s: ð21Þ

Link to the Lucas-Kanade algorithm. The proposed
method can be viewed as a natural extension of the
Lucas-Kanade algorithm, which is able to handle the
deformations rather than the affine transformation. Since
the 2D coordinates of the mesh vertices s is employed as
the parameters in the deformable Lucas-Kanade algorithm,
the degree of freedom is increased. This is useful for
handling the image alignment when the deformation is
large. Furthermore, the efficient optimization methods for
the Lucas-Kanade algorithm [25] can also be applied for the
proposed method.

Link to Active Appearance Models (AAMs) [27]. The
deformable Lucas-Kanade algorithm can be treated as a kind
of AAMs. It employs a single training example along with
certain physical constraints, while AAMs need to build both
texture and shape models to constrain the searching space.

3.5.2 Computing Gradient rT @W
@s

Recall that the destination of the pixel x under the piecewise
affine warp W ðx; sÞ depends on the vertices of the mesh s.
According to the definition in (1), the Jacobian of the warp
Wðx; sÞ with respect to the mesh vertices vðxi; yiÞ can be
derived as follows:

@W

@xi
¼ �1 0½ �> and

@W

@yi
¼ 0 �1½ �>:

It can easily be found that the nonzero parts of @W
@xi

and
@W
@yi

are equal. The Jacobians can be illustrated as the images
with the same size of reference frame; in fact, each image is
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Fig. 6. Deformable Lucas-Kanade algorithm.
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the Jacobian with respect to the vertex v. Moreover, it can also
be observed that the warp Jacobian is quite sparse, having
nonzero values only in the triangles around the vertex v.
Next, we computerT @W

@s by multiplying the gradient of the
template image with the warp Jacobian matrix.

Remark. Since the dimensionality of the texture is usually
very high, the gradient rT @W

@s becomes quite a large
matrix. Fortunately, both the gradient and the HessianH2

are the sparse matrices in the proposed deformable
Lucas-Kanade algorithm and this can greatly reduce
the computational cost and memory requirement and
make the problem tractable. Moreover, this also leads
to a sparse regularized least squares problem in (7).

3.5.3 Lighting

In order to minimize the effect of global lighting variation,
we apply a scaling a and an offset o to the template image T .
Therefore, the energy function of the proposed deformable
Lucas-Kanade algorithm can be rewritten as follows:X

x

aT Wðx; �sÞð Þ þ o � 1� I W ðx; sÞð Þ½ �2þ�rs>Ks: ð22Þ

Similarly, we can employ an extended inverse composi-
tional algorithm [35], [42] to solve this optimization
problem. See the Appendix for the details.

3.6 Fusion Approach Optimization

Based on the deformable Lucas-Kanade algorithm, we
describe the optimization scheme for the proposed fusion
approach in Section 3.3.

We define a matrix B 2 R2N�2N , which is equal to

B ¼ 1

�n
A 0
0 A

� �
: ð23Þ

Therefore, we can rewrite Ec as follows:

Ec ¼ s>Bs� 2b>sþ q�2�n þ
X

m2M1

1

�n
ðu2 þ v2Þ:

Performing the first-order Taylor expansion on the
energy function (4) gives

X
x

T Wðx; s0Þð Þ þ rT @W
@s

�s� I W ðx; sÞð Þ
� �2

þ �ðsþ�sÞ>Bðsþ�sÞ � 2�b>ðsþ�sÞ þ q�2�n

þ
X

m2M1

1

�n
ðu2 þ v2Þ þ �rðsþ�sÞ>Kðsþ�sÞ:

ð24Þ

The solution to this problem is

�s ¼H�1
3

X
x

rT @W
@s

� �>
I Wðx; sÞð Þ � T W ðx; s0Þð Þ½ �

� �H�1
3 ðBs� bÞ � �rH�1

3 Ks;

ð25Þ

where H3 is the Hessian matrix:

H3 ¼
X

x

rT @W
@s

� �>
rT @W

@s

� �
þ �Bþ �rK: ð26Þ

Again, we can compute the warp update through (21).

In order to reduce the computational cost, we precompute
the gradient and part of the Hessian for the deformable Lucas-
Kanade algorithm. Since the inlier set is slightly changed in
the fusion optimization phase, matrix B can be viewed as a
constant. Therefore, we compute the Hessian H3 once for
each input image through (26). The optimization proce-
dure stops when k�sk is close to the given threshold or the
number of iterations exceeds the limit.

To tackle the lighting variations, we only need make a
slight modification on the method described in Fig. 6.
Specifically, we add the initialization step and precompute
the matrix B and H3 for each input image. Furthermore, (25)
is employed to compute the update for the shape vector s.

4 EXPERIMENTAL RESULTS

In this section, we discuss the details of our experimental
implementation and report the results of performance
evaluation on nonrigid shape recovery. First, we perform
the various evaluations on the feature-based method. Then,
both the deformable Lucas-Kanade algorithm and the
fusion approach are tested. Videos illustrating the results
can be obtained from the the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2008.151.

4.1 Experimental Setup

In order to register the mesh model conveniently, a model
image is acquired when the nonrigid surface contains no
deformation. In order to facilitate real-time augmented
reality applications, a random-tree-based method [33] is used
to build the correspondences between the model image and
the input image. We also implemented a semi-implicit
iterative method [16], which is regarded as the state-of-the-
art approach. All the experiments reported in this paper were
carried out on a Pentium 4 3.0 GHz PC with 1 Gbyte RAM and
a DV camera was engaged to capture videos.

4.2 Evaluation on Feature-Based Nonrigid Surface
Detection

In this section, we show that the proposed feature-based
approach is very efficient for real-time tracking. In addition,
the same convincing results are obtained for medical image
registration, even with missing data.

4.2.1 Parameter Settings

Since the number of free variables for nonrigid surface
recovery is usually quite large (even up to 1,000), the
sample size of each RANSAC iteration becomes a tricky
issue. We compare the performance with different sample
sizes. In our experiments, the support � is empirically set to
30 and �r is set to a large value to ensure the regularity of
the nonrigid surface. Interestingly, we find that the best
sample size is three. This is because the nonrigid surface
degenerates into a rigid one and only three points are
necessary to determine the position of a rigid surface.
Moreover, when the sample size increases, the probability
of selecting the inlier data is decreased. Thus, three is the
best choice for the sample size.

A set of synthetic data is used to select the parameters,
and the reference mesh is manually registered. The
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performance is evaluated by the percentage of mesh
vertices within two pixels of those in the reference mesh.
The best regularization coefficient is found to be around
3� 10�4 by grid searching. Similarly, the initial support �0

is set to 80 and the decay rate � is 0.5. Fig. 7 plots the success
probability with different orders n of the robust estimator
function. Based on these results, n is set to four.

4.2.2 Computational Efficiency

The complexity of the proposed method is mainly domi-
nated by the order of (16) and (17), which is equal to the
number of vertices N in the mesh model. Another
important factor is the number of inlier matches, which
affects the sparseness of matrix A. This usually differs from
one frame to another. For the coffee mat with 120 vertices,
as shown in Fig. 8, the proposed method runs at 18 frames
per second on real-time video with the size of 720 � 576. As
depicted in Table 1, the proposed optimization scheme
requires around eight iterations and only takes half of the
time of the feature matching algorithm, which is the
bottleneck of the whole system. Our implementation1 of
the semi-implicit iterative approach [16] needs around
40 iterations to reach the convergence and runs about
9 frames per second. The improvement is more significant
for a high-resolution mesh. Thus, the proposed method
requires far less iterations and is efficient for real-time
applications. We also conduct the experiments without

using the modified RANSAC initialization and start the
optimization scheme from a sufficiently large support
� ¼ 1; 000. This requires 11 iterations and the fitting
accuracy is worse than the proposed method. In addition,
the modified RANSAC initialization can also be used for a
semi-implicit method, in which case the number of
iterations is reduced to around 25.

4.2.3 Performance of Nonrigid Surface Recovery

We use a coffee mat as the deformable object. As shown in
Fig. 8, the proposed method is robust to large deformations
and perspective distortion. In practice, the whole process
runs at around 18 frames per second. Fig. 9 describes the
result of detecting the pattern on a T-shirt, where similar
performance is achieved. As another feature-based method,
the performance of the proposed method is closely related to
the texture of objects. Better results can be obtained for objects
with more texture because it is easy to find more correct
correspondences than with those lacking texture. Therefore,
we present a fusion approach to handle this issue.

4.2.4 Augmented Reality

Once the nonrigid surface is recovered, an immediate
application is to retexture an image. In order to obtain
realistic results, the texture should be correctly relighted. As
suggested in [16], a retextured input image is generated by
directly multiplying a blank shaded image, which is the
quotient of the input image and the warped reference
image. The reference image is acquired when the nonrigid
surface is lighted uniformly. Moreover, the quotient image
is normalized through multiplying the intensity of white
color in the reference image. This relighting procedure is
easily done by the GPU and requires only a short OpenGL
shading language program and the whole process runs at
about 17 frames per second. Fig. 9 shows the results of
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1. We use the same parameter setting as [16]. The convergence condition
is set to 0.9995, with at most five iterations for each support value �.

Fig. 7. Probability of success with different orders n of the robust

estimator function.

Fig. 8. The first row shows the initialization results using the modified

RANSAC method and the second row shows the results. We show the

images with inlier matches in (a). (a) Result. (b) Plastic cup.

TABLE 1
Computational Time of the Proposed Method at Each Step

Fig. 9. Retexturing of a shirt print. (a) shows the images captured by a

camera. (b) shows the results of replacing the bunny with the CVPR

logo.
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retexturing a T-shirt with a Lambertian surface. It is difficult

to estimate a blank shaded image due to dividing near-zero

intensity values and the use of an uncontrolled optical

sensor. However, the visual effect is that the bunny in the

input video is retextured by the CVPR logo.

4.2.5 Medical Image

We also evaluate the proposed approach for medical image
registration. A pair of sagittal images [43] with the size of
256 � 256 from two different patients are used in the
experiments. The source and target images differ in both
geometry and intensity. The results are plotted in Fig. 10; it
can be seen that the source image is successfully registered.
In comparison with the locally affine but globally smooth
method [43], which takes about 4 minutes, our proposed
method only needs 0.2 second. Moreover, the sparse

correspondence-based method can naturally handle the
missing data and partial occlusion problem. As shown in
the second row of Fig. 10, when the source images come
with a region removed, the nonrigid shape can still be
recovered.

4.3 Evaluation on the Deformable Lucas-Kanade
Algorithm

4.3.1 Deformable Lucas-Kanade Fitting

Similarly, the parameters for the deformable Lucas-Kanade
algorithm are found by grid searching; and the regulariza-
tion parameter � is set to 105. Moreover, the texture
mapping is efficiently done by OpenGL. In Fig. 11, we
include an example of the proposed deformable Lucas-
Kanade algorithm fitting to a single image and employ the
template image and mesh model, illustrated in Fig. 2.
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Fig. 10. Applying the proposed method to medical image registration. A pair of sagittal images from two different patients is shown. (a), (b), and
(e) are the source, target, and registered source, respectively. (d) is the registered source with the mesh model. (c) and (f) are the overlaid images
before and after registration. The second row displays the synthetic example with missing data. (a) Source. (b) Target. (c) Before. (d) Registered.
(e) Registered. (f) After.

Fig. 11. An example of the deformable Lucas-Kanade fitting to a single image. The first row is the result mesh overlaid on the input image. The

second row displays the residual images; the inverted image is used for better illustration. (a) Initialized. (b) After 30 iterations. (c) Converged.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 20, 2009 at 03:47 from IEEE Xplore.  Restrictions apply.



Fig. 11a displays the initial configuration, Fig. 11b shows
the result after 30 iterations, and Fig. 11c shows the final
converged result after 58 iterations.

We also perform the experiment using the conventional
Lucas-Kanade algorithm with the inverse compositional
method, using the same initial position as our method.
However, this fails to converge in this case due to the large
nonaffine deformation. Fig. 12 plots the root-mean-square-

error (RMSE) curve for the proposed method. In the case of
the deformable Lucas-Kanade algorithm, the RMSE is
relatively large (28.5), which is mainly due to the difference
between the optical sensor and the printing device.

However, we can observe that the mesh was accurately
registered on the input image in Fig. 11c. Since the lighting
variations are considered in the proposed method, the
RMSE dropped rapidly in the first few iterations.

4.3.2 Computational Efficiency

The complexity of the proposed method is mainly domi-
nated by the size of the template image and the number of
the vertices N in the mesh model. Another factor is the
number of inlier feature matches, which affects the

sparseness of matrix B. In our experiments, three models
are built to perform the evaluation, as summarized in
Table 2. The mesh model C1 is shown in Fig. 2. C2 is
obtained by increasing the edge length, giving fewer mesh
vertices than C1. C3 is built by reducing both the template

image and the mesh size to 75 percent of C1. We evaluate
the computational cost of the proposed method for the
nonrigid surface recovery task on real-time videos with the
size of 720 � 576. Table 2 summarizes the experimental
results on different models. We observe that the dimension-
ality of the appearance determines the time complexity of
the deformable Lucas-Kanade algorithm. Therefore, gray
images are easier to track. The number of mesh vertices N
has a great influence on the initialization step but a limited
impact on the computational time in the optimization.

4.4 Fusion Approach

We demonstrate here that the proposed fusion approach is
able to be used for nonrigid shape recovery tasks.

4.4.1 Parameter Settings

We consider two data sets for searching the parameters.

One is the magazine cover, as illustrated in Fig. 15, and the

other is a piece of paper in Fig. 16. For each data set, we

select 10 testing images containing deformations and then

evaluate the proposed fusion approach using different �r
and �. In the experiment, RMSE is used as the performance

measurement. Also, we employ a condition ðk�sk < 2:0Þ as

the success criteria and set the failure cases with the highest

RMSE. Fig. 13 plots the mean RMSE of 10 tests. We can

observe that there is a broad area with low RMSE for

selecting �r and �; the lowest RMSE is found in the middle

dark region. Therefore, the local features are useful to

improve the fitting accuracy and there is a large range for

choosing the weight coefficient �. When � becomes larger,

the result is more similar to those from the feature-based

method and there is a constant ratio between �r and �. It
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Fig. 12. The RMSE between the template and input images against the

number of iterations.

TABLE 2
Computational Time of the Deformable Lucas-Kanade

Algorithm on Different 2D Mesh Models

Fig. 13. The Root Mean Square Error (RMSE) with given regularization parameter �r and weight coefficient �. Two sets of data are used for

evaluation. (a) Magazine cover. (b) Paper.
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can also be found that the optimization seldom converges

with small �r. Furthermore, as shown in the upper part of

each figure, a large �r may lead to oversmoothing. We set

�r ¼ 2� 104 and � ¼ 106 in the following experiments.

4.4.2 Performance Evaluation

Two videos were captured for performance evaluation,

which are the magazine cover and a piece of paper. To

investigate the occlusion problem, the magazine cover is

occluded by hand in some frames. For simplicity, the feature-

based method in Section 3.4 is denoted as “PFN.” The

deformable Lucas-Kanade algorithm in Section 3.5 is denoted

as “DLK,” which is equivalent to the fusion approach with

� ¼ 0. The proposed fusion approach is denoted as “Fusion.”

Fig. 14 shows the results of the comparison between two

feature-based methods (PFN and that of Pilet et al. [8]) and

two appearance-based methods (DLK and Fusion). From the

experimental results, we first observe that the fusion

approach consistently obtains the lowest RMSE. Second, we

find that PFN is slightly better than our own implementation

of the method of Pilet et al. [8]. Further, comparing the two

appearance-based methods, DLK may suffer from the drift

problem in some frames, as shown in Figs. 15 and 16. For

those frames containing small deformations, the two meth-

ods obtain very similar results. Also, the proposed fusion

approach and DLK method are able to handle the partial
occlusion well without other treatments such as the robust
loss functions, which is mainly due to our direct parameter-
izations and the regularization method. In addition, we use a
piece of paper to occlude the patterns on the paper, and the
results are shown in Fig. 17. Since the inverse compositional
optimization starts from a good initialization, the optimiza-
tion for the fusion approach usually requires around eight
iterations.

Fig. 18 illustrates the results of recovering the nonrigid
shape from a real-time video. We can observe that the
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Fig. 14. The Root Mean Square Error (RMSE) comparison of the progressive finite Newton (PFN) method, the semi-implicit method [8], the
deformable Lucas-Kanade (DLK) method, and the fusion approach on two videos. (a) As the model image and input video are from different sources,
the RMSE for the feature-based method is much larger than that for the fusion method. (b) Both the model image and the input video are captured by
the same device and under similar lighting conditions, so the RMSE is relatively low. Sample frames are shown in Figs. 15 and 16. (a) Magazine
cover video sequence. (b) Paper video sequence.

Fig. 15. Comparison of the deformable Lucas-Kanade (DLK) method (blue) and the fusion approach (red) on the magazine video. The magazine

cover is occluded by hand in (c) and (d). (a) Frame 80. (b) Frame 229. (c) Frame 249. (d) Frame 271.

Fig. 16. Comparison of the deformable Lucas-Kanade (DLK) method

(blue) and the fusion approach (red) on the paper video. Results are

shown at frame 251. (a) Frame 251. (b) Zoomed region.
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fusion method is robust to large deformations and

perspective distortions. In Fig. 19, we show the results of

erasing the patterns on the recovered surfaces using the

method in [16]. It can be seen that both the shadows and the

specular regions are also correctly estimated. In addition,

the artifacts in the resulting images are mainly due to an

uncontrolled optical sensor.

5 DISCUSSIONS AND FUTURE WORK

5.1 Feature-Based Method

We have proposed a novel scheme for nonrigid surface

detection by progressive finite Newton optimization. In

comparison with semi-implicit optimization methods [16],

the proposed method inherits several advantages. First, we

need not solve the optimization iteratively for every �

because it can be solved in one step directly. Second, the

iterative method starts from a sufficiently large support

value in order to estimate the location and pose of an object,

which leads to a large number of iterations. Thus, the

proposed method is far more efficient than the semi-implicit

method. In our experiments, both methods achieved similar

accuracy that is mainly determined by the performance of

the feature matching algorithm. Additionally, it is easy to

implement the proposed approach, which only involves

solving the sparse linear equation and does not require

tuning the viscosity parameters and a sophisticated Leven-

berg-Marquardt optimization algorithm.
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Fig. 17. Pattern occluded by a piece of paper. (a) Detected. (b) Failed.

Fig. 19. Diminishing a picture on a piece of paper. (a) shows the 720 � 576 images captured by a DV camera. (b) shows the results of diminishing

the texture on the paper.

Fig. 18. Recovering the cover of a magazine in a real-time video with the size of 720 � 576. (a) shows the initialization results using feature

correspondences only. (b) shows the results with the fusion approach. Moreover, the Root Mean Square Error (RMSE) is shown at the left corner in

each image.
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5.2 Deformable Lucas-Kanade Algorithm

We discuss several major differences of our proposed
deformable Lucas-Kanade algorithm compared with the
previous work. In contrast to the conventional Lucas-
Kanade algorithm for image alignment [25], our proposed
deformable Lucas-Kanade algorithm can handle the large
deformations rather than the affine transformation or the
homography. Differently from the AAMs [12], [27], we do
not need a set of representative training examples to build
the shape and the texture models. Compared to other
deformable template matching methods such as Active blob
[23], the proposed deformable Lucas-Kanade algorithm has
several advantages. First, our deformable model is more
flexible. Second, the optimization of the proposed approach
is an efficient sparse problem, which is able to reduce the
computational cost by precomputing the gradient and
Hessian.

5.3 Fusion Approach

In contrast to the feature-based image alignment methods
[44], the fusion approach can deal with large deformations
and perspective distortions in which correct feature
correspondences are difficult to obtain. Also, the jitter is
greatly reduced in the fusion approach. Furthermore, the
proposed fusion method can handle the partial occlusion,
which is mainly due to the triangulated mesh model and
the regularization method. In this paper, however, we have
not discussed the illumination issue for the appearance and
fusion approaches, which may be tackled by employing an
illumination model [14].

5.4 Future Work

Although promising experimental results have validated
the efficiency of our methodology, some limitations and
future directions should be addressed. First of all, we have
focused our attention only on single deformable surface
detection, whereas it is also interesting to study the multiple
case. Moreover, small errors did occur in the boundary
region. In future work, global bundle adjustment will be
introduced to improve the performance. Furthermore, a
second-order approximation method [45] can be used to
compute the warp update. Finally, we may consider
extending the proposed scheme to 3D environments, which
will be effective to handle the self-occlusion problem.

6 CONCLUSION

This paper presented a fusion approach to solve the
nonrigid shape recovery problem, which takes advantage
of both the appearance information and the local features.
First, a progressive finite Newton method is proposed to
detect the nonrigid surface, which directly solves the
unconstrained quadratic optimization problem by an
efficient factorization method. Our modified RANSAC
scheme takes advantage of our concise formulation and
progressive sampling of the top-ranked correspondences
and can handle high-dimensional spaces with noisy data.
Second, the deformable Lucas-Kanade algorithm can
handle image alignment when the deformation is large.
We formulated the proposed deformable Lucas-Kanade
algorithm into a sparse regularized least squares problem,

which can be efficiently solved by the inverse compositional

method. Finally, we solve the optimization problem for the

fusion approach under the deformable Lucas-Kanade

algorithm framework.
We have conducted extensive experimental evaluations

on diverse objects with different materials. The proposed

progressive finite Newton method is very fast and robust

and can handle large deformations and illumination

changes. It was tested in several applications such as real-

time augmented reality and medical image registration. The

promising experimental results showed that the approach is

more efficient and effective than previous methods.

Furthermore, the fusion approach can improve the accuracy

for the nonrigid shape recovery.

APPENDIX

OPTIMIZATION WITH LIGHTING

Performing the first-order Taylor expansion on (22) gives

X
x

"
ðaþ�aÞ T Wðx; s0Þð Þ þ rT @W

@s
�s

� �
þ ðoþ�oÞ � 1

� I Wðx; sÞð Þ
#2

þ �rðsþ�sÞ>Kðsþ�sÞ:

Let D denote rT @W
@s ; the gradient of the above equation

can be derived as follows:

@EA
@�s

¼ aD> ðaþ�aÞ T þD�sð Þ þ ðoþ�oÞ � 1� I½ �

þ �rKðsþ�sÞ;
@EA

@�a
¼T> ðaþ�aÞ T þD�sð Þ þ ðoþ�oÞ � 1� I½ �;

@EA
@�o

¼1> ðaþ�aÞðT þD�sÞ þ ðoþ�oÞ � 1� I½ �:

The texture difference �I is computed by �I ¼
I � aT � o: Also, we define T ¼ ½T 1�, �g ¼ ½�a �o�
and H4 ¼ D>Dþ �r

a2 K. Thus, we can obtain the following

equation by neglecting second-order terms:

a2H4 aD>T
aT >D T >T

� �
�s
�g

� �
¼ aD>�I � �rKs

T >�I

� �
:

As in [18], [35], we multiply a full-rank matrix L 2
R4N�4N to the left side of the above equation:

L
a2H4 aD>T
aT >D T >T

� �
�s
�g

� �
¼ L aD>�I � �rKs

T >�I

� �
;

where L is defined as follows:

L ¼ diagð12NÞ 0
� 1

a T
>DH�1

4 diagð12NÞ

� �
:

Simplifying (27), we can obtain �g by solving the

following equation:

Q�G>H�1
4 G

� �
�g ¼ T >�I �G>H�1

4 D>�I � �r
a
Ks

� �
;
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where G ¼ D>T , and Q ¼ T >T . Also, �s can be
computed by

�s ¼ 1

a
H�1

4 D>�I � �r
a
Ks

� �
�H�1

4 G�g

� �
:

Similarly, we compute the warp update through (21). Note
that we can precompute G and Q in order to reduce the
computational cost. As the regularization coefficient �r can
be chosen in a very wide range without significantly
affecting the results [8], [16], we treat H4 as constant (set
a ¼ 1) and ignore the changes of a during the optimization.
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