PANEL: RESEARCH AND DEVELOPMENT ISSUES
IN SOFTWARE RELIABILITY ENGINEERING

Panel Chair: Michael Lyu

Panelists: Herbert Hecht
Hermann Kopetz
Douglas Miller
John Musa
Mits Ohba
David Siefert

Introduction

Michael R. Lyu, University of lowa

Computers are bringing revolutionary changes to our
life with their involvement in most human-made sys-
lems for sensing, communication, control, guidance and
decision-making. As the functionality of computer
operations becomes more essential and complicated in
the modern society, the reliability of compuler software
becomes more important and critical.

Research activities in software reliability enginecring
have becn vigorous in the past 20 years. Numcrous
statistical models have been proposed in the literature
lor the prediction and estimation ol software reliabil-
ily, and many research efforts and paradigms have been
conducted for the design and engincering of reliable
software. However, there scems to be a gap in between
the achievements of software reliability research and
the results from software reliability practice. We keep
on heanng troublesome software projects, horrible
software lailures, and misconceptions in software reli-
ahility applications,

It is the purpose of this panel to bring together
researchers and practitioners of this field to discuss
the software reliability problems which will have
tremendous impact w our daily life. The panel is
expecied (o raise rescarch and development issues
under this concern, to address existing and polential
problems, to resolve some misunderstandings and
conflicts, and to rcach a fundamental basis for the

(University of Towa)

{SoHaR Inc.)

(Technical University of Vienna)
(George Mason University)
{(AT&T Bell Labs.)

(IBM Corporation)

(NCR)

advancement of this ficld.

The panclists are invited to discuss those topics includ-
ing, but not limiled to, the following:

(1) Whartare the most urgent needs for software relia-
bility practitioners?

{2}y What kind of issues practitioners would like
researchers to pursue?

(3) Did practitioners get satisfactory resulls rom
software reliability rescarchers?

(4) What are the most challenging software reliability
issues rescarchers are facing today?

(3} Did rescarchers gain enough support o perform
software reliability research?

(6) What kind of inputs or feedbacks researchers are
sccking from practitioners?

{7} What practices should be developed and con-
ducted based on the current research resulis?

{8) What is the gap in between software reliability
modelers and measurers? How to abbreviale 117

(9 What kind of multi-ingtitutional efforts have
been, or should be conducted for acquiring
software reliability standards, handbooks, bench-
marks, databasc, Wols, etc.?

The following scclions consist the position slatements
written by each panclist under the panel title and the
suggested topics,

Quantitative and Qualitative Concepls
Herbert Hecht, SoHaR

For Project Managers the reliability of the computing
function as a whole is of primary concem, and for that
purpose a combined guantitative hardware/soflware reli-
ability expression is required. The responsibility for
hardware and software functions is frequently separated
immediaely below the project management level, and
therefore the project manager also needs scparale
models for allocating and controlling the achievement of
adequate reliability, For these purposes broad statistical
reliability metrics are suitable, particularly failures per
unit time of computer usage or time unit Ioss of com-
puter availability due o failures. Examples: failures per
CPU-hr or outage-hrs per month.

The software manager is responsible for achieving the
statistical reliability goals but in order 1o know where
and how to improve the reliability more specific meas-
urcments are required. Quantitative approaches have so
far been only of limited use in this domain. Audils,
employment of soltware development and test tools, and
lest planning are largely guided by purely qualitative
considerations. Therefore there exists at present no con-
sistent methodology that permits the software manager
to meet the quantitative requirements imposed by sys-
tems considerations wilh the tools at their disposal.

Two activitics can bring about a connection between the
quantitative and qualitative approaches, and can provide
sorely needed advances toward achieving maore reliable
software, The first activity is the quantitative analysis of
failures in erms of software development and test tech-
niques that could have prevented them. The resulting
data, particularly if they are weighted by severity of the
failure, can provide the software manager with concrete
information on the means of improving the reliability of
histher product,

The second step deals with the use of quantitative data
as a test lermination criterion, The present practice of
ending test on the basis of schedule, budget, or (in the
very best cases) atainment of a period of [failure free
operation, provides little useful feedback to the tcam
that developed the software or for the test planning in
other projects. Reliability growth measurement during
[ormal test will permit termination on demonstration of
a defined reliability level and will also provide insights
mto the effectiveness of different development and test
methodologies.

I will present examples of these integrated practices.

Reliability of Real Time Systems

Hermann Kopetz, Technical University of Vienna

Since my background is in the area of fault-tolerant dis-
tributed real-time sysiems, my view 15 determined from
this position.

In hard real-time systems, ie., systems where a lailure
can have catasirophic consequences, a result must he
correct, both in the domaing of value and time. Since the
behavior in the domain of time depends on the proper-
ties of the underlying hardware, an integrated
soltwareshardware view has to be taken, The functional
correctness of the sofllware per se (i.e., correctness in the
value domain} is not sulficien,

Many failures of real-lime systems are ralated 1o svn-
chronization and performance crrors which manifest
themselves as “mansient” system failures, In a failure
statistics of a complex real-time system [Gebman 1988,
it is recorded that less than 10% of the failures observed
n the operation of the system can be reproduced within
the sophisticated test environment. Similar resulis hgve
been reparted by olher manufacturers of real-tume sys-
lems, This implies that we do nol ully ynderstand the
character and the interactions of the exccution sequences
which unfold over time in complex rcal-time systems
and do nol know how to build effective test procedures.

This problem has to be attacked from the perspective of
design. We have 1o build real-time archilectures that are
easier to reason aboul. Most of the present day real-time
systems are event friggercd, i.e., 48 so0n as an event
oceurs, the computer syslem akes a decision whether o
process the task associaled with this event immedialely
or the delay processing unil sometimes latar. These
dynamic scheduling decisions can take a significant
amount of processing tme, which is then not availabl:
for the application software. Every different order of
the events can give rise to a different scheduling deci-
sion and thus to a different execution sequence. The
potential input space ol event-triggered systems is enor-
mous. It is difficult to reproduce an input scenario
because the exact iming of input cases cannol be con-
rolled easily. There are no methods known which can
be applied to reason formally about the timing behavior
(i.e. the performance) of complex real-time systems.

If we introduce a time-granularity in the system opera-
tion by looking at the evenls only at predefined points in
the time domain (i.c., a time triggered architecture), the
plurality of input cases can be substantially reduced.
Furthermore, static scheduling strategics hecome feasi-

ble. The system stucture will be more regular, ie.,
more predictable and easier o understand and est. The
price paid for this reduction in complexity is a reduced
flexibility.

We feel that in the field of real-time systems every cllort
must be made to make the system clear and understand-
able. In our rescarch on distributed real-time systems
[Kopetz 1989] this has always been our primary goal.
We have found that time-triggered real-time software is
inherently easicr to understand and (cst than event-
riggered software. Further research efforts in this area
seem 1o be well justified.

Statistical Issues in Software Reliability
Engineering Research and Development

Douglas R. Mifler, George Mason University

There are two major issues concerning software reliabil-
ity: achievement and assurance. They arc both very
important. Obwviously, software in critical applications
must achieve high reliability in order for the system to
function safely. But it is also necessary to have strong
"a priori” assurance that the software is highly reliable
before it can be put into use. For example, without rea-
sonable assurance that high reliability has been
achieved, flight critical avionics soflware in commercial
aircrall should not be certified for public use.

S0, the central focus of Software Reliability Engineering
R&D is methodologics for achieving and assuring
required levels of software reliability. The goal is reli-
able software. How do you do it? How do you know
when you've done it? Furthermore, what are the most
efficient ways to achieve and assure the reliability?

A central idea concerning reliability is "uncertainty.” A
given piece of software may or may not contain design
flaws which will manifest themsclves as system failures
when the software is used at some time in the future.
The point is that uncerlainty is inherent to this
phenomenon: we do not know if failures will happen
and, il they do, when they will happen. To deal with
this uncertainty, a scientific approach should be taken.
The scientific approach involves experimentation, data
collection, statistical modelling and analysis, and draw-
ing inferences and conclusions which will support deci-
stons about developing, testing and using software. The
existence of probability seems inevitable here. It is
necessary o quantily the unceriainty in terms ol proba-
bilitics of various events occurring.

Based on information or data concerning soltware
development, testing, previous [ailures, the usage
environment, and any other observables, we would like
o estimate (with confidence) the probability that a par-
ticular picce of software fails during a given time inter-
val.

Reliabilily growth models attlempt 1o estimate current
reliability and predict futare reliability growth for a
given piece of software, These models base their cati-
males and predictions only on past failure times of the
given picce of software. IBM's Clean Room used relia-
bility growth models successfully. At the May 1990
Meeting of the TEEE Subcommitiee on Software Relia-
bility Enginecring, successes were also reported by
AT&T, HP and Cray Research, Unfortunately, the relia-
bility growth modelling approach is limited in many
ways: The maodels treat the software as a black box and
are only valid for random batch (memoryless) testing or
usage. The distribution of wsage must be well know.
The models do not make use of additional data or infor-
mation which comes out during testing or usage, The
approach does not give usclul estimates for extremely
high levels of reliability (e.g., avionics software and
other safety-related systems),

There are many [actors which contribule 10 the reliabil-
ity of a piece of software, Case studies such as those
sponsorcd by NASA Goddard’s Soltware Engineering
Laboratory explore the effect of various factors on
soltware quality. Factors of interest include dilTerem
development scenarios, different testing strategies,
characteristics of programmers, and others, Tt can be
shown that soflware quality correlales with various
known factors, but calculating reliabilitics rom these
factors seems difficult il not impossible. One very
important category of information which should have
significant value in predicting rehiability of a piece of
soltware is the programmer’s personal subjective esti-
male of its reliability, cspecially after he has scen and
done a post mortem on the first few bugs discovered.

Current practice is often based on engincering judge-
ment. For cxample, commercial avionics soltware mus|
be produced following guidelings presented in DO-
178A, "Soltware Considerations in Airbome Systems
and Equipment Certification,” prepared by Special Com-
mitlee 152 of the RTCA and currently under revision by
Special Committee 167, If appropriate documentation
supports compliance, the FAA certifies the software,
The actual software is never examined as part of the
certification. A major challenge facing the discipline of
Sofltware Reliability Engincering involves justilying this

type of approach (also contained in various Military
Standards) in some objective, scientific sense.

To summarize: i)For certain classes of software pro-
jects, quantitative reliability estimation and prediction is
possible (and is dome} for individual programs,
ii}Through general case studics it is possible to identify
factors cffecting reliability and thus a pet qualitative
sense of what constilules good software development
practice, 1iifFor many critical soltware systems requir-
ing high rcliability, the approach to reliability is very
subjective.

It is clear that a gquantitative, objective approach to
software reliability should be applied to more software
projects. This means going beyond the current practice
of software reliability growth modelling, The key seems
o be: It is necessary 10 use available data much more
elficiently (and imaginatively), There are two
categories of data sources: Additional data can be col-
lected {(and used) specific to any particular piece of
software whose reliability is being asscssed. More
importantly, there is data from similar and related pieces
of existing software; T don't think we know how 1o make
effective use of this data,

The pgoal is better quantitative wnderstanding (and
exploitation of that knowledge) of many software
phenomena: behavior of real-time control systems, intri-
cacics of fault-tolerant sysiems, efficacy of testing,
identification of usage distributions, ctc. All this
knowledge is related 1o classes of software. (It is neces-
sary Lo understand more than single software systems
individually, one at a time.) Software metrics must be a
key feature in this general quantitative understanding,
because the similarity between picces of software must
be measured in order to define classes of soltware.

o progress it is necessary 1o acquire data, An ideal (but
expensive) source is controlled experimentation. For
example, NASA Langley conlinugs to sponsor experi-
ments where replicated software is written. A better
understanding of replicated batch-processing software
has emerged from such experiments. Current experi-
ments should improve understanding of replicated real-
time conirel software. A second general source of data
are real software projects. A prime example is the data
collected and published by Musa; his data stimulated a
flurry of activity in reliability growth modelling. Such
expernimentation and data collection is crucial, Experi-
menting and collecting useful data across general classes
of software projects is a remendous challenge.

The Software Reliability Gap: An Opportunity
John D, Musa, AT&T Bell Labs.

We are in the middle of bath a problem and an oppor-
unity. I like to call it the ““software reliability gap®'
because the needs of sofiware customers have outrmn the
current practice of software engineering. You can’t icll
whether they have outrun the wechnology, because there
is much technology that hasn't been relined and applied,

The core of the problem is that intense international
competition has made unidimensional needs obsolete, If
we only needed to add reliability to software products,
we would have many tools and methodologies to help
us. The problem is that other customer requirements,
such as level of cost and delivery date, would not be
meL Customers have multidimensional needs thal are
interdependent and hence must be set and met maore pre-
ciscly than ever before. The precision required can only
increase in the future,

Thus measurement is inevitable. Models are also inevil-
able; we need to know the lactors that influence product
atributes and how much each of them does, so that the
software development process can be controlled to yield
the desired objectives lor the attributes. In short, com-
petition is creating a technological vacuum or gap.

The principal guality attributes that customers cile as
being significant are reliability, cost, and delivery date,
Software reliability engineering is the last to develop of
the three technologies supporting the measurement and
modeling of these auributes. Tt is the keystone thal
makes quantitative soliware quality engineering possi-
ble. Since guantitative hardware quality engincering
already exists, the development of software reliability
cngineering also makes quaniitative sysrem quality
engingering possible.

Thus there is an enormous and rare opportunily to fill a
widening gap. which makes this an exciting and chal-
lenging time.

What must software reliability engincering do to meet
the challenge? In my opinion, several general things:

(1) We need to induce a varicty of projects to try it
This is already happening, but grealer variely
would be wseful. Care must be taken that it be
applied correctly.

{2) The ecxperience on these projects must he
recorded, critiqued by others knowledgeahle in

the field (1o guard against misinformed applica-
tions), and published.

(3) Published expericnce should be organized and
digested, so it can be more easily taught to practi-
tioners and future practitioners.

{4) Problems that arc blocking further progress and
opportunities for new arcas of application need 1o
be identified, and they should be addressed by
researchers.

These activities clearly offer major possibilities for prac-
titioners, researchers, and cducators. People who
acquire and use software play an important role in clari-
fying the needs of the customer that are at the core of
the driving forces acting on software reliability
engingering.

Can T say anything more specific? [would like to close
by entenng brainstorming mode and throwing out some
thoughts for you to discuss:

(1) We nced research to tie software reliability more
strongly to the carlier part of the development pro-
cess. Part of this effort involves determining how
fault density is affected by product and process
variables.

(2) Liwtle has been done to fulfill the promise of
soltware reliability cngineering for evaluating
software engineering methodologies and tools,
We need to help people do this.

(3) We need data on human and computer resource
usage in test, so that resource usage paramelers
can be determined.

(4) The AIAA software reliability engineering guide-
lines effort, which includes development of a
handbook, looks promising. Because of the diver-
sity of contributors involved, it will be important
to devote much effort to interaction between and
integration of their views, We don’t want a cata-
log.

(3) We need to strongly support our newsletter and
our conference through personal participation in
cxchanging practical expericnce and rescarch
results. We need Lo keep the exchange flowing all
year through our working committecs,

(6) We need software tools (with as many peneric
elements as possible) 1o record as large a propor-
tion of failures as possible automatically, particu-
larly in the field but also in test. We nced to
integrate this system with manually-reported
failure systems, but consider implementing the

manual reporting online rather than on paper.

{7} The Software Engincering Institute has a mctho-
dology for assessing the quality level of software
development processes. It does not cumently
directly include a software reliability engincering
program among its assessment criteria. It should,
and we should discuss with them how to add it.

I hope you will not only discuss these ideas here, bul
chew on them later as well. 1 hope you will add to this
necessarily partial list of opportunities for action. T hope
you will then seize some of them that appeal to you, and
return as significant contributors next year or the vear
after,

Software Reliability Engineering
from Japanese Perspective
Mits Ohba, IBM Corporation

(L

T'he wave comes from the Easy”

Both the computer technology and the quality control
method were invented and matured in the US, and they
were brought into Japan later. Japan has so far caught
up quickly and become competitive in both areas, Espe-
cially, Japan is viewed as the leader in the arca of gual-
ity control and quality management,

"Technology ransfer begins when it is imported.”

If we carclully review the processes by which Japan has
caught up and gone further, we can find some similar
patterns of technology development. The processes gen-
crally begin at the importing phase where technology is
investigated and evaluated. Then there is the deploy-
ment phase, the migration phase, and finally, the JTapani-
#ilion phase.

"How does it go through?”

The deployment phase is the phase where the imported
technology is widely used and the know-hows associate
with it arc accumulated. The migration phase is the
phase where components of the technology are adjusted
for the target environment(s). The Japanization phase is
the phasc where something additional and unique to
Japan is added 1o the technology.

"How has Japanese sollware engineering cvolved?”

Software engineering is a case in point. Tt was intro-
duced into Japan in 1977, which was two years later

than the first ITEEE Transaction on Sofiware Engineering
issued. Two years were spent on the importing phasc
followed by two years of deployment, The migration
phase began in 1982 and lasted six years. The Japaniza-
tion phase began in 1988. An example of the Japaniza-
tion phase is what has become known as the "Software
Factory” concept.

"Soltware reliability research is not an exception.”

As a domain of research, software reliability engineer-
Ing is not an exceplion W the Japanese process, The car-
lier work done in the US by Musa, Goel and Okumoto
drew the atention of Japanese reliability rescarchers as
their new field of study.

"What have Japancse researchers done in this field?”

To date they have: 1} evaluated the basic models pro-
posed by the American rescarchors by applying them to
real project data, 2) modified the models in order to fit
the data, 3) developed new models by examining the
implication of data and the assumptions of the basic
madels, and 4) addressed the new research issues of
models to be resalved.

"Software factory did not need theories.”

On the other hand, software reliability ¢ngineering as a
practice has evolved differently. It was begun as a
branch of software quality control practices in order to
determine whether a product developed by a vendor was
acceptable, The logistic curve madel and the Gomperte
curve model were widely used in the industry and
became de facto standard models for soltware factories.

"Technology transfer is really the problem.”

The implementation of the theory which has been
developed by Japanese rescarchers is very slow. This is
because the old models, with which the practitioners arc
familiar, are still sufficient for their needs, They will not
change as long as the old practices work or until they
recognize the advantages of the new theory. This is
similar to the fact that people had belicved the stars were
rotatng.

"How c¢an we convince the people that the carth
rotates?"

The most serious issue of software reliability engineer-
ing as a practice in Japan is the education of the people.
It is similar to teach them that the earth rotates, not the
stars, The models are not crystal balls. Prediction is
made based on a set of assumptions. If the assumptions
are not valid, a model based on them becomes a great

nonsense. The Gompertz curve fitls most of practical
project data because of its flexibility. But, no one can
explain what the model really means,

"Why do we believe that the earth is rotating ™

The most serious issue as a domain of rescarch is (o
cxplain the relationship between test cases and reliabil-
ity growth using reasonable models, which is also simi-
lar to explain the reason why the earth scems (o be rolat-
ing. What soltware reliability growth tells is characteri-
zation of the state of sofltware under evaluation. It does
nol el how we can improve testing. Obwviously, time is
not the real factor for improving software reliability dur-
ing the test phase,

"Can measurcments and data be standardized?”

A serious issue for both practitioners and rescarchers is
1 establish standard ways o measuring sollware relia-
hility in practice. The models are based on a3 ser of
assumptions. The models should be categorized based
on 1} what they can predict (o, MTTFE, number of
errors), 2) what type of data they need {eg., time
between [ailurcs, number of failures between ohserva-
tions), 3} what assumptions they are based on, and 4)
whal type of software they can analyzc.

Back To The Future
David Siefert, NCR

For the past 20 years, Software Engincering has pro-
vided us with the capability for producing highly reli-
able software, Software reliability is achieved, in part,
through the applied discipline of standardized practices,
methodologies, tools, and processes comprising the "sci-
cnce” of Software Engineering. Today, dependence on
automation is greater than at any point in time in the
world’s history. Highly reliable prodocts are expecied
and assumed! The very nature of the level of sophistica-
tion and complexity of modermn sysiems are intended to
be transparent to the end-user,

Applying Software Reliability Engineering Discip-
lines -

Interestingly, the same practices, methodologies, etc.
that lead o the development of reliable software are also
the downlalll Why after all these years of "lcarning” is
the world stll not applying and improving Software
Engincering disciplines etc.? Why do practitioners still
develop and maintain software based upon the

approaches used 20 years ago (lack of applied discip-
linc)? Why is it that researchers do nol yet know
exaclly what is the minimum that should be done 1o
develop reliable software? In support of consistently
producing reliable sofiware, why after 20 years is there
still not a national database leading to the consistent pro-
ject data collection, analysis, and ultimate determination
of practices, tools, and therefore required disciplines?
Shouldn’t a Sofltware Engineering "Bluchook”™ exist?

Software Reliability Engincering is addressed in the fol-
lowing two ways:

(1) Technical Aspects of Software Reliability
Technical soltware reliability consists of many
items. Determining reliability goals is one
activity. Reliability goals are typically referred to
in "techmical” terms. These technical terms are
placed in product specifications, As it pertains (o
Software Reliabilily Engineering, these terms or
goals are then wracked through product production
to the achicvement of the goals. The environment
that the softwarc was produced in, plays a
significant impact on the results. These specified
reliability goals often are determined through the
application of software reliability models. An
AIAA cffort addressing Software Reliability is in
the process of providing guidance to industry on
which models to use and when. The computing
industry has yet to standardize these specific
models,

(2) End-User Software Reliability

The second form of Software Reliability
Engincering is that of the end-user. The technical
specifications which include the software reliabil-
ity goals are expected to be mapped directly (o the
end-user’s meeds and expectations. Too often
there is no known methodology to take qualitative
and rather subjective unstructured feedback from
the end-user and transform them into quantifiable
and techmically oriented input for use in determin-
ing software reliability. Without this methodol-
ogy, there will remain to be software reliability
difficultics. Meeting "specification” infers meet-
ing the end-user’s expeclations. Meeting
specification is certainly one essential form of
measurement. Technical specifications are the
result of analysis of the end-user’s expectation -
nol the other way around. Too ofien the technical
specification and the end-user's expeclations are

distinctly separate with no relationship between
cach other. This results in minimal confidence
that the product will achieve it's expectations.

Environmental issues are also important. To understand
software reliability, one must understand the environ-
ment software resides. The environment for software is
systems! System components include other software
and hardware. Reliability should be computed or budg-
eted In such a manner that reliability for cach of the
components of the compuler environment can be deler-
mined, cvaluated, measured, and tracked separately.
Reliability should also address a “toal" system or
cnlerprise-wide solution. Typically, the end-user is
affected by using or experiencing the "total” system.
They typically have no ability to decipher the type of
defect or anomaly that has occurred. It is not clear that
they should, At any rate, Software Reliability Engineer-
ing needs to address the "otal” system as well as the
individual system components,

The Software Engincering community has reliability
models that lead to establishing reliability goals. "High
Confidence" goals (outputs) produced through the use of
these models are dependent upon past history. This his-
tory should be retained in the form of a database,
Imterestingly, no new significant sollware estimation
madels have been revealed in the past 5 years. Without
the usc of such databases as input to and the "wning” of
such models, the community is no closer to estimating
with high confidence levels the goals produced from the |
models as was able o be attained 5 years ago. The
goals produced through the use of these models may not
b any better than the "guess™ of you or I,

Besides past history, the echnically specificd software
reliability goals are established and dependent on some
basic items of information:

- How iz end-user’s "needs” quantified?

= What is a soltware error, fault, and [ailure?

- What are the categorics of software?

- How is Defect and Fault Density computed?

— What and how is line-of-code or Function Paint,
by language, determined?

- How 15 line-of-code or Function Point translated
between languages?

= How is Defect Density affected by software pro-
duction environmental issucs?

- How is sofiware to be tracked?

Recommendations in Improving Software Reliability

» For Practitioners:

(1) Practitioners must apply the disciplines considered
10 Soltware Engineering. Techniques, methods,
tools, etc. as associated with planning, design,
development, testing (including verification and
validation), should be learned and rigidly applied.

{2} Each software production {or mainienance) organ-
ization should develop and maintain a Software
Engineering Environment Process (SEEP). This
process should consist of all disciplines, tools, etc.
actually used in the production of the soltware -
including the measurement systems, of which
software reliability is a part.

{3) Practitioners should develop a database of past
projects. The database should consist of such
information as: the environment that produced the
software, skill and types of personnel producing
the software, Defect Densities, cic. This database
is to be used as a basis for a Software Reliability
Mcasurement Program (SRMP) and positioning
for continuous improvement in Sollware
Engineering.

(4} A software reliabilily measurement program
{(SRMF) should be put into place that consists of
measures that address both the scope of the
Software Engineering Environment Process and
specific prodoct related results. Measurcs shonld
consist of indicator measures, e.g., Test Coverage
and estimator measures - models to estimate relia-
bility, The measurement program should consist
of a methodology that addresses the use of he
models beginning with the "how 0" develop relia-
bility goals and ending with an approach of a pro-
Jject post mortem. The previously mentioned data-
base would maintain all data. The database would
provide for causal root canse analysis and process
improvement of the Softwarc Engineering
Environmental Process.

e For Compuler Scientist Researchers:

(1) Researchers are to develop and maintain a
national database (see above). The information
contained in the database as previously noted
should contain both product and environmental
information, Researchers should evaluate the
information in such a manner as to determine the

best practices, methods, required skills ete. to con-
tinuously improve software reliability.

{2} Researchers should provide standards on such
subjects as: language constructs, line-of-code
definitions, Function Point, etc.

(3) Researchers should delermine minimum impacts
as W how to conclude with deriving "high
confidence” software reliability goals, et
Muodels arce o be evaluated and maimained.

(4) Researchers should also determine education cur-
ricula for solitware engineering enabling the con-
tinuous achievement of high confidence reliable
soltware,

(5) Researchers should determine how to quantify
results from evaluating user’s nceds, These
results are used as input inte various different reli-
ability wols, models, etc. as discussed earlier,

(&) Researchers should csmblish_ and maintain a "Bluc
Book for Soltware Engineering,”

Concluding Comments

The world continucs to embrace higher and higher levels
of technology. Software is al the heart of the demand
for complex fealures and functions which are packaged
lo make the complexity transparent to the end-user.
High confidence software reliability is in jeopardy.
Software Engineering processes that consist of discip-
lings, wols, methods, etc. arc not being utilized con-
sistienily. The science of Softwarc Engineering is not
being practiced.

A need exists to focus on the basics; in the simplest form
of understanding software and Soltware Engineering.
Data needs to drive decisions. Attaining highly relisble
software - consistently - positioned through processes
for the purpose of improvement i3 essential. Research-
ers need o provide the "data driven” credibility in the
baseline evaluations of software and soltware environ-
ments (and processes). Rescarchers need to see that the
appropriate Software Engineering disciplines are applied
- consistently and appropriately, evaluating the results,
and improving the disciplines and processes.

The disciplines exist in the form of Software Engineer-
mg to produce reliability software! The discipline and
formality required to achieve the results remain to be the
challenge! The solution is: "go BACK and apply the dis-
cipline 10 get to THE FUTURE.."

