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Abstract—Wireless Sensor Network (WSN) applications are
typically event-driven. While the source codes of these appli-
cations may look simple, they are executed with a complicated
concurrency model, which frequently introduces software bugs,
in particular, transient bugs. Such buggy logics may only be
triggered by some occasionally interleaved events that bear
implicit dependency, but can lead to fatal system failures. Un-
fortunately, these deeply-hidden bugs or even their symptoms
can hardly be identified by state-of-the-art debugging tools,
and manual identification from massive running traces can be
prohibitively expensive.

In this paper, we present Sentomist (Sensor application
anatomist), a novel tool for identifying potential transient
bugs in WSN applications. The Sentomist design is based
on a key observation that transient bugs make the behaviors
of a WSN system deviate from the normal, and thus outliers
(i.e., abnormal behaviors) are good indicators of potential bugs.
Sentomist introduces the notion of event-handling interval
to systematically anatomize the long-term execution history of
an event-driven WSN system into groups of intervals. It then
applies a customized outlier detection algorithm to quickly
identify and rank abnormal intervals. This dramatically re-
duces the human efforts of inspection (otherwise, we have to
manually check tremendous data samples, typically with brute-
force inspection) and thus greatly speeds up debugging.

We have implemented Sentomist based on the concur-
rency model of TinyOS. We apply Sentomist to test a
series of representative real-life WSN applications that contain
transient bugs. These bugs, though caused by complicated inter-
actions that can hardly be predicted during the programming
stage, are successfully confined by Sentomist.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been advocated
as a promising tool for environmental data collection and
monitoring [1]. Recent publications however report that ex-
isting WSN applications frequently encounter failures due to
various software bugs [2, 3], posing a major barrier to their
extensive deployments. In fact, potential industrial customers
have ranked software reliability as the most critical concern
toward adopting WSNs [4].

Given the limited computation and storage capacity of
wireless sensors, existing WSN applications look short and
simple [5]. For example, with TinyOS [6], we just need to
customize less than 100 lines of codes to allow a sensor
node to sense data and forward packets. Why do such simple
codes still inject bugs? A key reason is that the simple codes
are in fact executed with a complicated concurrency model.
As an energy-aware embedded device, a sensor generally

works in an event-driven mode. Specific event-handling
logic (i.e., event procedure) is activated by its corresponding
event (i.e., a hardware interrupt) [6, 7, 8]. For example, when
receiving a packet, the wireless interface chip will issue
an interrupt, activating its corresponding event procedure
to perform such actions as retrieving the packet content.
Internal procedures (e.g., sampling sensor data regularly)
are also activated by hardware timer interrupts. During
system runtime, events may occur randomly, and instances
of event procedures may therefore start at any time and even
interleave with each other.

Such interleaved executions, together with the interactions
among multiple sensor nodes and multi-tasking in the latest
WSN operating systems (e.g., TinyOS), can be too com-
plicated to be comprehended even by the original system
designers. Software bugs therefore become inevitable. They
are also difficult to be identified by state-of-the-art software
testing tools for commercial software [9, 10]. This is par-
ticularly true for transient bugs, i.e., buggy logics that may
only be triggered by some occasionally interleaved event
procedures that bear implicit dependency [11]. Such bugs in
WSNs can lead to fatal system failures. One famous example
is a bug in the widely used Collection Tree Protocol (CTP)
in the TinyOS distribution [12]. The bug, once triggered,
makes a WSN stop data reporting. Unfortunately, due to
their ephemeral nature, the symptoms of these transient bugs
are deeply hidden. Even identifying the buggy symptoms
becomes extremely labor intensive, not to mention correcting
the bugs [11, 13].

In this paper, we present Sentomist (Sensor applica-
tion anatomist), a novel tool for identifying transient bugs
in WSN applications. The Sentomist design is based on
a key observation that transient bugs make the behaviors of
a WSN system deviate from the normal, and thus outliers
(i.e., abnormal behaviors) are good indicators of potential
bugs [14]. To this end, Sentomist introduces the notion
of event-handling interval to systematically anatomize the
long-term execution history of an event-driven WSN system
into groups of intervals, during which the same event type
is being handled. Such a semantic partition can exploit
the similarity of system behaviors when the same event
procedure runs. Sentomist then applies a customized
outlier detection algorithm to quickly identify and rank
abnormal intervals. As a result, WSN application developers
and testers just need to inspect the suspicious short-time



event-handling intervals, instead of the whole execution trace
of a WSN system.

We have implemented Sentomist based on the concur-
rency model of TinyOS. The latest release can be found on-
line [15]. We apply Sentomist to test a series of represen-
tative real-life WSN applications. Their bugs, though caused
by complicated interactions that can hardly be predicted
during the programming stage, are successfully located by
Sentomist. In particular, we show three case studies that
cover a wide range of interrupts in WSN applications, and
Sentomist confides the bugs by automatically ranking the
intervals containing their abnormal symptoms as the first
several ones for manual inspection in all the three cases.
This dramatically reduces the human efforts of inspection
(otherwise, we have to manually check tremendous data
samples, typically with brute-force inspection) and thus
greatly speeds up debugging.

The rest of the paper is organized as follows. Section II
presents the related work. In Section III, we introduce some
preliminary knowledge on the concurrency model of WSN
applications. Section IV illustrates a motivating example. In
Section V, we elaborate how we mine the symptoms of bugs.
Three case studies are discussed in Section VI. Section VII
finally concludes this paper.

II. RELATED WORK

As more and more experimental WSN systems have been
field-deployed, software bug also starts its notorious role
[2, 3]. Conventional software testing tools (e.g., [16, 17])
are not adequate to test the interleaved executions of event
procedures. They generally consider sequential programs,
where functions call one another in a sequential manner.
Existing concurrent program testing tools (e.g., [18, 19])
do not work well for WSN applications, either, for the
number of possible interleaved executions in WSN appli-
cations are generally so large that a complete coverage
is impractical [20]. To enhance the reliability of WSN
systems, many troubleshooting techniques, debugging tools,
testing methodologies, and compile-time checking schemes
for WSNs applications are proposed, which are surveyed in
what follows.

Cooprider et al. [21] suggested adding data type and
memory safety checks for applications running over TinyOS.
NodeMD [22] extended compilers by inserting checking
codes into WSN applications. These preventive tools have
yet to be widely incorporated into WSN programming, and
they are not able to eliminate all possible bugs.

Marionette [23] and Clairvoyant [24] are two recently-
proposed debugging tools that provide interactive remote
debugging interfaces for sensor nodes. Adding declarative
tracepoints [25] has also been suggested for extracting
program runtime information after observing abnormal be-
haviors. These tools facilitate fixing the already-seen bugs,

but the identification of faulty behaviors depends on manual
efforts inevitably.

Dustminer is the most recent troubleshooting approach
for identifying bugs in WSN applications [11]. Based on
a function-level logging engine [26], Dustminer checks
discriminative log patterns, assuming that a bad behavior
interval can be identified from a good one. It finds the
differences between the logs of the good behavior interval
and those of the bad one so that the root of the problem
can be located. However, such identification of bad-behavior
interval generally causes extensive manual efforts, especially
when a bug is transient in nature.

Regehr [13] discussed how to make random interrupt test
possible for WSN applications running over earlier versions
of TinyOS. Though the technique does not necessarily work
for the current TinyOS release, an important notion is that
WSN applications are interrupt-driven and hence testing
them needs to schedule random artificial interrupts. Based on
this notion, Lai et al. [20] studied the test adequacy criteria
for WSN applications. Unfortunately, in their framework,
the size of test suites is large in nature and an automatic
mechanism to verify the pass/fail of a test case is impossible.
Moreover, a test case is a long sequence of interrupts
which incurs a long runtime trace. All these make human
inspection of the results impractical. Sentomist addresses
this challenge by anatomizing the program runtime trace to
a reasonable granularity and automatically picking up the
most suspicious time intervals for manual inspection, which
greatly reduces human efforts.

Finally, anomaly detection has long been proposed for test
case selection and bug localization (e.g., [27, 28]), shedding
light on solving our problem. But existing approaches gener-
ally focus on unit testing for sequential programs [9] given a
set of test cases. They are not applicable to our problem due
to the complicated concurrency model of WSN applications
and the lack of explicit test cases (instead, we just have a
long-term trace of system behaviors). Sentomist closes
this gap by anatomizing the trace into a set of samples
based on the concurrency model and the semantics of WSN
applications. Thus, anomaly detection can eventually be
applied for locating bug symptoms.

III. CONCURRENCY MODEL OF WSN APPLICATIONS

As energy is a critical resource for sensor nodes, WSN
applications are generally event-driven so as to save energy:
When no events are to be handled, the sensor node hardware
can go into a power-conserving sleeping mode. An event in
this design paradigm is actually an asynchronous hardware
interrupt, e.g., one that indicates a packet arrival or a timer
timeout [6, 7, 8].

After an interrupt is triggered, the microcontroller unit
(MCU) will automatically call its corresponding interrupt
handler. It may be straightforward to implement the entire
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Figure 1. A sample event procedure instance.

event procedure (i.e., the specific application logic for han-
dling the event) in the interrupt handler. However, an event
procedure may involve extensive computational efforts and
thus need to be executed for a long time. Hence, to avoid
the monopolization of MCU resource and to minimize the
usage of function-call stack [29], WSN operating systems
(e.g., TinyOS) typically implement an event procedure as
two separated parts: an asynchronous interrupt handler and
some deferred synchronous procedure calls, namely, tasks.

A task is posted by an interrupt handler or another task.
The operating system maintains one single task queue, where
a task is posted and executed in a first-in-first-out (FIFO)
manner. Moreover, tasks are executed only when there is
no running interrupt handler. Finally, when there is a new
interrupt arriving during the execution of a task, the task can
be preempted by the interrupt handler. Otherwise, it will run
till completion. We summarize three rules of the concurrency
model of WSN applications as follows:

Rule 1: An interrupt handler is triggered only by its
corresponding hardware interrupt;¤

Rule 2: Interrupt handlers and tasks all run to completion
unless preempted by other interrupt handlers;¤

Rule 3: Tasks are posted by interrupt handlers or other
tasks and executed in an FIFO manner.¤

Figure 1 demonstrates an example of how a typical event
procedure instance runs in a sensor node. Besides the in-
terrupt handler, the instance of the event procedure contains
three tasks: A, B, and C. The interrupt handler is activated
at time t0 by its corresponding hardware interrupt event.
Before it exits at t3, it posts two tasks A and B at t1 and t2,
respectively. Later, after the MCU finishes performing the
tasks posted previously by other event procedures, task A
will be executed at t4. It defers some application logic by
posting another task C at t5. After task A ends at t6, task
B runs, during which a new interrupt handler preempts it at
t7. After the preempting interrupt handler exits at t8, task B
continues till completion. Task C is then the last task to be
executed. Hence, the event procedure instance starts at time
t0 and ends at time t11, during which its logic is executed in
the time intervals denoted by the shaded areas in the figure.
Note that different event procedure instances for the same
event type may not run in the same pattern. For example,

...

1: // This function is called by the handler for 

2: // ADC data-ready interrupt.

 3: event void Read.readDone(error_t error, uint16_t data)

 4: {

 5:     packet->data[dataItem] = data;

 6:    dataItem ++;

 7:    // After 3 data items have been collected, it 

 8:    // posts a task, which will send out the items.

 9:    if(dataItem == 3)

10:    {

11:        dataItem == 0;

12: post prepareAndSendPacket();

13:     }

14: }

...

Figure 2. A buggy function in an ADC event procedure, where
packet->data will be polluted if the function is called again before
the task prepareAndSendPacket runs.

task B in another instance may not be interrupted.
We formally define the tasks of an event procedure

instance in a recursive way as follows:
Definition 1: The tasks of an event procedure instance

include those posted by its corresponding interrupt handler
and those posted by other tasks of the same event procedure
instance.¤

IV. A MOTIVATING EXAMPLE: DATA POLLUTION

The above concurrency model inevitably results in com-
plicated interleaving executions of event procedures. Conse-
quently, even simple codes may potentially contain transient
bugs, which are particularly hard to be detected by current
testing techniques. We demonstrate this by a simple example
in Figure 2.

The nesC [30] code segment is adapted from the
Oscilloscope application [6], a representative WSN
application where a node senses and sends environmental
data. Function Read.readDone in this figure is called
by an ADC (Analog-to-Digital Converter) interrupt handler.
The ADC interrupt is one issued by an ADC chip when the
chip is ready to provide its data (i.e., a sensor reading) [5].
The program intends to collect every three sensor readings
and send them in one data packet. Sending a packet is a non-
trivial procedure since the network communication protocols
may spend some time preparing and sending the packet, and
possibly resending the packet if it is lost. It is therefore
implemented as a task, i.e., a deferred procedure call to
prepareAndSendPacket(), instead of being part of the
interrupt handler.

This simple function contains a transient bug. Let us
consider that the ADC interrupt has been issued for three
times and the data collected so far are 100, 24, and 22,
respectively. Then lines 11 and 12 are executed (see Figure
2). As a result, dataItem is now 0 and a task is posted
and expected to send out “100, 24, 22” in a packet later. The
behaviors of this event procedure may be normal most of
the time. But under certain situations, e.g., when the sensor
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Sentomist takes the binary WSN application codes and the test scenarios as inputs and run the tests. A program runtime trace is
then obtained. Sentomist anatomizes the program runtime into a set of time intervals, during each of which an event procedure
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check the correctness of the WSN application.

Figure 3. Overview of our bug symptom mining framework.

node is performing another heavy-weighted event procedure,
problems may occur. If there are many tasks queuing before
this packet-sending task, it will take a relatively longer
waiting time for the task to be executed. It is then possible
that the fourth ADC interrupt arrives with new data, say 23,
before the task runs. packet->data[0] is then modified
to 23. Consequently, the task later will send out “23, 24,
22” instead. The original value 100 are polluted by the new
reading 23.

The bug is a typical data-race bug caused by the inter-
leaving of event procedures. It is however difficult to be
unveiled. First, the bug is not easy to be triggered unless we
generate a variety of random interleaving scenarios to hit the
triggering condition. Second, even if the bug is triggered,
the symptom of the bug is not obvious. The system will not
crash. Also, the polluted data are not senseless, and thus
a sanity check does not work. Consequently, it is hard to
figure out the data pollution automatically. However, such
correctness information of the test scenarios is generally
required by either generic testing approaches [9] or specific
testing/troubleshooting approaches for WSN applications
[11, 20]. Hence, they do not work well in fighting against
the transient bugs in WSN applications.

V. AUTOMATIC BUG SYMPTOM MINING VIA MACHINE
LEARNING

To cope with transient bugs, a brand new systematic
method for testing WSN applications is desired. One im-
portant notion adopted in Sentomist is that the transient
nature of such bugs is not always a curse to testing. Rather,
this property can facilitate testing. Although tremendous
testing scenarios are needed to trigger a bug, the application,
however, behaves normally in most testing scenarios. This
turns out to be a favorable characteristic: We can therefore

summarize the normal behaviors, since they are dominant
features. For example, in Figure 2, most execution patterns
should be either “ADC interrupt, interrupt exit” or “ADC
interrupt, posting a task, interrupt exit, running the task”.
In contrast, when a bug is triggered, the pattern would be
something like “ADC interrupt, posting a task, interrupt exit,
ADC interrupt, interrupt exit, running the task”, which is
obviously an outlier.

This observation is essentially the key for us to crack
the challenging WSN testing problem. Through a proper
decomposition of the program runtime, Sentomist can
obtain a lot of time intervals. In most intervals the program
would run in a similar manner, while in just a few intervals
its behaviors are strange, where a bug might be manifested.
With a set of quantified attributes assigned to each inter-
val, these intervals can be abstracted as a set of vectors.
Sentomist can then apply an outlier detection algorithm
to find out which intervals are most suspicious of containing
bug symptoms. The results can direct us to where we should
conduct a thorough manual inspection. Such a bug symptom
mining framework adopted in Sentomist is described in
Figure 3.

We can see that three critical issues naturally arise in
implementing Sentomist. The very first problem we need
to address is how to decompose the program runtime into
a set of time intervals, where the program behaviors of
the majority of the intervals can exhibit certain statistical
similarity. A natural granularity is the runtime of an event
procedure instances. But given the complicated concurrency
model, identifying the runtime of an event procedure in-
stance is not trivial. Second, it is critical to select a set of
good attributes so that each interval can be well featured.
Finally, we need a generic outlier detection algorithm in
processing these intervals. We illustrate how we attack these



three challenging problems in what follows.

A. Anatomizing program runtime

Let us first discuss how we get a set of time intervals
from the entire program runtime, during each of which an
event procedure instance runs. Although an event procedure
instance always starts with an interrupt handler, when it
terminates is not straightforward to identify. It is hard to
tell how many tasks an event procedure instance may post,
when a task is posted, and when it is executed. Moreover,
the complicated interleaving executions of event procedure
instances make it more difficult to track task posting and
executions. We have to find a generic method to determine
when an event procedure ends.

With the term task defined in Definition 1, let us first
precisely describe event-handling interval as follows.

Definition 2: An event-handling interval is the lifetime
of an event procedure instance. It starts at the entry of its
corresponding interrupt handler. It ends when its last task has
been executed if the interrupt handler posts tasks; otherwise,
it ends when the interrupt handler exits.¤

For the example shown in Figure 1, the corresponding
event-handling interval is that from t0 to t11.

Although the WSN application concurrency model causes
complicated interleaving executions of event procedures, we
find that, by tracking a smaller number of function calls, it is
enough to identify the concurrency of all event procedures,
i.e., each event-handling interval. Details are illustrated as
follows.

In TinyOS, tasks are always posted via a postTask func-
tion and executed via a runTask function. The handler for
each interrupt is also unique. During the system runtime,
these two functions and the interrupt handlers will be called
in sequence. We name such a sequence the system lifecycle
sequence, which consists of four items: postTask, runTask,
int(n), and reti. A postTask item and a runTask item indicate
the calling of the postTask function and the runTask function,
respectively. An int(n) item denotes the entry of the interrupt
handler for interrupt number n, while a reti item indicates the
exit of an interrupt handler. We will show how to identify
each event procedure instance with only such a lifecycle
sequence.

Based on Rule 3 of the TinyOS concurrency model, we
instantly have the following criterion since the tasks are
scheduled and executed in a FIFO queue.

Criterion 1: The task posted via the ith postTask is
executed via the ith runTask.¤

Now we define an int-reti string as follows.
Definition 3: An int-reti string is a subsequence of the

lifecycle sequence collected during the runtime of an in-
terrupt handler. It starts with an int(n) item and end with
a reti item which indicates the exit of the int(n) item’s
corresponding interrupt handler.¤

// INPUT: A lifecycle sequence and one of its int(n) items.

// OUTPUT: The index of the last item of the corresponding 

//         event procedure instance.

 1: S  The corresponding int-reti string of the int(n) item

 2: loc The index in the lifecycle sequence of the 

3: last reti item in S

4: Remove the substrings of S which are int-reti strings

5: P S // P contains only postTask items.

6: loop

7: if P has no postTask items

8: output loc

9: break loop

10: else

11: T ø

12: for each postTask item p in P

13: r p’s corresponding runTask item

14: loc r’s index in the lifecycle sequence

15: Q  The string between r and the next runTask

16:       Remove substrings of Q which are int-reti strings

17: // Q contains only postTask items.

18: T TQ // Concatenate T and Q.

19: end for

20: P T

21: end if

22: end loop

Figure 4. Algorithm to identify an event procedure instance.

Also for the example in Figure 1, the items collected from
t0 to t3 (i.e., a int(n), followed by two postTasks and a reti)
form an int-reti string.

According to Rule 3, an int-reti string can contain an arbi-
trary number of postTask items. Because an interrupt handler
may be preempted by other interrupt handlers according
to Rule 2, an int-reti string may also contain an arbitrary
number of other int-reti strings. Furthermore, it must not
contain runTask items since an interrupt handler cannot be
preempted by a task. Hence, we get the following criterion.

Criterion 2: All items in an int-reti string, except those in
its substrings which are also int-reti strings, must be postTask
items. The tasks posted via the postTasks are those posted by
the starting int(n) item’s corresponding interrupt handler.¤

Since tasks cannot be preempted by other tasks while
can be preempted by other interrupt handlers, the following
criterion is also true for the lifecycle sequence.

Criterion 3: All tasks posted via postTasks between two
consecutive runTask items, except those in int-reti strings
between these two runTask items, are posted by the task
which is executed by the first runTask.¤

With these three criteria, Sentomist can then parse the
lifecycle sequence to determine when an event procedure
instance starts and ends. An algorithmic description is shown
in Figure 4, which in essential employs a breadth-first
search. Since each event procedure for a particular event,
i.e., a hardware interrupt, starts with the interrupt handler,
Sentomist will begin parsing each event procedure when
its corresponding interrupt handler is called. First according
to Criterion 2, a sequence of postTasks called by an inter-
rupt handler is identified. Then with Criterion 1, we know
which runTasks execute the tasks posted via the postTasks.
Criterion 3 further tells us which postTasks are called by



these runTasks. Following Criterion 1 again, we know the
runTasks that execute these tasks. Thus in a recursive way,
we can work out which runTask executes the last task of
the event procedure instance. When the runTask returns, it
actually indicates the end of an event procedure instance.

Note that Sentomist requires to identify int-reti strings
in the lifecycle sequence (Lines 1, 4, and 16 of the algorithm
in Figure 4). We now discuss how this is done. Based on
Criterion 2, with the formal-language conventional symbols
[31], an int-reti string S can hence be described by a grammar
G with the following formation rules:

S → int(n) R reti

R → P | P S R

P → postTask P | ε

Here ε denotes an empty string. We can see that G is
a context-free grammar which can be recognized by a
pushdown automaton (i.e., a recognizing algorithm) [31].
Moreover, for an int-reti string, none of its prefix substrings
can belong to this grammar, since int(n) and reti are nested.
Therefore, when reading an int(n) item from the lifecycle
sequence, Sentomist can start feeding the item and the
rest of the sequence to the recognizing algorithm until the
algorithm reads a subsequence which is a valid string of the
grammar. This string is the int-reti string we need.

In this way, Sentomist can obtain groups of event-
handling intervals, during each of which an event procedure
instance for handling the same event type runs. Finally, note
that an event-handling interval may overlap with another
one due to the interleaving executions of event procedure
instances, since another instance may start before the current
instance ends. This property is exactly what we need since
we want to capture the program behaviors during such an
overlap.

B. Featuring instances of event procedures

Given an event-handling interval when an event procedure
instance runs, we should find a set of attributes to feature
the behavior of the WSN application during this interval.
We name the behavior of the WSN application during such
an interval a sample. Our aim of such an abstraction is to
quantify the samples so that they can be more tractable
for automatic bug symptom mining. Hence, one instant
requirement is that normal samples should still be distin-
guishable from abnormal samples where bugs are triggered
via this abstraction. In other words, the abstraction must
not eliminate the differences between normal samples and
abnormal ones.

There are many straightforward candidates for featuring
the samples. Examples include memory usage, number of
calls to a specific function, sequence of function calls,
and number of packets transferred. However, most of these
attributes are only suitable for specific applications. For

example, the number of packets transferred may only be
applicable for testing certain network protocols. Moreover,
some attributes are hard to be quantified although they
may to some extent help distinguish normal samples from
abnormal ones. The function call sequence of a sample is
an example: It can help capture the situation that an event
procedure instance is interrupted by another one since in
that case the function call sequence will be changed. But it
is hard to quantify such a complicated sequence, making it
inappropriate for an automatic bug symptom mining algo-
rithm. Based on these considerations, the attributes should
be adequately chosen so that they are easy to quantify and
suitable for generic WSN applications.
Sentomist adopts instruction counter as a metric to

feature a sample, where the meaning of instruction is its
conventional meaning, i.e., a sentence of machine codes
denoting a single operation of the MCU. The metric is
formally described as follows.

Definition 4: An instruction counter of an interval during
a WSN program runtime is a vector of N elements, where
N is the total number of instructions of the program’s
corresponding machine codes. The ith element of the vector
denotes the execution number of the ith instruction during
the interval.¤

Instruction counter is similar to source code coverage, a
measure largely adopted in software testing for determining
the testing completion condition by recording whether a
line of source code has been executed [9]. One reason we
adopt instruction counter is that such an abstraction scheme
can be applicable for all WSN applications: Any event
procedure instance can be mapped to a program runtime
interval with the approach described in Section V-A, and
can thus be abstracted as an instruction counter without any
manual adaptation. Most importantly, this simple abstraction
can accurately discriminate normal samples from abnormal
ones since it can capture the symptoms of a transient bug,
whose manifestation causes program instruction execution
to deviate from normal patterns.

Let us again see the example in Figure 2. In the time in-
terval during a normal ADC event procedure instance, since
it does not interleave with another ADC event procedure
instance, the instructions generated from lines 5, 6, and 9
would be executed once. In contrast, for the interval during
which an ADC event procedure instance interleaves with
another one, these instructions would be executed twice.
The additional execution is contributed by another instance:
Buggy interleaving executions can thus be captured.

Note that in this example, as the program sends a packet
after every three readings, one third of the normal instances
will execute the instructions generated from lines 11 and
12, while the rest will not. The differences between these
two cases should not be considered as a bug symptom
since the number of samples in both cases are large, which
does not imply a transient bug. To this end, we need an



algorithm that can determine outliers with sophisticated
statistical inferences so that the samples in neither case will
be classified as abnormal samples.

C. Symptom mining: A one-class SVM approach

Given a set of instruction counters, the question now is
how to find out the outliers where bugs are potentially trig-
gered. Specifically, Sentomist needs to model the major-
ity characteristic of the samples and quantify the difference
between such a characteristic and that of a particular sample.
The difference is instantly a metric to determine whether
a sample is an outlier. To this end, Sentomist adopts
a variant of the state-of-the-art Support Vector Machine
(SVM) classification algorithm, called one-class SVM, to
achieve this distinction.

1) One-class SVM: SVM is a statistics-based method that
infers how two classes of points are different from each
other [32]. The input of an SVM is a set of points in a
d-dimensional space R, where each point is designated to
either one of the two classes. The algorithm finds a hyper-
plane that best separates these points into the two different
classes. The hyperplane is considered as the boundary of the
two classes. With such a boundary, any unlabeled sample
can then be labeled to a class according to which side of
the boundary it locates.

SVM has long been proven successful in many classifica-
tion applications1. But it is a so-called supervised learning
algorithm since we need to manually label each input sample
to a class. In our problem settings, we do not have two
sets of labeled samples. On the contrary, what we have
is a set of unlabeled ones. To handle this problem, we
should exploit the known statistics based on the ephemeral
feature of transient bugs: Most samples are normal, while
just a few are abnormal ones, if any. A trick is therefore to
assume that all input samples belong to one class, i.e., the
normal class, which however contains some misclassified
ones. Also consider that there is a virtual outlier class, which
naturally contains the origin of R and some samples that are
misclassified to the normal class2. We can then apply SVM
to find a boundary to separate these two classes. Such a
variant of SVM is called one-class SVM [33].

One-class SVM can thus model the majority characteristic
of a set of unclassified samples and determine whether a
sample is an outlier based on the decision boundary. Most
input samples should be on one side (namely, the normal
side) of the boundary. But note that such a boundary is not
a hard classification boundary that can strictly discriminate
normal samples from outlier samples since we allow mis-
classification errors. Consequently, we have the following
heuristic: If a sample is on the normal side, the closer it

1A list of examples can be found in http://www.clopinet.com/isabelle/
Projects/SVM/applist.html.

2We can deem that the origin of R corresponds to an instruction counter
with all items being 0, which is trivially an outlier.

is to the boundary, the more suspicious it is as an outlier.
Otherwise, the farther it is away from the boundary, the
more certain it is as an outlier. Considering that the distance
between a sample to this boundary is positive if the sample
is on the normal side, and negative otherwise, we can then
take such a distance as a score to rank the samples. The
lower the score of a sample is, the more possible that the
sample should contain bug symptoms.

2) Why one-class SVM: There are many outlier detection
algorithms [34] that can be employed in our framework. We
decide to apply one-class SVM as it can well exploit the fact
that the majority samples are normal and it can statistically
infer a boundary that surrounds most of the samples without
manual labeling. Consequently, it is a suitable technique for
automatic outlier detection, which best matches our problem
settings.

Moreover, the kernel method [32] can be seamlessly
applied in one-class SVM. As such, it can find a nonlinear
boundary that best surrounds the majority samples. This non-
linear property is critical to mine abnormal samples, since
the discriminations between normal samples and abnormal
ones in terms of instruction counter is nonlinear in nature.

Finally, one-class SVM can score all samples conveniently
according to their distances to the boundary it finds. The
ranking can instantly show how suspicious a sample is in
a comparative way. We can thus select top k suspicious
samples to perform careful manual inspection, where k can
be flexibly chosen. This can accommodate different testing
requirements based on how critical a WSN application is. In
other words, k can be set according to the efforts we plan
to put in manual inspections of the WSN application.

VI. EVALUATION

To show the effectiveness of Sentomist in testing WSN
applications, we discuss three representative case studies in
this section, showing how we detected suspicious event pro-
cedure instances and unveiled subtle WSN bug symptoms.
The three case studies are all based on real WSN appli-
cations distributed with TinyOS [6]. The symptoms of the
bugs in these case studies are all difficult to unveil. The first
bug is in a data collection application, which is caused by
the interleaving of the event procedures triggered by internal
events (those indicating the sensor readings are ready). The
second bug resides in a multi-hop communication protocol
triggered occasionally by the arrivals of packets from another
sensor node (external events). The last is due to the co-
existence of two communication protocols, when they race
for the same hardware resource (wireless interface chip).
The bugs in these case studies reside in the event procedures
corresponding to different hardware interrupts, namely, ADC
interrupt, Serial Peripheral Interface (SPI) interrupt, and
timer interrupt, respectively. These cover various types of
events that a typical WSN application needs to handle.



Instance Index Score
[1, 76] -1.5554
[1, 176] -0.5291
[1, 198] -0.2462
[1, 239] -0.1541
[1, 251] -0.0815
[1, 9] -0.0313
[1, 81] -0.0313

...
...

[3, 12] 0.9921
[1, 153] 1.0000

Instance Index Score
20 -0.0827
108 -0.0827
157 -0.0519
21 -0.0519
58 0.0213

109 0.0825
158 0.1048

...
...

38 0.9862
86 1.0000

Instance Index Score
[8, 2] -0.0891
[6, 22] -0.0881
[8, 10] 0.0205
[8, 20] 0.0205
[8, 15] 0.0232
[8, 1] 0.0239
[6, 5] 0.0239

...
...

[2, 3] 1.0000
[2, 4] 1.0000

(a) Case study I (b) Case study II (c) Case study III
Figure 5. Ranking results for the three case studies.

A. Data acquisition
Sentomist conducts WSN system testing over

Avrora3, a state-of-the-art emulator for real WSN
applications [35]. Avrora can run a binary WSN
application in the instruction level, which provides a
cycle-accurate emulation of the sensor node hardware
functionalities and their interactions. It can thus achieve
nice fidelity for emulating real WSN applications. This
property exactly meets our requirements since we aim at
the transient bugs caused by interleaving executions of
event procedures, where timing accuracy is of a critical
concern.

The front-end data acquisition approach of Sentomist
is a module we implemented to extend Avrora, which
contains around 3, 000 lines of Java codes. It can be loaded
as a monitor [35] of Avrora. Sentomist obtains the
program runtime information during each testing run based
on the built-in support for profiling and instrumentation
in Avrora, anatomizes it into a set of event-handling
intervals through the scheme described in Section V-A, and
samples them to a set of instruction counters as described in
Section V-B. After the testing runs stop, the back-end outlier
detection approach of Sentomist will input the instruction
counters to an outlier detection plug-in algorithm named
LIBSVM, a well-adopted one-class SVM implementation4,
to rank the samples. The ascending ranking then indicates
the priority order of the runtime intervals by which we
should perform a manual inspection to check the correct-
ness of the application. The source codes of Sentomist,
including the front-end data acquisition approach and the
back-end outlier detection algorithm, and all the case studies
are available online [15].

B. Case study I: Data pollution in a single-hop data collec-
tion WSN

We first provide our experience on testing a WSN data
collection application where several sensor nodes monitor

3http://compilers.cs.ucla.edu/avrora.
4http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

temperature and report the readings to a data sink in a single
hop manner, which includes the example codes described in
Section IV. The program is adapted from Oscilloscope
[6], where each sensor node requests its sensor readings
periodically with a hardware timer whose timeout latency D
is an application-specific parameter. This means the sensor
nodes will collect the temperature every D seconds. When
a reading is ready upon request, an ADC interrupt will be
issued so that the program can get the reading via the ADC
event procedure. After collecting three sensor readings, a
node will post a task to send the three readings in a data
packet to the sink. The core part of the ADC event procedure
is shown in Figure 2.

Note that when testing a WSN application, the parameters
of the application (e.g., D in this case study) should be set
according to the application specification. Because the envi-
ronmental data sampling frequency is not large in general,
in this study, we set D to be 20ms, 40ms, 60ms, 80ms and
100ms, respectively, in five testing runs indexed from 1 to
5, each of which lasts for 10s.

With the front-end data acquisition approach of
Sentomist, the program runtime is anatomized into a
set of event-handling intervals, each corresponding to an
ADC event procedure instance. In total, we have collected
1099 samples, giving us 1099 instruction counters. Each
is indexed by [r, s] where r is its testing run index and
s is its chronological order in the test run. Sentomist
then feeds the counters into the one-class SVM outlier
detection algorithm. Part of the ranking scores are shown
in Figure 5(a) in an ascending order5. It shows that the
behaviors of top-ranked instances are suspicious to contain
bug symptoms compared with the others. It thus directs us
to a manual inspection of the system behavior: According
to the ranking, we can inspect these instances (i.e., the 76th,
176th, and 198th instances in testing run 1, and so on) one
by one to check the correctness of the application.

We check the application behaviors during any of the

5We normalize the scores so that the largest positive score is 1 for easy
comparison purpose in all the three case studies.



top three instances of the ADC event procedure and they
all confirm the data pollution bug discussed in Section IV.
This shows that our testing paradigm can recommend just a
few short program runtime intervals for manual inspection,
where bug symptoms do present in these recommended short
intervals. In contrast to inspecting the long-term system
behaviors, our bug symptom mining approach can greatly
save the human efforts in test inspection. It is worth noting
that even for this simple application, the program trace of
each testing run is very long (e.g., when D = 20ms, the
size of the function-level log can reach tens of megabytes).
It is thus labor-intensive to manually inspect whether the
WSN application runs correctly in each testing run without
our proposed bug symptom mining approach.

C. Case study II: Packet loss in a multi-hop data forwarding
WSN

We next consider multi-hop packet transmissions where
intermediate nodes serve as relays between the source and
sink. We test a typical multi-hop packet forwarding protocol
based on BlinkToRadio distributed with TinyOS [6].

When a wireless interface chip (e.g., CC1000 for Cross-
bow Mica2) receives a packet from its antenna, it will
issue an SPI interrupt to the MCU. The packet-arrival event
procedure is designed to process such an SPI interrupt
for obtaining the packet content. A key function here is
Receive.receive, which directly calls another function
AMSend.send to forward the packet to next hop.

Our testing target in this case study is the packet forward-
ing operation, and we therefore consider a three-node setting
in Avrora: node 0 as the sink, node 1 as the intermediate
node, and node 2 as the source node. We are particularly
interested in the behaviors of the intermediate node, i.e.,
node 1. The test inputs are naturally the packet arrival events
at node 1. By randomizing the packet sending ratio of node
2, we can inject a random sequence of packet arrival events
for node 1 to handle. Sentomistruns the test for 20s and
obtains a system lifecycle sequence. The program runtime is
then anatomized into 195 event-handling intervals indexed
by a chronological order of their starting time. During each
interval an instance of the packet-arrival event procedure
runs6. We therefore obtain 195 instruction counters.

Figure 5(b) shows the ranking results from one-class SVM
outlier detection algorithm. Again, the top-ranked samples
(i.e., samples 20, 108, and so on) correspond abnormal
symptoms, i.e., those possibly with transient bugs, that are
worth further investigation.

Instantly, we find that the system behaviors when pro-
cessing packet 20 contain a bug symptom: Though node 1
has received the packet and calls Receive.receive, it
actively drops the packet in AMSend.send due to a busy

6Since each of the instances corresponds to a packet arrival event, we
also index the packets being forwarded with the same order.

flag. An in-depth analysis reveals that the busy flag is set
when node 1 is in the process of sending a data packet.
Since WSNs generally adopt a carrier sense multiple access
(CSMA) protocol to avoid packet collision, the process
of sending a data packet involves several control packet
exchanges. Specifically, a node needs to send an RTS packet
and wait for a CTS packet before it can actually send the
data packet. The busy flag is set during the whole process
and cleared only if it is done when a corresponding ACK
packet arrives (See CC1000SendReceiveP.nc in TinyOS
2.1.0 distribution [6]). Active packet drop due to the busy
flag thus happens when the time interval between two packet
arrivals is too short.

This bug is actually due to an improper design: the
protocol should queue up a received packet and send it
when the busy flag is cleared, instead of sending the
packet immediately. The bug is triggered occasionally after
certain complicated executions. Unfortunately, in practice it
is difficult to identify such a tricky packet loss from other
common wireless losses. As a result, it can be labor-intensive
to justify the correctness of the protocol. Moreover, even
we know the packet loss results from a bug, we have to
check 195 event procedure instances one by one without
Sentomist. Actually, we verify that only three of them
contain bug symptoms, which are successfully ranked by
Sentomist as the top three instances. Therefore, we can
easily unveil such a bug symptom with Sentomist and
human inspection efforts are greatly saved.

D. Case study III: Unhandled failure caused by two co-
existing WSN protocols

In the third case study, we test a WSN application
implemented for event detection application, where an event
of interest lasts for a random interval. During the event
interval, a sensor node will report its sensor readings to a
sink periodically. We employ the Collection Tree Protocol
(CTP) [12] implementation distributed with TinyOS 2.1.0
to transport sensor readings. We also implement a heartbeat
message exchange protocol for monitoring the life condi-
tions of sensor nodes, where a sensor node sends a heartbeat
message to its neighbors every 500ms. We deploy 9 nodes
in Avrora, and randomly select sensor nodes as sources.
Each source will randomly start reporting packets with CTP
in a time interval with a random length.

As both the heartbeat protocol and CTP are driven by
timer timeout events, we focus on the corresponding timeout
event procedure at each sensor node. We run the test for
15s. With a similar process described in the previous two
case studies, Sentomist obtains 95 timer event-handling
intervals, which are sampled as 95 instruction counters, for
the timer to report sensing data in 4 sensors. The one-
class SVM outlier detection algorithm provides their ranking
results shown in Figure 5(c), in which each sample is
indexed by [n, s] where n is the node ID and s is the



chronological order of the corresponding instance of the
timeout event procedure running on each node.

The results show that the behaviors of the WSN appli-
cation running on node 8 during its 2nd event procedure
instance is the most suspicious one to contain bug symptoms.
We inspect the system behaviors; however, it seems fine. So
do the second and the third ones. Yet we quickly find that
a bug symptom exists in the rank-4 instance [8, 20], where
CTP cannot send a packet out. It reaches a status of FAIL
due to resource contention with the heartbeat protocol. The
failure status, however, is not properly handled in the current
implementation of CTP. As a result, the corresponding mark
that indicates the busy status of the underling communication
chip is not reset. Hence, all the following packets are not
sent out and the CTP protocol at the node hangs.

The failure status is unhandled in CTP because it assumes
that it is the sole protocol responsible for transmitting all
messages in a sensor node and the failure should never
happen. However, multiple protocols with different purposes
may co-exist in a senor to fulfil different tasks. Hence,
uncoordinated resource contention among different protocols
may be transiently triggered and the system eventually fails.

This bug is due to certain assumption a TinyOS com-
ponent makes, which is however violated by other co-
existing components. This is by no means an occasional
situation. TinyOS applications are component-based and
different components are typically coded by different de-
velopers around the world. They may not share the same
design assumptions, resulting in tricky bugs when wiring
the components into one WSN application. Note that the
bug has been extensively discussed in the TinyOS mail list.
It had long been causing confusing problems until it was
discovered recently7. But with Sentomist, we can easily
identify its symptoms and quickly locate it.

E. Discussions

Emulation is a popular way to check the functionality
and performance of a WSN application [35]. In this paper,
the system behaviors are collected based on emulation
over Avrora by Sentomist. We do not rely on real
experiments to capture the system runtime behaviors because
the transient nature of WSN bugs caused by the random
interleaving requires a long-term system execution. It is
generally not cost-effective, if not infeasible, for a real
system to explore a variety of system states (e.g., differ-
ent parameters) to hit the trigger condition of a transient
bug. Hence, resorting to emulation is more efficient for
fighting against transient bugs. We choose Avrora since it
demonstrates high fidelity to the real world. Avrora models
hardware behaviors and their interactions with high timing
accuracy, and thus supports interrupt preemptions and net-
work communications, which are of the most concerns in

7https://www.millennium.berkeley.edu/pipermail/tinyos-devel/
2009-March/003735.html.

WSN application development. With Avrora, we can thus
explore the interleaving executions of event procedures that
may occur in practice. It is worth noting that another widely-
adopted simulator TOSSIM [36] cannot provide such a high
timing accuracy in hardware behaviors, since it simulates
event in a consequential manner which will fail to capture
the interleaving executions of event procedures [35].
Sentomist adopts one-class SVM as its plug-in

anomaly detection approach. It is noted that one-class SVM
is not the sole option. There are many other outlier detection
algorithms [34] that can be incorporated into Sentomist
such as Principal Component Analysis and one-class Kernel
Fisher Discriminants. Sentomist can actually plug in
these outlier detection algorithms conveniently. A further
comparison study can be conducted in our future work.

VII. CONCLUSION

WSN applications are fault-prone. Testing WSN systems
is however a very challenging task, far from simply applying
existing software testing techniques. Many WSN bugs are
subtly caused by random interleaving executions of event
procedures. It is extremely hard to handle such bugs since
their symptoms are transient in nature, which are deeply
hidden in tremendous system runtime data. It is labor-
intensive, if not impossible, to examine whether a system
behaves correctly or not. This paper presents an effective
tool Sentomist for testing WSN systems. Sentomist
divides the long-term system runtime data in a proper granu-
larity, i.e., the event-handling intervals. It captures the system
behaviors of each interval with an instruction counter profile.
Anomaly is then detected with a plug-in outlier detection
algorithm. The symptoms of potential bugs are thus exposed
for human inspections. We apply Sentomist to testing
transient bugs in several representative real-life WSN ap-
plications. Our experiments demonstrate that Sentomist
can greatly save manual efforts in testing WSN applications.
Finally, in our future work, we are interested in extending
Sentomist for achieving bug localization, i.e., locating
bugs in source code level, by adopting the symptom-mining
approach to correlate bug symptoms with source codes.
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